xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-direct.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/qcom_scm.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/of_platform.h>
17 #include <linux/clk.h>
18 #include <linux/reset-controller.h>
19 #include <linux/arm-smccc.h>
20 
21 #include "qcom_scm.h"
22 
23 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
24 module_param(download_mode, bool, 0);
25 
26 #define SCM_HAS_CORE_CLK	BIT(0)
27 #define SCM_HAS_IFACE_CLK	BIT(1)
28 #define SCM_HAS_BUS_CLK		BIT(2)
29 
30 struct qcom_scm {
31 	struct device *dev;
32 	struct clk *core_clk;
33 	struct clk *iface_clk;
34 	struct clk *bus_clk;
35 	struct reset_controller_dev reset;
36 
37 	u64 dload_mode_addr;
38 };
39 
40 struct qcom_scm_current_perm_info {
41 	__le32 vmid;
42 	__le32 perm;
43 	__le64 ctx;
44 	__le32 ctx_size;
45 	__le32 unused;
46 };
47 
48 struct qcom_scm_mem_map_info {
49 	__le64 mem_addr;
50 	__le64 mem_size;
51 };
52 
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
56 #define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
57 
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
61 #define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
62 
63 struct qcom_scm_wb_entry {
64 	int flag;
65 	void *entry;
66 };
67 
68 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
69 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
70 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
71 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
72 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
73 };
74 
75 static const char *qcom_scm_convention_names[] = {
76 	[SMC_CONVENTION_UNKNOWN] = "unknown",
77 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
78 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
79 	[SMC_CONVENTION_LEGACY] = "smc legacy",
80 };
81 
82 static struct qcom_scm *__scm;
83 
84 static int qcom_scm_clk_enable(void)
85 {
86 	int ret;
87 
88 	ret = clk_prepare_enable(__scm->core_clk);
89 	if (ret)
90 		goto bail;
91 
92 	ret = clk_prepare_enable(__scm->iface_clk);
93 	if (ret)
94 		goto disable_core;
95 
96 	ret = clk_prepare_enable(__scm->bus_clk);
97 	if (ret)
98 		goto disable_iface;
99 
100 	return 0;
101 
102 disable_iface:
103 	clk_disable_unprepare(__scm->iface_clk);
104 disable_core:
105 	clk_disable_unprepare(__scm->core_clk);
106 bail:
107 	return ret;
108 }
109 
110 static void qcom_scm_clk_disable(void)
111 {
112 	clk_disable_unprepare(__scm->core_clk);
113 	clk_disable_unprepare(__scm->iface_clk);
114 	clk_disable_unprepare(__scm->bus_clk);
115 }
116 
117 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
118 					u32 cmd_id);
119 
120 enum qcom_scm_convention qcom_scm_convention;
121 static bool has_queried __read_mostly;
122 static DEFINE_SPINLOCK(query_lock);
123 
124 static void __query_convention(void)
125 {
126 	unsigned long flags;
127 	struct qcom_scm_desc desc = {
128 		.svc = QCOM_SCM_SVC_INFO,
129 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
130 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
131 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
132 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
133 		.arginfo = QCOM_SCM_ARGS(1),
134 		.owner = ARM_SMCCC_OWNER_SIP,
135 	};
136 	struct qcom_scm_res res;
137 	int ret;
138 
139 	spin_lock_irqsave(&query_lock, flags);
140 	if (has_queried)
141 		goto out;
142 
143 	qcom_scm_convention = SMC_CONVENTION_ARM_64;
144 	// Device isn't required as there is only one argument - no device
145 	// needed to dma_map_single to secure world
146 	ret = scm_smc_call(NULL, &desc, &res, true);
147 	if (!ret && res.result[0] == 1)
148 		goto out;
149 
150 	qcom_scm_convention = SMC_CONVENTION_ARM_32;
151 	ret = scm_smc_call(NULL, &desc, &res, true);
152 	if (!ret && res.result[0] == 1)
153 		goto out;
154 
155 	qcom_scm_convention = SMC_CONVENTION_LEGACY;
156 out:
157 	has_queried = true;
158 	spin_unlock_irqrestore(&query_lock, flags);
159 	pr_info("qcom_scm: convention: %s\n",
160 		qcom_scm_convention_names[qcom_scm_convention]);
161 }
162 
163 static inline enum qcom_scm_convention __get_convention(void)
164 {
165 	if (unlikely(!has_queried))
166 		__query_convention();
167 	return qcom_scm_convention;
168 }
169 
170 /**
171  * qcom_scm_call() - Invoke a syscall in the secure world
172  * @dev:	device
173  * @svc_id:	service identifier
174  * @cmd_id:	command identifier
175  * @desc:	Descriptor structure containing arguments and return values
176  *
177  * Sends a command to the SCM and waits for the command to finish processing.
178  * This should *only* be called in pre-emptible context.
179  */
180 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
181 			 struct qcom_scm_res *res)
182 {
183 	might_sleep();
184 	switch (__get_convention()) {
185 	case SMC_CONVENTION_ARM_32:
186 	case SMC_CONVENTION_ARM_64:
187 		return scm_smc_call(dev, desc, res, false);
188 	case SMC_CONVENTION_LEGACY:
189 		return scm_legacy_call(dev, desc, res);
190 	default:
191 		pr_err("Unknown current SCM calling convention.\n");
192 		return -EINVAL;
193 	}
194 }
195 
196 /**
197  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
198  * @dev:	device
199  * @svc_id:	service identifier
200  * @cmd_id:	command identifier
201  * @desc:	Descriptor structure containing arguments and return values
202  * @res:	Structure containing results from SMC/HVC call
203  *
204  * Sends a command to the SCM and waits for the command to finish processing.
205  * This can be called in atomic context.
206  */
207 static int qcom_scm_call_atomic(struct device *dev,
208 				const struct qcom_scm_desc *desc,
209 				struct qcom_scm_res *res)
210 {
211 	switch (__get_convention()) {
212 	case SMC_CONVENTION_ARM_32:
213 	case SMC_CONVENTION_ARM_64:
214 		return scm_smc_call(dev, desc, res, true);
215 	case SMC_CONVENTION_LEGACY:
216 		return scm_legacy_call_atomic(dev, desc, res);
217 	default:
218 		pr_err("Unknown current SCM calling convention.\n");
219 		return -EINVAL;
220 	}
221 }
222 
223 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
224 					u32 cmd_id)
225 {
226 	int ret;
227 	struct qcom_scm_desc desc = {
228 		.svc = QCOM_SCM_SVC_INFO,
229 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
230 		.owner = ARM_SMCCC_OWNER_SIP,
231 	};
232 	struct qcom_scm_res res;
233 
234 	desc.arginfo = QCOM_SCM_ARGS(1);
235 	switch (__get_convention()) {
236 	case SMC_CONVENTION_ARM_32:
237 	case SMC_CONVENTION_ARM_64:
238 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
239 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
240 		break;
241 	case SMC_CONVENTION_LEGACY:
242 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
243 		break;
244 	default:
245 		pr_err("Unknown SMC convention being used\n");
246 		return -EINVAL;
247 	}
248 
249 	ret = qcom_scm_call(dev, &desc, &res);
250 
251 	return ret ? : res.result[0];
252 }
253 
254 /**
255  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
256  * @entry: Entry point function for the cpus
257  * @cpus: The cpumask of cpus that will use the entry point
258  *
259  * Set the Linux entry point for the SCM to transfer control to when coming
260  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
261  */
262 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
263 {
264 	int ret;
265 	int flags = 0;
266 	int cpu;
267 	struct qcom_scm_desc desc = {
268 		.svc = QCOM_SCM_SVC_BOOT,
269 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
270 		.arginfo = QCOM_SCM_ARGS(2),
271 	};
272 
273 	/*
274 	 * Reassign only if we are switching from hotplug entry point
275 	 * to cpuidle entry point or vice versa.
276 	 */
277 	for_each_cpu(cpu, cpus) {
278 		if (entry == qcom_scm_wb[cpu].entry)
279 			continue;
280 		flags |= qcom_scm_wb[cpu].flag;
281 	}
282 
283 	/* No change in entry function */
284 	if (!flags)
285 		return 0;
286 
287 	desc.args[0] = flags;
288 	desc.args[1] = virt_to_phys(entry);
289 
290 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
291 	if (!ret) {
292 		for_each_cpu(cpu, cpus)
293 			qcom_scm_wb[cpu].entry = entry;
294 	}
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
299 
300 /**
301  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
302  * @entry: Entry point function for the cpus
303  * @cpus: The cpumask of cpus that will use the entry point
304  *
305  * Set the cold boot address of the cpus. Any cpu outside the supported
306  * range would be removed from the cpu present mask.
307  */
308 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
309 {
310 	int flags = 0;
311 	int cpu;
312 	int scm_cb_flags[] = {
313 		QCOM_SCM_FLAG_COLDBOOT_CPU0,
314 		QCOM_SCM_FLAG_COLDBOOT_CPU1,
315 		QCOM_SCM_FLAG_COLDBOOT_CPU2,
316 		QCOM_SCM_FLAG_COLDBOOT_CPU3,
317 	};
318 	struct qcom_scm_desc desc = {
319 		.svc = QCOM_SCM_SVC_BOOT,
320 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
321 		.arginfo = QCOM_SCM_ARGS(2),
322 		.owner = ARM_SMCCC_OWNER_SIP,
323 	};
324 
325 	if (!cpus || (cpus && cpumask_empty(cpus)))
326 		return -EINVAL;
327 
328 	for_each_cpu(cpu, cpus) {
329 		if (cpu < ARRAY_SIZE(scm_cb_flags))
330 			flags |= scm_cb_flags[cpu];
331 		else
332 			set_cpu_present(cpu, false);
333 	}
334 
335 	desc.args[0] = flags;
336 	desc.args[1] = virt_to_phys(entry);
337 
338 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
339 }
340 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
341 
342 /**
343  * qcom_scm_cpu_power_down() - Power down the cpu
344  * @flags - Flags to flush cache
345  *
346  * This is an end point to power down cpu. If there was a pending interrupt,
347  * the control would return from this function, otherwise, the cpu jumps to the
348  * warm boot entry point set for this cpu upon reset.
349  */
350 void qcom_scm_cpu_power_down(u32 flags)
351 {
352 	struct qcom_scm_desc desc = {
353 		.svc = QCOM_SCM_SVC_BOOT,
354 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
355 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
356 		.arginfo = QCOM_SCM_ARGS(1),
357 		.owner = ARM_SMCCC_OWNER_SIP,
358 	};
359 
360 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
361 }
362 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
363 
364 int qcom_scm_set_remote_state(u32 state, u32 id)
365 {
366 	struct qcom_scm_desc desc = {
367 		.svc = QCOM_SCM_SVC_BOOT,
368 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
369 		.arginfo = QCOM_SCM_ARGS(2),
370 		.args[0] = state,
371 		.args[1] = id,
372 		.owner = ARM_SMCCC_OWNER_SIP,
373 	};
374 	struct qcom_scm_res res;
375 	int ret;
376 
377 	ret = qcom_scm_call(__scm->dev, &desc, &res);
378 
379 	return ret ? : res.result[0];
380 }
381 EXPORT_SYMBOL(qcom_scm_set_remote_state);
382 
383 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
384 {
385 	struct qcom_scm_desc desc = {
386 		.svc = QCOM_SCM_SVC_BOOT,
387 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
388 		.arginfo = QCOM_SCM_ARGS(2),
389 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
390 		.owner = ARM_SMCCC_OWNER_SIP,
391 	};
392 
393 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
394 
395 	return qcom_scm_call(__scm->dev, &desc, NULL);
396 }
397 
398 static void qcom_scm_set_download_mode(bool enable)
399 {
400 	bool avail;
401 	int ret = 0;
402 
403 	avail = __qcom_scm_is_call_available(__scm->dev,
404 					     QCOM_SCM_SVC_BOOT,
405 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
406 	if (avail) {
407 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
408 	} else if (__scm->dload_mode_addr) {
409 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
410 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
411 	} else {
412 		dev_err(__scm->dev,
413 			"No available mechanism for setting download mode\n");
414 	}
415 
416 	if (ret)
417 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
418 }
419 
420 /**
421  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
422  *			       state machine for a given peripheral, using the
423  *			       metadata
424  * @peripheral: peripheral id
425  * @metadata:	pointer to memory containing ELF header, program header table
426  *		and optional blob of data used for authenticating the metadata
427  *		and the rest of the firmware
428  * @size:	size of the metadata
429  *
430  * Returns 0 on success.
431  */
432 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
433 {
434 	dma_addr_t mdata_phys;
435 	void *mdata_buf;
436 	int ret;
437 	struct qcom_scm_desc desc = {
438 		.svc = QCOM_SCM_SVC_PIL,
439 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
440 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
441 		.args[0] = peripheral,
442 		.owner = ARM_SMCCC_OWNER_SIP,
443 	};
444 	struct qcom_scm_res res;
445 
446 	/*
447 	 * During the scm call memory protection will be enabled for the meta
448 	 * data blob, so make sure it's physically contiguous, 4K aligned and
449 	 * non-cachable to avoid XPU violations.
450 	 */
451 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
452 				       GFP_KERNEL);
453 	if (!mdata_buf) {
454 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
455 		return -ENOMEM;
456 	}
457 	memcpy(mdata_buf, metadata, size);
458 
459 	ret = qcom_scm_clk_enable();
460 	if (ret)
461 		goto free_metadata;
462 
463 	desc.args[1] = mdata_phys;
464 
465 	ret = qcom_scm_call(__scm->dev, &desc, &res);
466 
467 	qcom_scm_clk_disable();
468 
469 free_metadata:
470 	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
471 
472 	return ret ? : res.result[0];
473 }
474 EXPORT_SYMBOL(qcom_scm_pas_init_image);
475 
476 /**
477  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
478  *			      for firmware loading
479  * @peripheral:	peripheral id
480  * @addr:	start address of memory area to prepare
481  * @size:	size of the memory area to prepare
482  *
483  * Returns 0 on success.
484  */
485 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
486 {
487 	int ret;
488 	struct qcom_scm_desc desc = {
489 		.svc = QCOM_SCM_SVC_PIL,
490 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
491 		.arginfo = QCOM_SCM_ARGS(3),
492 		.args[0] = peripheral,
493 		.args[1] = addr,
494 		.args[2] = size,
495 		.owner = ARM_SMCCC_OWNER_SIP,
496 	};
497 	struct qcom_scm_res res;
498 
499 	ret = qcom_scm_clk_enable();
500 	if (ret)
501 		return ret;
502 
503 	ret = qcom_scm_call(__scm->dev, &desc, &res);
504 	qcom_scm_clk_disable();
505 
506 	return ret ? : res.result[0];
507 }
508 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
509 
510 /**
511  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
512  *				   and reset the remote processor
513  * @peripheral:	peripheral id
514  *
515  * Return 0 on success.
516  */
517 int qcom_scm_pas_auth_and_reset(u32 peripheral)
518 {
519 	int ret;
520 	struct qcom_scm_desc desc = {
521 		.svc = QCOM_SCM_SVC_PIL,
522 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
523 		.arginfo = QCOM_SCM_ARGS(1),
524 		.args[0] = peripheral,
525 		.owner = ARM_SMCCC_OWNER_SIP,
526 	};
527 	struct qcom_scm_res res;
528 
529 	ret = qcom_scm_clk_enable();
530 	if (ret)
531 		return ret;
532 
533 	ret = qcom_scm_call(__scm->dev, &desc, &res);
534 	qcom_scm_clk_disable();
535 
536 	return ret ? : res.result[0];
537 }
538 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
539 
540 /**
541  * qcom_scm_pas_shutdown() - Shut down the remote processor
542  * @peripheral: peripheral id
543  *
544  * Returns 0 on success.
545  */
546 int qcom_scm_pas_shutdown(u32 peripheral)
547 {
548 	int ret;
549 	struct qcom_scm_desc desc = {
550 		.svc = QCOM_SCM_SVC_PIL,
551 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
552 		.arginfo = QCOM_SCM_ARGS(1),
553 		.args[0] = peripheral,
554 		.owner = ARM_SMCCC_OWNER_SIP,
555 	};
556 	struct qcom_scm_res res;
557 
558 	ret = qcom_scm_clk_enable();
559 	if (ret)
560 		return ret;
561 
562 	ret = qcom_scm_call(__scm->dev, &desc, &res);
563 
564 	qcom_scm_clk_disable();
565 
566 	return ret ? : res.result[0];
567 }
568 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
569 
570 /**
571  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
572  *			      available for the given peripherial
573  * @peripheral:	peripheral id
574  *
575  * Returns true if PAS is supported for this peripheral, otherwise false.
576  */
577 bool qcom_scm_pas_supported(u32 peripheral)
578 {
579 	int ret;
580 	struct qcom_scm_desc desc = {
581 		.svc = QCOM_SCM_SVC_PIL,
582 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
583 		.arginfo = QCOM_SCM_ARGS(1),
584 		.args[0] = peripheral,
585 		.owner = ARM_SMCCC_OWNER_SIP,
586 	};
587 	struct qcom_scm_res res;
588 
589 	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
590 					   QCOM_SCM_PIL_PAS_IS_SUPPORTED);
591 	if (ret <= 0)
592 		return false;
593 
594 	ret = qcom_scm_call(__scm->dev, &desc, &res);
595 
596 	return ret ? false : !!res.result[0];
597 }
598 EXPORT_SYMBOL(qcom_scm_pas_supported);
599 
600 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
601 {
602 	struct qcom_scm_desc desc = {
603 		.svc = QCOM_SCM_SVC_PIL,
604 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
605 		.arginfo = QCOM_SCM_ARGS(2),
606 		.args[0] = reset,
607 		.args[1] = 0,
608 		.owner = ARM_SMCCC_OWNER_SIP,
609 	};
610 	struct qcom_scm_res res;
611 	int ret;
612 
613 	ret = qcom_scm_call(__scm->dev, &desc, &res);
614 
615 	return ret ? : res.result[0];
616 }
617 
618 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
619 				     unsigned long idx)
620 {
621 	if (idx != 0)
622 		return -EINVAL;
623 
624 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
625 }
626 
627 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
628 				       unsigned long idx)
629 {
630 	if (idx != 0)
631 		return -EINVAL;
632 
633 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
634 }
635 
636 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
637 	.assert = qcom_scm_pas_reset_assert,
638 	.deassert = qcom_scm_pas_reset_deassert,
639 };
640 
641 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
642 {
643 	struct qcom_scm_desc desc = {
644 		.svc = QCOM_SCM_SVC_IO,
645 		.cmd = QCOM_SCM_IO_READ,
646 		.arginfo = QCOM_SCM_ARGS(1),
647 		.args[0] = addr,
648 		.owner = ARM_SMCCC_OWNER_SIP,
649 	};
650 	struct qcom_scm_res res;
651 	int ret;
652 
653 
654 	ret = qcom_scm_call(__scm->dev, &desc, &res);
655 	if (ret >= 0)
656 		*val = res.result[0];
657 
658 	return ret < 0 ? ret : 0;
659 }
660 EXPORT_SYMBOL(qcom_scm_io_readl);
661 
662 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
663 {
664 	struct qcom_scm_desc desc = {
665 		.svc = QCOM_SCM_SVC_IO,
666 		.cmd = QCOM_SCM_IO_WRITE,
667 		.arginfo = QCOM_SCM_ARGS(2),
668 		.args[0] = addr,
669 		.args[1] = val,
670 		.owner = ARM_SMCCC_OWNER_SIP,
671 	};
672 
673 
674 	return qcom_scm_call(__scm->dev, &desc, NULL);
675 }
676 EXPORT_SYMBOL(qcom_scm_io_writel);
677 
678 /**
679  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
680  * supports restore security config interface.
681  *
682  * Return true if restore-cfg interface is supported, false if not.
683  */
684 bool qcom_scm_restore_sec_cfg_available(void)
685 {
686 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
687 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
688 }
689 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
690 
691 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
692 {
693 	struct qcom_scm_desc desc = {
694 		.svc = QCOM_SCM_SVC_MP,
695 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
696 		.arginfo = QCOM_SCM_ARGS(2),
697 		.args[0] = device_id,
698 		.args[1] = spare,
699 		.owner = ARM_SMCCC_OWNER_SIP,
700 	};
701 	struct qcom_scm_res res;
702 	int ret;
703 
704 	ret = qcom_scm_call(__scm->dev, &desc, &res);
705 
706 	return ret ? : res.result[0];
707 }
708 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
709 
710 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
711 {
712 	struct qcom_scm_desc desc = {
713 		.svc = QCOM_SCM_SVC_MP,
714 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
715 		.arginfo = QCOM_SCM_ARGS(1),
716 		.args[0] = spare,
717 		.owner = ARM_SMCCC_OWNER_SIP,
718 	};
719 	struct qcom_scm_res res;
720 	int ret;
721 
722 	ret = qcom_scm_call(__scm->dev, &desc, &res);
723 
724 	if (size)
725 		*size = res.result[0];
726 
727 	return ret ? : res.result[1];
728 }
729 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
730 
731 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
732 {
733 	struct qcom_scm_desc desc = {
734 		.svc = QCOM_SCM_SVC_MP,
735 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
736 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
737 					 QCOM_SCM_VAL),
738 		.args[0] = addr,
739 		.args[1] = size,
740 		.args[2] = spare,
741 		.owner = ARM_SMCCC_OWNER_SIP,
742 	};
743 	int ret;
744 
745 	desc.args[0] = addr;
746 	desc.args[1] = size;
747 	desc.args[2] = spare;
748 	desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
749 				     QCOM_SCM_VAL);
750 
751 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
752 
753 	/* the pg table has been initialized already, ignore the error */
754 	if (ret == -EPERM)
755 		ret = 0;
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
760 
761 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
762 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
763 				 phys_addr_t dest, size_t dest_sz)
764 {
765 	int ret;
766 	struct qcom_scm_desc desc = {
767 		.svc = QCOM_SCM_SVC_MP,
768 		.cmd = QCOM_SCM_MP_ASSIGN,
769 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
770 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
771 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
772 		.args[0] = mem_region,
773 		.args[1] = mem_sz,
774 		.args[2] = src,
775 		.args[3] = src_sz,
776 		.args[4] = dest,
777 		.args[5] = dest_sz,
778 		.args[6] = 0,
779 		.owner = ARM_SMCCC_OWNER_SIP,
780 	};
781 	struct qcom_scm_res res;
782 
783 	ret = qcom_scm_call(dev, &desc, &res);
784 
785 	return ret ? : res.result[0];
786 }
787 
788 /**
789  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
790  * @mem_addr: mem region whose ownership need to be reassigned
791  * @mem_sz:   size of the region.
792  * @srcvm:    vmid for current set of owners, each set bit in
793  *            flag indicate a unique owner
794  * @newvm:    array having new owners and corresponding permission
795  *            flags
796  * @dest_cnt: number of owners in next set.
797  *
798  * Return negative errno on failure or 0 on success with @srcvm updated.
799  */
800 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
801 			unsigned int *srcvm,
802 			const struct qcom_scm_vmperm *newvm,
803 			unsigned int dest_cnt)
804 {
805 	struct qcom_scm_current_perm_info *destvm;
806 	struct qcom_scm_mem_map_info *mem_to_map;
807 	phys_addr_t mem_to_map_phys;
808 	phys_addr_t dest_phys;
809 	phys_addr_t ptr_phys;
810 	dma_addr_t ptr_dma;
811 	size_t mem_to_map_sz;
812 	size_t dest_sz;
813 	size_t src_sz;
814 	size_t ptr_sz;
815 	int next_vm;
816 	__le32 *src;
817 	void *ptr;
818 	int ret, i, b;
819 	unsigned long srcvm_bits = *srcvm;
820 
821 	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
822 	mem_to_map_sz = sizeof(*mem_to_map);
823 	dest_sz = dest_cnt * sizeof(*destvm);
824 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
825 			ALIGN(dest_sz, SZ_64);
826 
827 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_dma, GFP_KERNEL);
828 	if (!ptr)
829 		return -ENOMEM;
830 	ptr_phys = dma_to_phys(__scm->dev, ptr_dma);
831 
832 	/* Fill source vmid detail */
833 	src = ptr;
834 	i = 0;
835 	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
836 		src[i++] = cpu_to_le32(b);
837 
838 	/* Fill details of mem buff to map */
839 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
840 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
841 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
842 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
843 
844 	next_vm = 0;
845 	/* Fill details of next vmid detail */
846 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
847 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
848 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
849 		destvm->vmid = cpu_to_le32(newvm->vmid);
850 		destvm->perm = cpu_to_le32(newvm->perm);
851 		destvm->ctx = 0;
852 		destvm->ctx_size = 0;
853 		next_vm |= BIT(newvm->vmid);
854 	}
855 
856 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
857 				    ptr_phys, src_sz, dest_phys, dest_sz);
858 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_dma);
859 	if (ret) {
860 		dev_err(__scm->dev,
861 			"Assign memory protection call failed %d\n", ret);
862 		return -EINVAL;
863 	}
864 
865 	*srcvm = next_vm;
866 	return 0;
867 }
868 EXPORT_SYMBOL(qcom_scm_assign_mem);
869 
870 /**
871  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
872  */
873 bool qcom_scm_ocmem_lock_available(void)
874 {
875 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
876 					    QCOM_SCM_OCMEM_LOCK_CMD);
877 }
878 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
879 
880 /**
881  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
882  * region to the specified initiator
883  *
884  * @id:     tz initiator id
885  * @offset: OCMEM offset
886  * @size:   OCMEM size
887  * @mode:   access mode (WIDE/NARROW)
888  */
889 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
890 			u32 mode)
891 {
892 	struct qcom_scm_desc desc = {
893 		.svc = QCOM_SCM_SVC_OCMEM,
894 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
895 		.args[0] = id,
896 		.args[1] = offset,
897 		.args[2] = size,
898 		.args[3] = mode,
899 		.arginfo = QCOM_SCM_ARGS(4),
900 	};
901 
902 	return qcom_scm_call(__scm->dev, &desc, NULL);
903 }
904 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
905 
906 /**
907  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
908  * region from the specified initiator
909  *
910  * @id:     tz initiator id
911  * @offset: OCMEM offset
912  * @size:   OCMEM size
913  */
914 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
915 {
916 	struct qcom_scm_desc desc = {
917 		.svc = QCOM_SCM_SVC_OCMEM,
918 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
919 		.args[0] = id,
920 		.args[1] = offset,
921 		.args[2] = size,
922 		.arginfo = QCOM_SCM_ARGS(3),
923 	};
924 
925 	return qcom_scm_call(__scm->dev, &desc, NULL);
926 }
927 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
928 
929 /**
930  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
931  *
932  * Return true if HDCP is supported, false if not.
933  */
934 bool qcom_scm_hdcp_available(void)
935 {
936 	int ret = qcom_scm_clk_enable();
937 
938 	if (ret)
939 		return ret;
940 
941 	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
942 						QCOM_SCM_HDCP_INVOKE);
943 
944 	qcom_scm_clk_disable();
945 
946 	return ret > 0 ? true : false;
947 }
948 EXPORT_SYMBOL(qcom_scm_hdcp_available);
949 
950 /**
951  * qcom_scm_hdcp_req() - Send HDCP request.
952  * @req: HDCP request array
953  * @req_cnt: HDCP request array count
954  * @resp: response buffer passed to SCM
955  *
956  * Write HDCP register(s) through SCM.
957  */
958 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
959 {
960 	int ret;
961 	struct qcom_scm_desc desc = {
962 		.svc = QCOM_SCM_SVC_HDCP,
963 		.cmd = QCOM_SCM_HDCP_INVOKE,
964 		.arginfo = QCOM_SCM_ARGS(10),
965 		.args = {
966 			req[0].addr,
967 			req[0].val,
968 			req[1].addr,
969 			req[1].val,
970 			req[2].addr,
971 			req[2].val,
972 			req[3].addr,
973 			req[3].val,
974 			req[4].addr,
975 			req[4].val
976 		},
977 		.owner = ARM_SMCCC_OWNER_SIP,
978 	};
979 	struct qcom_scm_res res;
980 
981 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
982 		return -ERANGE;
983 
984 	ret = qcom_scm_clk_enable();
985 	if (ret)
986 		return ret;
987 
988 	ret = qcom_scm_call(__scm->dev, &desc, &res);
989 	*resp = res.result[0];
990 
991 	qcom_scm_clk_disable();
992 
993 	return ret;
994 }
995 EXPORT_SYMBOL(qcom_scm_hdcp_req);
996 
997 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
998 {
999 	struct qcom_scm_desc desc = {
1000 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1001 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1002 		.arginfo = QCOM_SCM_ARGS(2),
1003 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1004 		.args[1] = en,
1005 		.owner = ARM_SMCCC_OWNER_SIP,
1006 	};
1007 
1008 
1009 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1010 }
1011 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1012 
1013 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1014 {
1015 	struct device_node *tcsr;
1016 	struct device_node *np = dev->of_node;
1017 	struct resource res;
1018 	u32 offset;
1019 	int ret;
1020 
1021 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1022 	if (!tcsr)
1023 		return 0;
1024 
1025 	ret = of_address_to_resource(tcsr, 0, &res);
1026 	of_node_put(tcsr);
1027 	if (ret)
1028 		return ret;
1029 
1030 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1031 	if (ret < 0)
1032 		return ret;
1033 
1034 	*addr = res.start + offset;
1035 
1036 	return 0;
1037 }
1038 
1039 /**
1040  * qcom_scm_is_available() - Checks if SCM is available
1041  */
1042 bool qcom_scm_is_available(void)
1043 {
1044 	return !!__scm;
1045 }
1046 EXPORT_SYMBOL(qcom_scm_is_available);
1047 
1048 static int qcom_scm_probe(struct platform_device *pdev)
1049 {
1050 	struct qcom_scm *scm;
1051 	unsigned long clks;
1052 	int ret;
1053 
1054 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1055 	if (!scm)
1056 		return -ENOMEM;
1057 
1058 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1059 	if (ret < 0)
1060 		return ret;
1061 
1062 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1063 
1064 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1065 	if (IS_ERR(scm->core_clk)) {
1066 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1067 			return PTR_ERR(scm->core_clk);
1068 
1069 		if (clks & SCM_HAS_CORE_CLK) {
1070 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1071 			return PTR_ERR(scm->core_clk);
1072 		}
1073 
1074 		scm->core_clk = NULL;
1075 	}
1076 
1077 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1078 	if (IS_ERR(scm->iface_clk)) {
1079 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1080 			return PTR_ERR(scm->iface_clk);
1081 
1082 		if (clks & SCM_HAS_IFACE_CLK) {
1083 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1084 			return PTR_ERR(scm->iface_clk);
1085 		}
1086 
1087 		scm->iface_clk = NULL;
1088 	}
1089 
1090 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1091 	if (IS_ERR(scm->bus_clk)) {
1092 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1093 			return PTR_ERR(scm->bus_clk);
1094 
1095 		if (clks & SCM_HAS_BUS_CLK) {
1096 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1097 			return PTR_ERR(scm->bus_clk);
1098 		}
1099 
1100 		scm->bus_clk = NULL;
1101 	}
1102 
1103 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1104 	scm->reset.nr_resets = 1;
1105 	scm->reset.of_node = pdev->dev.of_node;
1106 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1107 	if (ret)
1108 		return ret;
1109 
1110 	/* vote for max clk rate for highest performance */
1111 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1112 	if (ret)
1113 		return ret;
1114 
1115 	__scm = scm;
1116 	__scm->dev = &pdev->dev;
1117 
1118 	__query_convention();
1119 
1120 	/*
1121 	 * If requested enable "download mode", from this point on warmboot
1122 	 * will cause the the boot stages to enter download mode, unless
1123 	 * disabled below by a clean shutdown/reboot.
1124 	 */
1125 	if (download_mode)
1126 		qcom_scm_set_download_mode(true);
1127 
1128 	return 0;
1129 }
1130 
1131 static void qcom_scm_shutdown(struct platform_device *pdev)
1132 {
1133 	/* Clean shutdown, disable download mode to allow normal restart */
1134 	if (download_mode)
1135 		qcom_scm_set_download_mode(false);
1136 }
1137 
1138 static const struct of_device_id qcom_scm_dt_match[] = {
1139 	{ .compatible = "qcom,scm-apq8064",
1140 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1141 	},
1142 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1143 							     SCM_HAS_IFACE_CLK |
1144 							     SCM_HAS_BUS_CLK)
1145 	},
1146 	{ .compatible = "qcom,scm-ipq4019" },
1147 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1148 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1149 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1150 							     SCM_HAS_IFACE_CLK |
1151 							     SCM_HAS_BUS_CLK)
1152 	},
1153 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1154 							     SCM_HAS_IFACE_CLK |
1155 							     SCM_HAS_BUS_CLK)
1156 	},
1157 	{ .compatible = "qcom,scm-msm8996" },
1158 	{ .compatible = "qcom,scm" },
1159 	{}
1160 };
1161 
1162 static struct platform_driver qcom_scm_driver = {
1163 	.driver = {
1164 		.name	= "qcom_scm",
1165 		.of_match_table = qcom_scm_dt_match,
1166 	},
1167 	.probe = qcom_scm_probe,
1168 	.shutdown = qcom_scm_shutdown,
1169 };
1170 
1171 static int __init qcom_scm_init(void)
1172 {
1173 	return platform_driver_register(&qcom_scm_driver);
1174 }
1175 subsys_initcall(qcom_scm_init);
1176