xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23 
24 #include "qcom_scm.h"
25 
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28 
29 #define SCM_HAS_CORE_CLK	BIT(0)
30 #define SCM_HAS_IFACE_CLK	BIT(1)
31 #define SCM_HAS_BUS_CLK		BIT(2)
32 
33 struct qcom_scm {
34 	struct device *dev;
35 	struct clk *core_clk;
36 	struct clk *iface_clk;
37 	struct clk *bus_clk;
38 	struct icc_path *path;
39 	struct completion waitq_comp;
40 	struct reset_controller_dev reset;
41 
42 	/* control access to the interconnect path */
43 	struct mutex scm_bw_lock;
44 	int scm_vote_count;
45 
46 	u64 dload_mode_addr;
47 };
48 
49 struct qcom_scm_current_perm_info {
50 	__le32 vmid;
51 	__le32 perm;
52 	__le64 ctx;
53 	__le32 ctx_size;
54 	__le32 unused;
55 };
56 
57 struct qcom_scm_mem_map_info {
58 	__le64 mem_addr;
59 	__le64 mem_size;
60 };
61 
62 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
63 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
64 	0, BIT(0), BIT(3), BIT(5)
65 };
66 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
67 	BIT(2), BIT(1), BIT(4), BIT(6)
68 };
69 
70 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
71 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL	BIT(1)
72 
73 static const char * const qcom_scm_convention_names[] = {
74 	[SMC_CONVENTION_UNKNOWN] = "unknown",
75 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
76 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
77 	[SMC_CONVENTION_LEGACY] = "smc legacy",
78 };
79 
80 static struct qcom_scm *__scm;
81 
82 static int qcom_scm_clk_enable(void)
83 {
84 	int ret;
85 
86 	ret = clk_prepare_enable(__scm->core_clk);
87 	if (ret)
88 		goto bail;
89 
90 	ret = clk_prepare_enable(__scm->iface_clk);
91 	if (ret)
92 		goto disable_core;
93 
94 	ret = clk_prepare_enable(__scm->bus_clk);
95 	if (ret)
96 		goto disable_iface;
97 
98 	return 0;
99 
100 disable_iface:
101 	clk_disable_unprepare(__scm->iface_clk);
102 disable_core:
103 	clk_disable_unprepare(__scm->core_clk);
104 bail:
105 	return ret;
106 }
107 
108 static void qcom_scm_clk_disable(void)
109 {
110 	clk_disable_unprepare(__scm->core_clk);
111 	clk_disable_unprepare(__scm->iface_clk);
112 	clk_disable_unprepare(__scm->bus_clk);
113 }
114 
115 static int qcom_scm_bw_enable(void)
116 {
117 	int ret = 0;
118 
119 	if (!__scm->path)
120 		return 0;
121 
122 	if (IS_ERR(__scm->path))
123 		return -EINVAL;
124 
125 	mutex_lock(&__scm->scm_bw_lock);
126 	if (!__scm->scm_vote_count) {
127 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
128 		if (ret < 0) {
129 			dev_err(__scm->dev, "failed to set bandwidth request\n");
130 			goto err_bw;
131 		}
132 	}
133 	__scm->scm_vote_count++;
134 err_bw:
135 	mutex_unlock(&__scm->scm_bw_lock);
136 
137 	return ret;
138 }
139 
140 static void qcom_scm_bw_disable(void)
141 {
142 	if (IS_ERR_OR_NULL(__scm->path))
143 		return;
144 
145 	mutex_lock(&__scm->scm_bw_lock);
146 	if (__scm->scm_vote_count-- == 1)
147 		icc_set_bw(__scm->path, 0, 0);
148 	mutex_unlock(&__scm->scm_bw_lock);
149 }
150 
151 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
152 static DEFINE_SPINLOCK(scm_query_lock);
153 
154 static enum qcom_scm_convention __get_convention(void)
155 {
156 	unsigned long flags;
157 	struct qcom_scm_desc desc = {
158 		.svc = QCOM_SCM_SVC_INFO,
159 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
160 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
161 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
162 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
163 		.arginfo = QCOM_SCM_ARGS(1),
164 		.owner = ARM_SMCCC_OWNER_SIP,
165 	};
166 	struct qcom_scm_res res;
167 	enum qcom_scm_convention probed_convention;
168 	int ret;
169 	bool forced = false;
170 
171 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
172 		return qcom_scm_convention;
173 
174 	/*
175 	 * Device isn't required as there is only one argument - no device
176 	 * needed to dma_map_single to secure world
177 	 */
178 	probed_convention = SMC_CONVENTION_ARM_64;
179 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
180 	if (!ret && res.result[0] == 1)
181 		goto found;
182 
183 	/*
184 	 * Some SC7180 firmwares didn't implement the
185 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
186 	 * calling conventions on these firmwares. Luckily we don't make any
187 	 * early calls into the firmware on these SoCs so the device pointer
188 	 * will be valid here to check if the compatible matches.
189 	 */
190 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
191 		forced = true;
192 		goto found;
193 	}
194 
195 	probed_convention = SMC_CONVENTION_ARM_32;
196 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
197 	if (!ret && res.result[0] == 1)
198 		goto found;
199 
200 	probed_convention = SMC_CONVENTION_LEGACY;
201 found:
202 	spin_lock_irqsave(&scm_query_lock, flags);
203 	if (probed_convention != qcom_scm_convention) {
204 		qcom_scm_convention = probed_convention;
205 		pr_info("qcom_scm: convention: %s%s\n",
206 			qcom_scm_convention_names[qcom_scm_convention],
207 			forced ? " (forced)" : "");
208 	}
209 	spin_unlock_irqrestore(&scm_query_lock, flags);
210 
211 	return qcom_scm_convention;
212 }
213 
214 /**
215  * qcom_scm_call() - Invoke a syscall in the secure world
216  * @dev:	device
217  * @desc:	Descriptor structure containing arguments and return values
218  * @res:        Structure containing results from SMC/HVC call
219  *
220  * Sends a command to the SCM and waits for the command to finish processing.
221  * This should *only* be called in pre-emptible context.
222  */
223 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
224 			 struct qcom_scm_res *res)
225 {
226 	might_sleep();
227 	switch (__get_convention()) {
228 	case SMC_CONVENTION_ARM_32:
229 	case SMC_CONVENTION_ARM_64:
230 		return scm_smc_call(dev, desc, res, false);
231 	case SMC_CONVENTION_LEGACY:
232 		return scm_legacy_call(dev, desc, res);
233 	default:
234 		pr_err("Unknown current SCM calling convention.\n");
235 		return -EINVAL;
236 	}
237 }
238 
239 /**
240  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
241  * @dev:	device
242  * @desc:	Descriptor structure containing arguments and return values
243  * @res:	Structure containing results from SMC/HVC call
244  *
245  * Sends a command to the SCM and waits for the command to finish processing.
246  * This can be called in atomic context.
247  */
248 static int qcom_scm_call_atomic(struct device *dev,
249 				const struct qcom_scm_desc *desc,
250 				struct qcom_scm_res *res)
251 {
252 	switch (__get_convention()) {
253 	case SMC_CONVENTION_ARM_32:
254 	case SMC_CONVENTION_ARM_64:
255 		return scm_smc_call(dev, desc, res, true);
256 	case SMC_CONVENTION_LEGACY:
257 		return scm_legacy_call_atomic(dev, desc, res);
258 	default:
259 		pr_err("Unknown current SCM calling convention.\n");
260 		return -EINVAL;
261 	}
262 }
263 
264 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
265 					 u32 cmd_id)
266 {
267 	int ret;
268 	struct qcom_scm_desc desc = {
269 		.svc = QCOM_SCM_SVC_INFO,
270 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
271 		.owner = ARM_SMCCC_OWNER_SIP,
272 	};
273 	struct qcom_scm_res res;
274 
275 	desc.arginfo = QCOM_SCM_ARGS(1);
276 	switch (__get_convention()) {
277 	case SMC_CONVENTION_ARM_32:
278 	case SMC_CONVENTION_ARM_64:
279 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
280 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
281 		break;
282 	case SMC_CONVENTION_LEGACY:
283 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
284 		break;
285 	default:
286 		pr_err("Unknown SMC convention being used\n");
287 		return false;
288 	}
289 
290 	ret = qcom_scm_call(dev, &desc, &res);
291 
292 	return ret ? false : !!res.result[0];
293 }
294 
295 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
296 {
297 	int cpu;
298 	unsigned int flags = 0;
299 	struct qcom_scm_desc desc = {
300 		.svc = QCOM_SCM_SVC_BOOT,
301 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
302 		.arginfo = QCOM_SCM_ARGS(2),
303 		.owner = ARM_SMCCC_OWNER_SIP,
304 	};
305 
306 	for_each_present_cpu(cpu) {
307 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
308 			return -EINVAL;
309 		flags |= cpu_bits[cpu];
310 	}
311 
312 	desc.args[0] = flags;
313 	desc.args[1] = virt_to_phys(entry);
314 
315 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
316 }
317 
318 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
319 {
320 	struct qcom_scm_desc desc = {
321 		.svc = QCOM_SCM_SVC_BOOT,
322 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
323 		.owner = ARM_SMCCC_OWNER_SIP,
324 		.arginfo = QCOM_SCM_ARGS(6),
325 		.args = {
326 			virt_to_phys(entry),
327 			/* Apply to all CPUs in all affinity levels */
328 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
329 			flags,
330 		},
331 	};
332 
333 	/* Need a device for DMA of the additional arguments */
334 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
335 		return -EOPNOTSUPP;
336 
337 	return qcom_scm_call(__scm->dev, &desc, NULL);
338 }
339 
340 /**
341  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
342  * @entry: Entry point function for the cpus
343  *
344  * Set the Linux entry point for the SCM to transfer control to when coming
345  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
346  */
347 int qcom_scm_set_warm_boot_addr(void *entry)
348 {
349 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
350 		/* Fallback to old SCM call */
351 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
352 	return 0;
353 }
354 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
355 
356 /**
357  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
358  * @entry: Entry point function for the cpus
359  */
360 int qcom_scm_set_cold_boot_addr(void *entry)
361 {
362 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
363 		/* Fallback to old SCM call */
364 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
365 	return 0;
366 }
367 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
368 
369 /**
370  * qcom_scm_cpu_power_down() - Power down the cpu
371  * @flags:	Flags to flush cache
372  *
373  * This is an end point to power down cpu. If there was a pending interrupt,
374  * the control would return from this function, otherwise, the cpu jumps to the
375  * warm boot entry point set for this cpu upon reset.
376  */
377 void qcom_scm_cpu_power_down(u32 flags)
378 {
379 	struct qcom_scm_desc desc = {
380 		.svc = QCOM_SCM_SVC_BOOT,
381 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
382 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
383 		.arginfo = QCOM_SCM_ARGS(1),
384 		.owner = ARM_SMCCC_OWNER_SIP,
385 	};
386 
387 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
388 }
389 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
390 
391 int qcom_scm_set_remote_state(u32 state, u32 id)
392 {
393 	struct qcom_scm_desc desc = {
394 		.svc = QCOM_SCM_SVC_BOOT,
395 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
396 		.arginfo = QCOM_SCM_ARGS(2),
397 		.args[0] = state,
398 		.args[1] = id,
399 		.owner = ARM_SMCCC_OWNER_SIP,
400 	};
401 	struct qcom_scm_res res;
402 	int ret;
403 
404 	ret = qcom_scm_call(__scm->dev, &desc, &res);
405 
406 	return ret ? : res.result[0];
407 }
408 EXPORT_SYMBOL(qcom_scm_set_remote_state);
409 
410 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
411 {
412 	struct qcom_scm_desc desc = {
413 		.svc = QCOM_SCM_SVC_BOOT,
414 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
415 		.arginfo = QCOM_SCM_ARGS(2),
416 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
417 		.owner = ARM_SMCCC_OWNER_SIP,
418 	};
419 
420 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
421 
422 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
423 }
424 
425 static void qcom_scm_set_download_mode(bool enable)
426 {
427 	bool avail;
428 	int ret = 0;
429 
430 	avail = __qcom_scm_is_call_available(__scm->dev,
431 					     QCOM_SCM_SVC_BOOT,
432 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
433 	if (avail) {
434 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
435 	} else if (__scm->dload_mode_addr) {
436 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
437 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
438 	} else {
439 		dev_err(__scm->dev,
440 			"No available mechanism for setting download mode\n");
441 	}
442 
443 	if (ret)
444 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
445 }
446 
447 /**
448  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
449  *			       state machine for a given peripheral, using the
450  *			       metadata
451  * @peripheral: peripheral id
452  * @metadata:	pointer to memory containing ELF header, program header table
453  *		and optional blob of data used for authenticating the metadata
454  *		and the rest of the firmware
455  * @size:	size of the metadata
456  * @ctx:	optional metadata context
457  *
458  * Return: 0 on success.
459  *
460  * Upon successful return, the PAS metadata context (@ctx) will be used to
461  * track the metadata allocation, this needs to be released by invoking
462  * qcom_scm_pas_metadata_release() by the caller.
463  */
464 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
465 			    struct qcom_scm_pas_metadata *ctx)
466 {
467 	dma_addr_t mdata_phys;
468 	void *mdata_buf;
469 	int ret;
470 	struct qcom_scm_desc desc = {
471 		.svc = QCOM_SCM_SVC_PIL,
472 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
473 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
474 		.args[0] = peripheral,
475 		.owner = ARM_SMCCC_OWNER_SIP,
476 	};
477 	struct qcom_scm_res res;
478 
479 	/*
480 	 * During the scm call memory protection will be enabled for the meta
481 	 * data blob, so make sure it's physically contiguous, 4K aligned and
482 	 * non-cachable to avoid XPU violations.
483 	 */
484 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
485 				       GFP_KERNEL);
486 	if (!mdata_buf) {
487 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
488 		return -ENOMEM;
489 	}
490 	memcpy(mdata_buf, metadata, size);
491 
492 	ret = qcom_scm_clk_enable();
493 	if (ret)
494 		goto out;
495 
496 	ret = qcom_scm_bw_enable();
497 	if (ret)
498 		return ret;
499 
500 	desc.args[1] = mdata_phys;
501 
502 	ret = qcom_scm_call(__scm->dev, &desc, &res);
503 
504 	qcom_scm_bw_disable();
505 	qcom_scm_clk_disable();
506 
507 out:
508 	if (ret < 0 || !ctx) {
509 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
510 	} else if (ctx) {
511 		ctx->ptr = mdata_buf;
512 		ctx->phys = mdata_phys;
513 		ctx->size = size;
514 	}
515 
516 	return ret ? : res.result[0];
517 }
518 EXPORT_SYMBOL(qcom_scm_pas_init_image);
519 
520 /**
521  * qcom_scm_pas_metadata_release() - release metadata context
522  * @ctx:	metadata context
523  */
524 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
525 {
526 	if (!ctx->ptr)
527 		return;
528 
529 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
530 
531 	ctx->ptr = NULL;
532 	ctx->phys = 0;
533 	ctx->size = 0;
534 }
535 EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
536 
537 /**
538  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
539  *			      for firmware loading
540  * @peripheral:	peripheral id
541  * @addr:	start address of memory area to prepare
542  * @size:	size of the memory area to prepare
543  *
544  * Returns 0 on success.
545  */
546 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
547 {
548 	int ret;
549 	struct qcom_scm_desc desc = {
550 		.svc = QCOM_SCM_SVC_PIL,
551 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
552 		.arginfo = QCOM_SCM_ARGS(3),
553 		.args[0] = peripheral,
554 		.args[1] = addr,
555 		.args[2] = size,
556 		.owner = ARM_SMCCC_OWNER_SIP,
557 	};
558 	struct qcom_scm_res res;
559 
560 	ret = qcom_scm_clk_enable();
561 	if (ret)
562 		return ret;
563 
564 	ret = qcom_scm_bw_enable();
565 	if (ret)
566 		return ret;
567 
568 	ret = qcom_scm_call(__scm->dev, &desc, &res);
569 	qcom_scm_bw_disable();
570 	qcom_scm_clk_disable();
571 
572 	return ret ? : res.result[0];
573 }
574 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
575 
576 /**
577  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
578  *				   and reset the remote processor
579  * @peripheral:	peripheral id
580  *
581  * Return 0 on success.
582  */
583 int qcom_scm_pas_auth_and_reset(u32 peripheral)
584 {
585 	int ret;
586 	struct qcom_scm_desc desc = {
587 		.svc = QCOM_SCM_SVC_PIL,
588 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
589 		.arginfo = QCOM_SCM_ARGS(1),
590 		.args[0] = peripheral,
591 		.owner = ARM_SMCCC_OWNER_SIP,
592 	};
593 	struct qcom_scm_res res;
594 
595 	ret = qcom_scm_clk_enable();
596 	if (ret)
597 		return ret;
598 
599 	ret = qcom_scm_bw_enable();
600 	if (ret)
601 		return ret;
602 
603 	ret = qcom_scm_call(__scm->dev, &desc, &res);
604 	qcom_scm_bw_disable();
605 	qcom_scm_clk_disable();
606 
607 	return ret ? : res.result[0];
608 }
609 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
610 
611 /**
612  * qcom_scm_pas_shutdown() - Shut down the remote processor
613  * @peripheral: peripheral id
614  *
615  * Returns 0 on success.
616  */
617 int qcom_scm_pas_shutdown(u32 peripheral)
618 {
619 	int ret;
620 	struct qcom_scm_desc desc = {
621 		.svc = QCOM_SCM_SVC_PIL,
622 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
623 		.arginfo = QCOM_SCM_ARGS(1),
624 		.args[0] = peripheral,
625 		.owner = ARM_SMCCC_OWNER_SIP,
626 	};
627 	struct qcom_scm_res res;
628 
629 	ret = qcom_scm_clk_enable();
630 	if (ret)
631 		return ret;
632 
633 	ret = qcom_scm_bw_enable();
634 	if (ret)
635 		return ret;
636 
637 	ret = qcom_scm_call(__scm->dev, &desc, &res);
638 
639 	qcom_scm_bw_disable();
640 	qcom_scm_clk_disable();
641 
642 	return ret ? : res.result[0];
643 }
644 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
645 
646 /**
647  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
648  *			      available for the given peripherial
649  * @peripheral:	peripheral id
650  *
651  * Returns true if PAS is supported for this peripheral, otherwise false.
652  */
653 bool qcom_scm_pas_supported(u32 peripheral)
654 {
655 	int ret;
656 	struct qcom_scm_desc desc = {
657 		.svc = QCOM_SCM_SVC_PIL,
658 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
659 		.arginfo = QCOM_SCM_ARGS(1),
660 		.args[0] = peripheral,
661 		.owner = ARM_SMCCC_OWNER_SIP,
662 	};
663 	struct qcom_scm_res res;
664 
665 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
666 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
667 		return false;
668 
669 	ret = qcom_scm_call(__scm->dev, &desc, &res);
670 
671 	return ret ? false : !!res.result[0];
672 }
673 EXPORT_SYMBOL(qcom_scm_pas_supported);
674 
675 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
676 {
677 	struct qcom_scm_desc desc = {
678 		.svc = QCOM_SCM_SVC_PIL,
679 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
680 		.arginfo = QCOM_SCM_ARGS(2),
681 		.args[0] = reset,
682 		.args[1] = 0,
683 		.owner = ARM_SMCCC_OWNER_SIP,
684 	};
685 	struct qcom_scm_res res;
686 	int ret;
687 
688 	ret = qcom_scm_call(__scm->dev, &desc, &res);
689 
690 	return ret ? : res.result[0];
691 }
692 
693 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
694 				     unsigned long idx)
695 {
696 	if (idx != 0)
697 		return -EINVAL;
698 
699 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
700 }
701 
702 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
703 				       unsigned long idx)
704 {
705 	if (idx != 0)
706 		return -EINVAL;
707 
708 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
709 }
710 
711 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
712 	.assert = qcom_scm_pas_reset_assert,
713 	.deassert = qcom_scm_pas_reset_deassert,
714 };
715 
716 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
717 {
718 	struct qcom_scm_desc desc = {
719 		.svc = QCOM_SCM_SVC_IO,
720 		.cmd = QCOM_SCM_IO_READ,
721 		.arginfo = QCOM_SCM_ARGS(1),
722 		.args[0] = addr,
723 		.owner = ARM_SMCCC_OWNER_SIP,
724 	};
725 	struct qcom_scm_res res;
726 	int ret;
727 
728 
729 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
730 	if (ret >= 0)
731 		*val = res.result[0];
732 
733 	return ret < 0 ? ret : 0;
734 }
735 EXPORT_SYMBOL(qcom_scm_io_readl);
736 
737 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
738 {
739 	struct qcom_scm_desc desc = {
740 		.svc = QCOM_SCM_SVC_IO,
741 		.cmd = QCOM_SCM_IO_WRITE,
742 		.arginfo = QCOM_SCM_ARGS(2),
743 		.args[0] = addr,
744 		.args[1] = val,
745 		.owner = ARM_SMCCC_OWNER_SIP,
746 	};
747 
748 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
749 }
750 EXPORT_SYMBOL(qcom_scm_io_writel);
751 
752 /**
753  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
754  * supports restore security config interface.
755  *
756  * Return true if restore-cfg interface is supported, false if not.
757  */
758 bool qcom_scm_restore_sec_cfg_available(void)
759 {
760 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
761 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
762 }
763 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
764 
765 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
766 {
767 	struct qcom_scm_desc desc = {
768 		.svc = QCOM_SCM_SVC_MP,
769 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
770 		.arginfo = QCOM_SCM_ARGS(2),
771 		.args[0] = device_id,
772 		.args[1] = spare,
773 		.owner = ARM_SMCCC_OWNER_SIP,
774 	};
775 	struct qcom_scm_res res;
776 	int ret;
777 
778 	ret = qcom_scm_call(__scm->dev, &desc, &res);
779 
780 	return ret ? : res.result[0];
781 }
782 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
783 
784 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
785 {
786 	struct qcom_scm_desc desc = {
787 		.svc = QCOM_SCM_SVC_MP,
788 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
789 		.arginfo = QCOM_SCM_ARGS(1),
790 		.args[0] = spare,
791 		.owner = ARM_SMCCC_OWNER_SIP,
792 	};
793 	struct qcom_scm_res res;
794 	int ret;
795 
796 	ret = qcom_scm_call(__scm->dev, &desc, &res);
797 
798 	if (size)
799 		*size = res.result[0];
800 
801 	return ret ? : res.result[1];
802 }
803 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
804 
805 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
806 {
807 	struct qcom_scm_desc desc = {
808 		.svc = QCOM_SCM_SVC_MP,
809 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
810 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
811 					 QCOM_SCM_VAL),
812 		.args[0] = addr,
813 		.args[1] = size,
814 		.args[2] = spare,
815 		.owner = ARM_SMCCC_OWNER_SIP,
816 	};
817 	int ret;
818 
819 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
820 
821 	/* the pg table has been initialized already, ignore the error */
822 	if (ret == -EPERM)
823 		ret = 0;
824 
825 	return ret;
826 }
827 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
828 
829 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
830 {
831 	struct qcom_scm_desc desc = {
832 		.svc = QCOM_SCM_SVC_MP,
833 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
834 		.arginfo = QCOM_SCM_ARGS(2),
835 		.args[0] = size,
836 		.args[1] = spare,
837 		.owner = ARM_SMCCC_OWNER_SIP,
838 	};
839 
840 	return qcom_scm_call(__scm->dev, &desc, NULL);
841 }
842 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
843 
844 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
845 				   u32 cp_nonpixel_start,
846 				   u32 cp_nonpixel_size)
847 {
848 	int ret;
849 	struct qcom_scm_desc desc = {
850 		.svc = QCOM_SCM_SVC_MP,
851 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
852 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
853 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
854 		.args[0] = cp_start,
855 		.args[1] = cp_size,
856 		.args[2] = cp_nonpixel_start,
857 		.args[3] = cp_nonpixel_size,
858 		.owner = ARM_SMCCC_OWNER_SIP,
859 	};
860 	struct qcom_scm_res res;
861 
862 	ret = qcom_scm_call(__scm->dev, &desc, &res);
863 
864 	return ret ? : res.result[0];
865 }
866 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
867 
868 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
869 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
870 				 phys_addr_t dest, size_t dest_sz)
871 {
872 	int ret;
873 	struct qcom_scm_desc desc = {
874 		.svc = QCOM_SCM_SVC_MP,
875 		.cmd = QCOM_SCM_MP_ASSIGN,
876 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
877 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
878 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
879 		.args[0] = mem_region,
880 		.args[1] = mem_sz,
881 		.args[2] = src,
882 		.args[3] = src_sz,
883 		.args[4] = dest,
884 		.args[5] = dest_sz,
885 		.args[6] = 0,
886 		.owner = ARM_SMCCC_OWNER_SIP,
887 	};
888 	struct qcom_scm_res res;
889 
890 	ret = qcom_scm_call(dev, &desc, &res);
891 
892 	return ret ? : res.result[0];
893 }
894 
895 /**
896  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
897  * @mem_addr: mem region whose ownership need to be reassigned
898  * @mem_sz:   size of the region.
899  * @srcvm:    vmid for current set of owners, each set bit in
900  *            flag indicate a unique owner
901  * @newvm:    array having new owners and corresponding permission
902  *            flags
903  * @dest_cnt: number of owners in next set.
904  *
905  * Return negative errno on failure or 0 on success with @srcvm updated.
906  */
907 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
908 			u64 *srcvm,
909 			const struct qcom_scm_vmperm *newvm,
910 			unsigned int dest_cnt)
911 {
912 	struct qcom_scm_current_perm_info *destvm;
913 	struct qcom_scm_mem_map_info *mem_to_map;
914 	phys_addr_t mem_to_map_phys;
915 	phys_addr_t dest_phys;
916 	dma_addr_t ptr_phys;
917 	size_t mem_to_map_sz;
918 	size_t dest_sz;
919 	size_t src_sz;
920 	size_t ptr_sz;
921 	int next_vm;
922 	__le32 *src;
923 	void *ptr;
924 	int ret, i, b;
925 	u64 srcvm_bits = *srcvm;
926 
927 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
928 	mem_to_map_sz = sizeof(*mem_to_map);
929 	dest_sz = dest_cnt * sizeof(*destvm);
930 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
931 			ALIGN(dest_sz, SZ_64);
932 
933 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
934 	if (!ptr)
935 		return -ENOMEM;
936 
937 	/* Fill source vmid detail */
938 	src = ptr;
939 	i = 0;
940 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
941 		if (srcvm_bits & BIT(b))
942 			src[i++] = cpu_to_le32(b);
943 	}
944 
945 	/* Fill details of mem buff to map */
946 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
947 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
948 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
949 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
950 
951 	next_vm = 0;
952 	/* Fill details of next vmid detail */
953 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
954 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
955 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
956 		destvm->vmid = cpu_to_le32(newvm->vmid);
957 		destvm->perm = cpu_to_le32(newvm->perm);
958 		destvm->ctx = 0;
959 		destvm->ctx_size = 0;
960 		next_vm |= BIT(newvm->vmid);
961 	}
962 
963 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
964 				    ptr_phys, src_sz, dest_phys, dest_sz);
965 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
966 	if (ret) {
967 		dev_err(__scm->dev,
968 			"Assign memory protection call failed %d\n", ret);
969 		return -EINVAL;
970 	}
971 
972 	*srcvm = next_vm;
973 	return 0;
974 }
975 EXPORT_SYMBOL(qcom_scm_assign_mem);
976 
977 /**
978  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
979  */
980 bool qcom_scm_ocmem_lock_available(void)
981 {
982 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
983 					    QCOM_SCM_OCMEM_LOCK_CMD);
984 }
985 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
986 
987 /**
988  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
989  * region to the specified initiator
990  *
991  * @id:     tz initiator id
992  * @offset: OCMEM offset
993  * @size:   OCMEM size
994  * @mode:   access mode (WIDE/NARROW)
995  */
996 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
997 			u32 mode)
998 {
999 	struct qcom_scm_desc desc = {
1000 		.svc = QCOM_SCM_SVC_OCMEM,
1001 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1002 		.args[0] = id,
1003 		.args[1] = offset,
1004 		.args[2] = size,
1005 		.args[3] = mode,
1006 		.arginfo = QCOM_SCM_ARGS(4),
1007 	};
1008 
1009 	return qcom_scm_call(__scm->dev, &desc, NULL);
1010 }
1011 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
1012 
1013 /**
1014  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1015  * region from the specified initiator
1016  *
1017  * @id:     tz initiator id
1018  * @offset: OCMEM offset
1019  * @size:   OCMEM size
1020  */
1021 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1022 {
1023 	struct qcom_scm_desc desc = {
1024 		.svc = QCOM_SCM_SVC_OCMEM,
1025 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1026 		.args[0] = id,
1027 		.args[1] = offset,
1028 		.args[2] = size,
1029 		.arginfo = QCOM_SCM_ARGS(3),
1030 	};
1031 
1032 	return qcom_scm_call(__scm->dev, &desc, NULL);
1033 }
1034 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
1035 
1036 /**
1037  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1038  *
1039  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1040  *	   qcom_scm_ice_set_key() are available.
1041  */
1042 bool qcom_scm_ice_available(void)
1043 {
1044 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1045 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1046 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1047 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1048 }
1049 EXPORT_SYMBOL(qcom_scm_ice_available);
1050 
1051 /**
1052  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1053  * @index: the keyslot to invalidate
1054  *
1055  * The UFSHCI and eMMC standards define a standard way to do this, but it
1056  * doesn't work on these SoCs; only this SCM call does.
1057  *
1058  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1059  * call doesn't specify which ICE instance the keyslot belongs to.
1060  *
1061  * Return: 0 on success; -errno on failure.
1062  */
1063 int qcom_scm_ice_invalidate_key(u32 index)
1064 {
1065 	struct qcom_scm_desc desc = {
1066 		.svc = QCOM_SCM_SVC_ES,
1067 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1068 		.arginfo = QCOM_SCM_ARGS(1),
1069 		.args[0] = index,
1070 		.owner = ARM_SMCCC_OWNER_SIP,
1071 	};
1072 
1073 	return qcom_scm_call(__scm->dev, &desc, NULL);
1074 }
1075 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1076 
1077 /**
1078  * qcom_scm_ice_set_key() - Set an inline encryption key
1079  * @index: the keyslot into which to set the key
1080  * @key: the key to program
1081  * @key_size: the size of the key in bytes
1082  * @cipher: the encryption algorithm the key is for
1083  * @data_unit_size: the encryption data unit size, i.e. the size of each
1084  *		    individual plaintext and ciphertext.  Given in 512-byte
1085  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1086  *
1087  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1088  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1089  *
1090  * The UFSHCI and eMMC standards define a standard way to do this, but it
1091  * doesn't work on these SoCs; only this SCM call does.
1092  *
1093  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1094  * call doesn't specify which ICE instance the keyslot belongs to.
1095  *
1096  * Return: 0 on success; -errno on failure.
1097  */
1098 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1099 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1100 {
1101 	struct qcom_scm_desc desc = {
1102 		.svc = QCOM_SCM_SVC_ES,
1103 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1104 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1105 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1106 					 QCOM_SCM_VAL),
1107 		.args[0] = index,
1108 		.args[2] = key_size,
1109 		.args[3] = cipher,
1110 		.args[4] = data_unit_size,
1111 		.owner = ARM_SMCCC_OWNER_SIP,
1112 	};
1113 	void *keybuf;
1114 	dma_addr_t key_phys;
1115 	int ret;
1116 
1117 	/*
1118 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1119 	 * physical address that's been properly flushed.  The sanctioned way to
1120 	 * do this is by using the DMA API.  But as is best practice for crypto
1121 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1122 	 * dma_map_single() not clearly correct, since the DMA API can use
1123 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1124 	 * keys is normally rare and thus not performance-critical.
1125 	 */
1126 
1127 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1128 				    GFP_KERNEL);
1129 	if (!keybuf)
1130 		return -ENOMEM;
1131 	memcpy(keybuf, key, key_size);
1132 	desc.args[1] = key_phys;
1133 
1134 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1135 
1136 	memzero_explicit(keybuf, key_size);
1137 
1138 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1139 	return ret;
1140 }
1141 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1142 
1143 /**
1144  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1145  *
1146  * Return true if HDCP is supported, false if not.
1147  */
1148 bool qcom_scm_hdcp_available(void)
1149 {
1150 	bool avail;
1151 	int ret = qcom_scm_clk_enable();
1152 
1153 	if (ret)
1154 		return ret;
1155 
1156 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1157 						QCOM_SCM_HDCP_INVOKE);
1158 
1159 	qcom_scm_clk_disable();
1160 
1161 	return avail;
1162 }
1163 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1164 
1165 /**
1166  * qcom_scm_hdcp_req() - Send HDCP request.
1167  * @req: HDCP request array
1168  * @req_cnt: HDCP request array count
1169  * @resp: response buffer passed to SCM
1170  *
1171  * Write HDCP register(s) through SCM.
1172  */
1173 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1174 {
1175 	int ret;
1176 	struct qcom_scm_desc desc = {
1177 		.svc = QCOM_SCM_SVC_HDCP,
1178 		.cmd = QCOM_SCM_HDCP_INVOKE,
1179 		.arginfo = QCOM_SCM_ARGS(10),
1180 		.args = {
1181 			req[0].addr,
1182 			req[0].val,
1183 			req[1].addr,
1184 			req[1].val,
1185 			req[2].addr,
1186 			req[2].val,
1187 			req[3].addr,
1188 			req[3].val,
1189 			req[4].addr,
1190 			req[4].val
1191 		},
1192 		.owner = ARM_SMCCC_OWNER_SIP,
1193 	};
1194 	struct qcom_scm_res res;
1195 
1196 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1197 		return -ERANGE;
1198 
1199 	ret = qcom_scm_clk_enable();
1200 	if (ret)
1201 		return ret;
1202 
1203 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1204 	*resp = res.result[0];
1205 
1206 	qcom_scm_clk_disable();
1207 
1208 	return ret;
1209 }
1210 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1211 
1212 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1213 {
1214 	struct qcom_scm_desc desc = {
1215 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1216 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1217 		.arginfo = QCOM_SCM_ARGS(3),
1218 		.args[0] = sec_id,
1219 		.args[1] = ctx_num,
1220 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1221 		.owner = ARM_SMCCC_OWNER_SIP,
1222 	};
1223 
1224 	return qcom_scm_call(__scm->dev, &desc, NULL);
1225 }
1226 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1227 
1228 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1229 {
1230 	struct qcom_scm_desc desc = {
1231 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1232 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1233 		.arginfo = QCOM_SCM_ARGS(2),
1234 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1235 		.args[1] = en,
1236 		.owner = ARM_SMCCC_OWNER_SIP,
1237 	};
1238 
1239 
1240 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1241 }
1242 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1243 
1244 bool qcom_scm_lmh_dcvsh_available(void)
1245 {
1246 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1247 }
1248 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1249 
1250 int qcom_scm_lmh_profile_change(u32 profile_id)
1251 {
1252 	struct qcom_scm_desc desc = {
1253 		.svc = QCOM_SCM_SVC_LMH,
1254 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1255 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1256 		.args[0] = profile_id,
1257 		.owner = ARM_SMCCC_OWNER_SIP,
1258 	};
1259 
1260 	return qcom_scm_call(__scm->dev, &desc, NULL);
1261 }
1262 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1263 
1264 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1265 		       u64 limit_node, u32 node_id, u64 version)
1266 {
1267 	dma_addr_t payload_phys;
1268 	u32 *payload_buf;
1269 	int ret, payload_size = 5 * sizeof(u32);
1270 
1271 	struct qcom_scm_desc desc = {
1272 		.svc = QCOM_SCM_SVC_LMH,
1273 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1274 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1275 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1276 		.args[1] = payload_size,
1277 		.args[2] = limit_node,
1278 		.args[3] = node_id,
1279 		.args[4] = version,
1280 		.owner = ARM_SMCCC_OWNER_SIP,
1281 	};
1282 
1283 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1284 	if (!payload_buf)
1285 		return -ENOMEM;
1286 
1287 	payload_buf[0] = payload_fn;
1288 	payload_buf[1] = 0;
1289 	payload_buf[2] = payload_reg;
1290 	payload_buf[3] = 1;
1291 	payload_buf[4] = payload_val;
1292 
1293 	desc.args[0] = payload_phys;
1294 
1295 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1296 
1297 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1298 	return ret;
1299 }
1300 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1301 
1302 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1303 {
1304 	struct device_node *tcsr;
1305 	struct device_node *np = dev->of_node;
1306 	struct resource res;
1307 	u32 offset;
1308 	int ret;
1309 
1310 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1311 	if (!tcsr)
1312 		return 0;
1313 
1314 	ret = of_address_to_resource(tcsr, 0, &res);
1315 	of_node_put(tcsr);
1316 	if (ret)
1317 		return ret;
1318 
1319 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	*addr = res.start + offset;
1324 
1325 	return 0;
1326 }
1327 
1328 /**
1329  * qcom_scm_is_available() - Checks if SCM is available
1330  */
1331 bool qcom_scm_is_available(void)
1332 {
1333 	return !!__scm;
1334 }
1335 EXPORT_SYMBOL(qcom_scm_is_available);
1336 
1337 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1338 {
1339 	/* FW currently only supports a single wq_ctx (zero).
1340 	 * TODO: Update this logic to include dynamic allocation and lookup of
1341 	 * completion structs when FW supports more wq_ctx values.
1342 	 */
1343 	if (wq_ctx != 0) {
1344 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1345 		return -EINVAL;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1352 {
1353 	int ret;
1354 
1355 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1356 	if (ret)
1357 		return ret;
1358 
1359 	wait_for_completion(&__scm->waitq_comp);
1360 
1361 	return 0;
1362 }
1363 
1364 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1365 {
1366 	int ret;
1367 
1368 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1369 	if (ret)
1370 		return ret;
1371 
1372 	complete(&__scm->waitq_comp);
1373 
1374 	return 0;
1375 }
1376 
1377 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1378 {
1379 	int ret;
1380 	struct qcom_scm *scm = data;
1381 	u32 wq_ctx, flags, more_pending = 0;
1382 
1383 	do {
1384 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1385 		if (ret) {
1386 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1387 			goto out;
1388 		}
1389 
1390 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1391 		    flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1392 			dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1393 			goto out;
1394 		}
1395 
1396 		ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1397 		if (ret)
1398 			goto out;
1399 	} while (more_pending);
1400 
1401 out:
1402 	return IRQ_HANDLED;
1403 }
1404 
1405 static int qcom_scm_probe(struct platform_device *pdev)
1406 {
1407 	struct qcom_scm *scm;
1408 	unsigned long clks;
1409 	int irq, ret;
1410 
1411 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1412 	if (!scm)
1413 		return -ENOMEM;
1414 
1415 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1416 	if (ret < 0)
1417 		return ret;
1418 
1419 	mutex_init(&scm->scm_bw_lock);
1420 
1421 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1422 
1423 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1424 	if (IS_ERR(scm->path))
1425 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1426 				     "failed to acquire interconnect path\n");
1427 
1428 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1429 	if (IS_ERR(scm->core_clk)) {
1430 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1431 			return PTR_ERR(scm->core_clk);
1432 
1433 		if (clks & SCM_HAS_CORE_CLK) {
1434 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1435 			return PTR_ERR(scm->core_clk);
1436 		}
1437 
1438 		scm->core_clk = NULL;
1439 	}
1440 
1441 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1442 	if (IS_ERR(scm->iface_clk)) {
1443 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1444 			return PTR_ERR(scm->iface_clk);
1445 
1446 		if (clks & SCM_HAS_IFACE_CLK) {
1447 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1448 			return PTR_ERR(scm->iface_clk);
1449 		}
1450 
1451 		scm->iface_clk = NULL;
1452 	}
1453 
1454 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1455 	if (IS_ERR(scm->bus_clk)) {
1456 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1457 			return PTR_ERR(scm->bus_clk);
1458 
1459 		if (clks & SCM_HAS_BUS_CLK) {
1460 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1461 			return PTR_ERR(scm->bus_clk);
1462 		}
1463 
1464 		scm->bus_clk = NULL;
1465 	}
1466 
1467 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1468 	scm->reset.nr_resets = 1;
1469 	scm->reset.of_node = pdev->dev.of_node;
1470 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/* vote for max clk rate for highest performance */
1475 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1476 	if (ret)
1477 		return ret;
1478 
1479 	__scm = scm;
1480 	__scm->dev = &pdev->dev;
1481 
1482 	init_completion(&__scm->waitq_comp);
1483 
1484 	irq = platform_get_irq_optional(pdev, 0);
1485 	if (irq < 0) {
1486 		if (irq != -ENXIO)
1487 			return irq;
1488 	} else {
1489 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1490 						IRQF_ONESHOT, "qcom-scm", __scm);
1491 		if (ret < 0)
1492 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1493 	}
1494 
1495 	__get_convention();
1496 
1497 	/*
1498 	 * If requested enable "download mode", from this point on warmboot
1499 	 * will cause the boot stages to enter download mode, unless
1500 	 * disabled below by a clean shutdown/reboot.
1501 	 */
1502 	if (download_mode)
1503 		qcom_scm_set_download_mode(true);
1504 
1505 	return 0;
1506 }
1507 
1508 static void qcom_scm_shutdown(struct platform_device *pdev)
1509 {
1510 	/* Clean shutdown, disable download mode to allow normal restart */
1511 	qcom_scm_set_download_mode(false);
1512 }
1513 
1514 static const struct of_device_id qcom_scm_dt_match[] = {
1515 	{ .compatible = "qcom,scm-apq8064",
1516 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1517 	},
1518 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1519 							     SCM_HAS_IFACE_CLK |
1520 							     SCM_HAS_BUS_CLK)
1521 	},
1522 	{ .compatible = "qcom,scm-ipq4019" },
1523 	{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1524 							     SCM_HAS_IFACE_CLK |
1525 							     SCM_HAS_BUS_CLK) },
1526 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1527 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1528 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1529 							     SCM_HAS_IFACE_CLK |
1530 							     SCM_HAS_BUS_CLK)
1531 	},
1532 	{ .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1533 							     SCM_HAS_IFACE_CLK |
1534 							     SCM_HAS_BUS_CLK)
1535 	},
1536 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1537 							     SCM_HAS_IFACE_CLK |
1538 							     SCM_HAS_BUS_CLK)
1539 	},
1540 	{ .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1541 							     SCM_HAS_IFACE_CLK |
1542 							     SCM_HAS_BUS_CLK)
1543 	},
1544 	{ .compatible = "qcom,scm-msm8994" },
1545 	{ .compatible = "qcom,scm-msm8996" },
1546 	{ .compatible = "qcom,scm-sm6375", .data = (void *)SCM_HAS_CORE_CLK },
1547 	{ .compatible = "qcom,scm" },
1548 	{}
1549 };
1550 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1551 
1552 static struct platform_driver qcom_scm_driver = {
1553 	.driver = {
1554 		.name	= "qcom_scm",
1555 		.of_match_table = qcom_scm_dt_match,
1556 		.suppress_bind_attrs = true,
1557 	},
1558 	.probe = qcom_scm_probe,
1559 	.shutdown = qcom_scm_shutdown,
1560 };
1561 
1562 static int __init qcom_scm_init(void)
1563 {
1564 	return platform_driver_register(&qcom_scm_driver);
1565 }
1566 subsys_initcall(qcom_scm_init);
1567 
1568 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1569 MODULE_LICENSE("GPL v2");
1570