xref: /openbmc/linux/drivers/firmware/tegra/ivc.c (revision de528723)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2016, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <soc/tegra/ivc.h>
7 
8 #define TEGRA_IVC_ALIGN 64
9 
10 /*
11  * IVC channel reset protocol.
12  *
13  * Each end uses its tx_channel.state to indicate its synchronization state.
14  */
15 enum tegra_ivc_state {
16 	/*
17 	 * This value is zero for backwards compatibility with services that
18 	 * assume channels to be initially zeroed. Such channels are in an
19 	 * initially valid state, but cannot be asynchronously reset, and must
20 	 * maintain a valid state at all times.
21 	 *
22 	 * The transmitting end can enter the established state from the sync or
23 	 * ack state when it observes the receiving endpoint in the ack or
24 	 * established state, indicating that has cleared the counters in our
25 	 * rx_channel.
26 	 */
27 	TEGRA_IVC_STATE_ESTABLISHED = 0,
28 
29 	/*
30 	 * If an endpoint is observed in the sync state, the remote endpoint is
31 	 * allowed to clear the counters it owns asynchronously with respect to
32 	 * the current endpoint. Therefore, the current endpoint is no longer
33 	 * allowed to communicate.
34 	 */
35 	TEGRA_IVC_STATE_SYNC,
36 
37 	/*
38 	 * When the transmitting end observes the receiving end in the sync
39 	 * state, it can clear the w_count and r_count and transition to the ack
40 	 * state. If the remote endpoint observes us in the ack state, it can
41 	 * return to the established state once it has cleared its counters.
42 	 */
43 	TEGRA_IVC_STATE_ACK
44 };
45 
46 /*
47  * This structure is divided into two-cache aligned parts, the first is only
48  * written through the tx.channel pointer, while the second is only written
49  * through the rx.channel pointer. This delineates ownership of the cache
50  * lines, which is critical to performance and necessary in non-cache coherent
51  * implementations.
52  */
53 struct tegra_ivc_header {
54 	union {
55 		struct {
56 			/* fields owned by the transmitting end */
57 			u32 count;
58 			u32 state;
59 		};
60 
61 		u8 pad[TEGRA_IVC_ALIGN];
62 	} tx;
63 
64 	union {
65 		/* fields owned by the receiving end */
66 		u32 count;
67 		u8 pad[TEGRA_IVC_ALIGN];
68 	} rx;
69 };
70 
71 static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys)
72 {
73 	if (!ivc->peer)
74 		return;
75 
76 	dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN,
77 				DMA_FROM_DEVICE);
78 }
79 
80 static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys)
81 {
82 	if (!ivc->peer)
83 		return;
84 
85 	dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN,
86 				   DMA_TO_DEVICE);
87 }
88 
89 static inline bool tegra_ivc_empty(struct tegra_ivc *ivc,
90 				   struct tegra_ivc_header *header)
91 {
92 	/*
93 	 * This function performs multiple checks on the same values with
94 	 * security implications, so create snapshots with READ_ONCE() to
95 	 * ensure that these checks use the same values.
96 	 */
97 	u32 tx = READ_ONCE(header->tx.count);
98 	u32 rx = READ_ONCE(header->rx.count);
99 
100 	/*
101 	 * Perform an over-full check to prevent denial of service attacks
102 	 * where a server could be easily fooled into believing that there's
103 	 * an extremely large number of frames ready, since receivers are not
104 	 * expected to check for full or over-full conditions.
105 	 *
106 	 * Although the channel isn't empty, this is an invalid case caused by
107 	 * a potentially malicious peer, so returning empty is safer, because
108 	 * it gives the impression that the channel has gone silent.
109 	 */
110 	if (tx - rx > ivc->num_frames)
111 		return true;
112 
113 	return tx == rx;
114 }
115 
116 static inline bool tegra_ivc_full(struct tegra_ivc *ivc,
117 				  struct tegra_ivc_header *header)
118 {
119 	u32 tx = READ_ONCE(header->tx.count);
120 	u32 rx = READ_ONCE(header->rx.count);
121 
122 	/*
123 	 * Invalid cases where the counters indicate that the queue is over
124 	 * capacity also appear full.
125 	 */
126 	return tx - rx >= ivc->num_frames;
127 }
128 
129 static inline u32 tegra_ivc_available(struct tegra_ivc *ivc,
130 				      struct tegra_ivc_header *header)
131 {
132 	u32 tx = READ_ONCE(header->tx.count);
133 	u32 rx = READ_ONCE(header->rx.count);
134 
135 	/*
136 	 * This function isn't expected to be used in scenarios where an
137 	 * over-full situation can lead to denial of service attacks. See the
138 	 * comment in tegra_ivc_empty() for an explanation about special
139 	 * over-full considerations.
140 	 */
141 	return tx - rx;
142 }
143 
144 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
145 {
146 	WRITE_ONCE(ivc->tx.channel->tx.count,
147 		   READ_ONCE(ivc->tx.channel->tx.count) + 1);
148 
149 	if (ivc->tx.position == ivc->num_frames - 1)
150 		ivc->tx.position = 0;
151 	else
152 		ivc->tx.position++;
153 }
154 
155 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
156 {
157 	WRITE_ONCE(ivc->rx.channel->rx.count,
158 		   READ_ONCE(ivc->rx.channel->rx.count) + 1);
159 
160 	if (ivc->rx.position == ivc->num_frames - 1)
161 		ivc->rx.position = 0;
162 	else
163 		ivc->rx.position++;
164 }
165 
166 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
167 {
168 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
169 
170 	/*
171 	 * tx.channel->state is set locally, so it is not synchronized with
172 	 * state from the remote peer. The remote peer cannot reset its
173 	 * transmit counters until we've acknowledged its synchronization
174 	 * request, so no additional synchronization is required because an
175 	 * asynchronous transition of rx.channel->state to
176 	 * TEGRA_IVC_STATE_ACK is not allowed.
177 	 */
178 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
179 		return -ECONNRESET;
180 
181 	/*
182 	 * Avoid unnecessary invalidations when performing repeated accesses
183 	 * to an IVC channel by checking the old queue pointers first.
184 	 *
185 	 * Synchronization is only necessary when these pointers indicate
186 	 * empty or full.
187 	 */
188 	if (!tegra_ivc_empty(ivc, ivc->rx.channel))
189 		return 0;
190 
191 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
192 
193 	if (tegra_ivc_empty(ivc, ivc->rx.channel))
194 		return -ENOSPC;
195 
196 	return 0;
197 }
198 
199 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
200 {
201 	unsigned int offset = offsetof(struct tegra_ivc_header, rx.count);
202 
203 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
204 		return -ECONNRESET;
205 
206 	if (!tegra_ivc_full(ivc, ivc->tx.channel))
207 		return 0;
208 
209 	tegra_ivc_invalidate(ivc, ivc->tx.phys + offset);
210 
211 	if (tegra_ivc_full(ivc, ivc->tx.channel))
212 		return -ENOSPC;
213 
214 	return 0;
215 }
216 
217 static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc,
218 				  struct tegra_ivc_header *header,
219 				  unsigned int frame)
220 {
221 	if (WARN_ON(frame >= ivc->num_frames))
222 		return ERR_PTR(-EINVAL);
223 
224 	return (void *)(header + 1) + ivc->frame_size * frame;
225 }
226 
227 static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc,
228 					      dma_addr_t phys,
229 					      unsigned int frame)
230 {
231 	unsigned long offset;
232 
233 	offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;
234 
235 	return phys + offset;
236 }
237 
238 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
239 					      dma_addr_t phys,
240 					      unsigned int frame,
241 					      unsigned int offset,
242 					      size_t size)
243 {
244 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
245 		return;
246 
247 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
248 
249 	dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE);
250 }
251 
252 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
253 					 dma_addr_t phys,
254 					 unsigned int frame,
255 					 unsigned int offset,
256 					 size_t size)
257 {
258 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
259 		return;
260 
261 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
262 
263 	dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE);
264 }
265 
266 /* directly peek at the next frame rx'ed */
267 void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc)
268 {
269 	int err;
270 
271 	if (WARN_ON(ivc == NULL))
272 		return ERR_PTR(-EINVAL);
273 
274 	err = tegra_ivc_check_read(ivc);
275 	if (err < 0)
276 		return ERR_PTR(err);
277 
278 	/*
279 	 * Order observation of ivc->rx.position potentially indicating new
280 	 * data before data read.
281 	 */
282 	smp_rmb();
283 
284 	tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0,
285 				   ivc->frame_size);
286 
287 	return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position);
288 }
289 EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
290 
291 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
292 {
293 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
294 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
295 	int err;
296 
297 	/*
298 	 * No read barriers or synchronization here: the caller is expected to
299 	 * have already observed the channel non-empty. This check is just to
300 	 * catch programming errors.
301 	 */
302 	err = tegra_ivc_check_read(ivc);
303 	if (err < 0)
304 		return err;
305 
306 	tegra_ivc_advance_rx(ivc);
307 
308 	tegra_ivc_flush(ivc, ivc->rx.phys + rx);
309 
310 	/*
311 	 * Ensure our write to ivc->rx.position occurs before our read from
312 	 * ivc->tx.position.
313 	 */
314 	smp_mb();
315 
316 	/*
317 	 * Notify only upon transition from full to non-full. The available
318 	 * count can only asynchronously increase, so the worst possible
319 	 * side-effect will be a spurious notification.
320 	 */
321 	tegra_ivc_invalidate(ivc, ivc->rx.phys + tx);
322 
323 	if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1)
324 		ivc->notify(ivc, ivc->notify_data);
325 
326 	return 0;
327 }
328 EXPORT_SYMBOL(tegra_ivc_read_advance);
329 
330 /* directly poke at the next frame to be tx'ed */
331 void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc)
332 {
333 	int err;
334 
335 	err = tegra_ivc_check_write(ivc);
336 	if (err < 0)
337 		return ERR_PTR(err);
338 
339 	return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position);
340 }
341 EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
342 
343 /* advance the tx buffer */
344 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
345 {
346 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
347 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
348 	int err;
349 
350 	err = tegra_ivc_check_write(ivc);
351 	if (err < 0)
352 		return err;
353 
354 	tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0,
355 			      ivc->frame_size);
356 
357 	/*
358 	 * Order any possible stores to the frame before update of
359 	 * ivc->tx.position.
360 	 */
361 	smp_wmb();
362 
363 	tegra_ivc_advance_tx(ivc);
364 	tegra_ivc_flush(ivc, ivc->tx.phys + tx);
365 
366 	/*
367 	 * Ensure our write to ivc->tx.position occurs before our read from
368 	 * ivc->rx.position.
369 	 */
370 	smp_mb();
371 
372 	/*
373 	 * Notify only upon transition from empty to non-empty. The available
374 	 * count can only asynchronously decrease, so the worst possible
375 	 * side-effect will be a spurious notification.
376 	 */
377 	tegra_ivc_invalidate(ivc, ivc->tx.phys + rx);
378 
379 	if (tegra_ivc_available(ivc, ivc->tx.channel) == 1)
380 		ivc->notify(ivc, ivc->notify_data);
381 
382 	return 0;
383 }
384 EXPORT_SYMBOL(tegra_ivc_write_advance);
385 
386 void tegra_ivc_reset(struct tegra_ivc *ivc)
387 {
388 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
389 
390 	ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC;
391 	tegra_ivc_flush(ivc, ivc->tx.phys + offset);
392 	ivc->notify(ivc, ivc->notify_data);
393 }
394 EXPORT_SYMBOL(tegra_ivc_reset);
395 
396 /*
397  * =======================================================
398  *  IVC State Transition Table - see tegra_ivc_notified()
399  * =======================================================
400  *
401  *	local	remote	action
402  *	-----	------	-----------------------------------
403  *	SYNC	EST	<none>
404  *	SYNC	ACK	reset counters; move to EST; notify
405  *	SYNC	SYNC	reset counters; move to ACK; notify
406  *	ACK	EST	move to EST; notify
407  *	ACK	ACK	move to EST; notify
408  *	ACK	SYNC	reset counters; move to ACK; notify
409  *	EST	EST	<none>
410  *	EST	ACK	<none>
411  *	EST	SYNC	reset counters; move to ACK; notify
412  *
413  * ===============================================================
414  */
415 
416 int tegra_ivc_notified(struct tegra_ivc *ivc)
417 {
418 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
419 	enum tegra_ivc_state state;
420 
421 	/* Copy the receiver's state out of shared memory. */
422 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
423 	state = READ_ONCE(ivc->rx.channel->tx.state);
424 
425 	if (state == TEGRA_IVC_STATE_SYNC) {
426 		offset = offsetof(struct tegra_ivc_header, tx.count);
427 
428 		/*
429 		 * Order observation of TEGRA_IVC_STATE_SYNC before stores
430 		 * clearing tx.channel.
431 		 */
432 		smp_rmb();
433 
434 		/*
435 		 * Reset tx.channel counters. The remote end is in the SYNC
436 		 * state and won't make progress until we change our state,
437 		 * so the counters are not in use at this time.
438 		 */
439 		ivc->tx.channel->tx.count = 0;
440 		ivc->rx.channel->rx.count = 0;
441 
442 		ivc->tx.position = 0;
443 		ivc->rx.position = 0;
444 
445 		/*
446 		 * Ensure that counters appear cleared before new state can be
447 		 * observed.
448 		 */
449 		smp_wmb();
450 
451 		/*
452 		 * Move to ACK state. We have just cleared our counters, so it
453 		 * is now safe for the remote end to start using these values.
454 		 */
455 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK;
456 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
457 
458 		/*
459 		 * Notify remote end to observe state transition.
460 		 */
461 		ivc->notify(ivc, ivc->notify_data);
462 
463 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC &&
464 		   state == TEGRA_IVC_STATE_ACK) {
465 		offset = offsetof(struct tegra_ivc_header, tx.count);
466 
467 		/*
468 		 * Order observation of ivc_state_sync before stores clearing
469 		 * tx_channel.
470 		 */
471 		smp_rmb();
472 
473 		/*
474 		 * Reset tx.channel counters. The remote end is in the ACK
475 		 * state and won't make progress until we change our state,
476 		 * so the counters are not in use at this time.
477 		 */
478 		ivc->tx.channel->tx.count = 0;
479 		ivc->rx.channel->rx.count = 0;
480 
481 		ivc->tx.position = 0;
482 		ivc->rx.position = 0;
483 
484 		/*
485 		 * Ensure that counters appear cleared before new state can be
486 		 * observed.
487 		 */
488 		smp_wmb();
489 
490 		/*
491 		 * Move to ESTABLISHED state. We know that the remote end has
492 		 * already cleared its counters, so it is safe to start
493 		 * writing/reading on this channel.
494 		 */
495 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
496 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
497 
498 		/*
499 		 * Notify remote end to observe state transition.
500 		 */
501 		ivc->notify(ivc, ivc->notify_data);
502 
503 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) {
504 		offset = offsetof(struct tegra_ivc_header, tx.count);
505 
506 		/*
507 		 * At this point, we have observed the peer to be in either
508 		 * the ACK or ESTABLISHED state. Next, order observation of
509 		 * peer state before storing to tx.channel.
510 		 */
511 		smp_rmb();
512 
513 		/*
514 		 * Move to ESTABLISHED state. We know that we have previously
515 		 * cleared our counters, and we know that the remote end has
516 		 * cleared its counters, so it is safe to start writing/reading
517 		 * on this channel.
518 		 */
519 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
520 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
521 
522 		/*
523 		 * Notify remote end to observe state transition.
524 		 */
525 		ivc->notify(ivc, ivc->notify_data);
526 
527 	} else {
528 		/*
529 		 * There is no need to handle any further action. Either the
530 		 * channel is already fully established, or we are waiting for
531 		 * the remote end to catch up with our current state. Refer
532 		 * to the diagram in "IVC State Transition Table" above.
533 		 */
534 	}
535 
536 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
537 		return -EAGAIN;
538 
539 	return 0;
540 }
541 EXPORT_SYMBOL(tegra_ivc_notified);
542 
543 size_t tegra_ivc_align(size_t size)
544 {
545 	return ALIGN(size, TEGRA_IVC_ALIGN);
546 }
547 EXPORT_SYMBOL(tegra_ivc_align);
548 
549 unsigned tegra_ivc_total_queue_size(unsigned queue_size)
550 {
551 	if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) {
552 		pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
553 		       __func__, queue_size, TEGRA_IVC_ALIGN);
554 		return 0;
555 	}
556 
557 	return queue_size + sizeof(struct tegra_ivc_header);
558 }
559 EXPORT_SYMBOL(tegra_ivc_total_queue_size);
560 
561 static int tegra_ivc_check_params(unsigned long rx, unsigned long tx,
562 				  unsigned int num_frames, size_t frame_size)
563 {
564 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count),
565 				 TEGRA_IVC_ALIGN));
566 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count),
567 				 TEGRA_IVC_ALIGN));
568 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header),
569 				 TEGRA_IVC_ALIGN));
570 
571 	if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) {
572 		pr_err("num_frames * frame_size overflows\n");
573 		return -EINVAL;
574 	}
575 
576 	if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) {
577 		pr_err("frame size not adequately aligned: %zu\n", frame_size);
578 		return -EINVAL;
579 	}
580 
581 	/*
582 	 * The headers must at least be aligned enough for counters
583 	 * to be accessed atomically.
584 	 */
585 	if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) {
586 		pr_err("IVC channel start not aligned: %#lx\n", rx);
587 		return -EINVAL;
588 	}
589 
590 	if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) {
591 		pr_err("IVC channel start not aligned: %#lx\n", tx);
592 		return -EINVAL;
593 	}
594 
595 	if (rx < tx) {
596 		if (rx + frame_size * num_frames > tx) {
597 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
598 			       rx, frame_size * num_frames, tx);
599 			return -EINVAL;
600 		}
601 	} else {
602 		if (tx + frame_size * num_frames > rx) {
603 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
604 			       tx, frame_size * num_frames, rx);
605 			return -EINVAL;
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx,
613 		   dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys,
614 		   unsigned int num_frames, size_t frame_size,
615 		   void (*notify)(struct tegra_ivc *ivc, void *data),
616 		   void *data)
617 {
618 	size_t queue_size;
619 	int err;
620 
621 	if (WARN_ON(!ivc || !notify))
622 		return -EINVAL;
623 
624 	/*
625 	 * All sizes that can be returned by communication functions should
626 	 * fit in an int.
627 	 */
628 	if (frame_size > INT_MAX)
629 		return -E2BIG;
630 
631 	err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx,
632 				     num_frames, frame_size);
633 	if (err < 0)
634 		return err;
635 
636 	queue_size = tegra_ivc_total_queue_size(num_frames * frame_size);
637 
638 	if (peer) {
639 		ivc->rx.phys = dma_map_single(peer, rx, queue_size,
640 					      DMA_BIDIRECTIONAL);
641 		if (dma_mapping_error(peer, ivc->rx.phys))
642 			return -ENOMEM;
643 
644 		ivc->tx.phys = dma_map_single(peer, tx, queue_size,
645 					      DMA_BIDIRECTIONAL);
646 		if (dma_mapping_error(peer, ivc->tx.phys)) {
647 			dma_unmap_single(peer, ivc->rx.phys, queue_size,
648 					 DMA_BIDIRECTIONAL);
649 			return -ENOMEM;
650 		}
651 	} else {
652 		ivc->rx.phys = rx_phys;
653 		ivc->tx.phys = tx_phys;
654 	}
655 
656 	ivc->rx.channel = rx;
657 	ivc->tx.channel = tx;
658 	ivc->peer = peer;
659 	ivc->notify = notify;
660 	ivc->notify_data = data;
661 	ivc->frame_size = frame_size;
662 	ivc->num_frames = num_frames;
663 
664 	/*
665 	 * These values aren't necessarily correct until the channel has been
666 	 * reset.
667 	 */
668 	ivc->tx.position = 0;
669 	ivc->rx.position = 0;
670 
671 	return 0;
672 }
673 EXPORT_SYMBOL(tegra_ivc_init);
674 
675 void tegra_ivc_cleanup(struct tegra_ivc *ivc)
676 {
677 	if (ivc->peer) {
678 		size_t size = tegra_ivc_total_queue_size(ivc->num_frames *
679 							 ivc->frame_size);
680 
681 		dma_unmap_single(ivc->peer, ivc->rx.phys, size,
682 				 DMA_BIDIRECTIONAL);
683 		dma_unmap_single(ivc->peer, ivc->tx.phys, size,
684 				 DMA_BIDIRECTIONAL);
685 	}
686 }
687 EXPORT_SYMBOL(tegra_ivc_cleanup);
688