1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved. 3 * Copyright (C) 2015 Linaro Ltd. 4 */ 5 #include <linux/platform_device.h> 6 #include <linux/init.h> 7 #include <linux/cpumask.h> 8 #include <linux/export.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/module.h> 11 #include <linux/types.h> 12 #include <linux/qcom_scm.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_platform.h> 16 #include <linux/clk.h> 17 #include <linux/reset-controller.h> 18 #include <linux/arm-smccc.h> 19 20 #include "qcom_scm.h" 21 22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT); 23 module_param(download_mode, bool, 0); 24 25 #define SCM_HAS_CORE_CLK BIT(0) 26 #define SCM_HAS_IFACE_CLK BIT(1) 27 #define SCM_HAS_BUS_CLK BIT(2) 28 29 struct qcom_scm { 30 struct device *dev; 31 struct clk *core_clk; 32 struct clk *iface_clk; 33 struct clk *bus_clk; 34 struct reset_controller_dev reset; 35 36 u64 dload_mode_addr; 37 }; 38 39 struct qcom_scm_current_perm_info { 40 __le32 vmid; 41 __le32 perm; 42 __le64 ctx; 43 __le32 ctx_size; 44 __le32 unused; 45 }; 46 47 struct qcom_scm_mem_map_info { 48 __le64 mem_addr; 49 __le64 mem_size; 50 }; 51 52 /* Each bit configures cold/warm boot address for one of the 4 CPUs */ 53 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = { 54 0, BIT(0), BIT(3), BIT(5) 55 }; 56 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = { 57 BIT(2), BIT(1), BIT(4), BIT(6) 58 }; 59 60 static const char * const qcom_scm_convention_names[] = { 61 [SMC_CONVENTION_UNKNOWN] = "unknown", 62 [SMC_CONVENTION_ARM_32] = "smc arm 32", 63 [SMC_CONVENTION_ARM_64] = "smc arm 64", 64 [SMC_CONVENTION_LEGACY] = "smc legacy", 65 }; 66 67 static struct qcom_scm *__scm; 68 69 static int qcom_scm_clk_enable(void) 70 { 71 int ret; 72 73 ret = clk_prepare_enable(__scm->core_clk); 74 if (ret) 75 goto bail; 76 77 ret = clk_prepare_enable(__scm->iface_clk); 78 if (ret) 79 goto disable_core; 80 81 ret = clk_prepare_enable(__scm->bus_clk); 82 if (ret) 83 goto disable_iface; 84 85 return 0; 86 87 disable_iface: 88 clk_disable_unprepare(__scm->iface_clk); 89 disable_core: 90 clk_disable_unprepare(__scm->core_clk); 91 bail: 92 return ret; 93 } 94 95 static void qcom_scm_clk_disable(void) 96 { 97 clk_disable_unprepare(__scm->core_clk); 98 clk_disable_unprepare(__scm->iface_clk); 99 clk_disable_unprepare(__scm->bus_clk); 100 } 101 102 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN; 103 static DEFINE_SPINLOCK(scm_query_lock); 104 105 static enum qcom_scm_convention __get_convention(void) 106 { 107 unsigned long flags; 108 struct qcom_scm_desc desc = { 109 .svc = QCOM_SCM_SVC_INFO, 110 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, 111 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO, 112 QCOM_SCM_INFO_IS_CALL_AVAIL) | 113 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT), 114 .arginfo = QCOM_SCM_ARGS(1), 115 .owner = ARM_SMCCC_OWNER_SIP, 116 }; 117 struct qcom_scm_res res; 118 enum qcom_scm_convention probed_convention; 119 int ret; 120 bool forced = false; 121 122 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN)) 123 return qcom_scm_convention; 124 125 /* 126 * Device isn't required as there is only one argument - no device 127 * needed to dma_map_single to secure world 128 */ 129 probed_convention = SMC_CONVENTION_ARM_64; 130 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); 131 if (!ret && res.result[0] == 1) 132 goto found; 133 134 /* 135 * Some SC7180 firmwares didn't implement the 136 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64 137 * calling conventions on these firmwares. Luckily we don't make any 138 * early calls into the firmware on these SoCs so the device pointer 139 * will be valid here to check if the compatible matches. 140 */ 141 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) { 142 forced = true; 143 goto found; 144 } 145 146 probed_convention = SMC_CONVENTION_ARM_32; 147 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); 148 if (!ret && res.result[0] == 1) 149 goto found; 150 151 probed_convention = SMC_CONVENTION_LEGACY; 152 found: 153 spin_lock_irqsave(&scm_query_lock, flags); 154 if (probed_convention != qcom_scm_convention) { 155 qcom_scm_convention = probed_convention; 156 pr_info("qcom_scm: convention: %s%s\n", 157 qcom_scm_convention_names[qcom_scm_convention], 158 forced ? " (forced)" : ""); 159 } 160 spin_unlock_irqrestore(&scm_query_lock, flags); 161 162 return qcom_scm_convention; 163 } 164 165 /** 166 * qcom_scm_call() - Invoke a syscall in the secure world 167 * @dev: device 168 * @desc: Descriptor structure containing arguments and return values 169 * @res: Structure containing results from SMC/HVC call 170 * 171 * Sends a command to the SCM and waits for the command to finish processing. 172 * This should *only* be called in pre-emptible context. 173 */ 174 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc, 175 struct qcom_scm_res *res) 176 { 177 might_sleep(); 178 switch (__get_convention()) { 179 case SMC_CONVENTION_ARM_32: 180 case SMC_CONVENTION_ARM_64: 181 return scm_smc_call(dev, desc, res, false); 182 case SMC_CONVENTION_LEGACY: 183 return scm_legacy_call(dev, desc, res); 184 default: 185 pr_err("Unknown current SCM calling convention.\n"); 186 return -EINVAL; 187 } 188 } 189 190 /** 191 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call() 192 * @dev: device 193 * @desc: Descriptor structure containing arguments and return values 194 * @res: Structure containing results from SMC/HVC call 195 * 196 * Sends a command to the SCM and waits for the command to finish processing. 197 * This can be called in atomic context. 198 */ 199 static int qcom_scm_call_atomic(struct device *dev, 200 const struct qcom_scm_desc *desc, 201 struct qcom_scm_res *res) 202 { 203 switch (__get_convention()) { 204 case SMC_CONVENTION_ARM_32: 205 case SMC_CONVENTION_ARM_64: 206 return scm_smc_call(dev, desc, res, true); 207 case SMC_CONVENTION_LEGACY: 208 return scm_legacy_call_atomic(dev, desc, res); 209 default: 210 pr_err("Unknown current SCM calling convention.\n"); 211 return -EINVAL; 212 } 213 } 214 215 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id, 216 u32 cmd_id) 217 { 218 int ret; 219 struct qcom_scm_desc desc = { 220 .svc = QCOM_SCM_SVC_INFO, 221 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, 222 .owner = ARM_SMCCC_OWNER_SIP, 223 }; 224 struct qcom_scm_res res; 225 226 desc.arginfo = QCOM_SCM_ARGS(1); 227 switch (__get_convention()) { 228 case SMC_CONVENTION_ARM_32: 229 case SMC_CONVENTION_ARM_64: 230 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) | 231 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); 232 break; 233 case SMC_CONVENTION_LEGACY: 234 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id); 235 break; 236 default: 237 pr_err("Unknown SMC convention being used\n"); 238 return false; 239 } 240 241 ret = qcom_scm_call(dev, &desc, &res); 242 243 return ret ? false : !!res.result[0]; 244 } 245 246 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits) 247 { 248 int cpu; 249 unsigned int flags = 0; 250 struct qcom_scm_desc desc = { 251 .svc = QCOM_SCM_SVC_BOOT, 252 .cmd = QCOM_SCM_BOOT_SET_ADDR, 253 .arginfo = QCOM_SCM_ARGS(2), 254 .owner = ARM_SMCCC_OWNER_SIP, 255 }; 256 257 for_each_present_cpu(cpu) { 258 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS) 259 return -EINVAL; 260 flags |= cpu_bits[cpu]; 261 } 262 263 desc.args[0] = flags; 264 desc.args[1] = virt_to_phys(entry); 265 266 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); 267 } 268 269 /** 270 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus 271 * @entry: Entry point function for the cpus 272 * 273 * Set the Linux entry point for the SCM to transfer control to when coming 274 * out of a power down. CPU power down may be executed on cpuidle or hotplug. 275 */ 276 int qcom_scm_set_warm_boot_addr(void *entry) 277 { 278 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits); 279 } 280 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); 281 282 /** 283 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus 284 * @entry: Entry point function for the cpus 285 */ 286 int qcom_scm_set_cold_boot_addr(void *entry) 287 { 288 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits); 289 } 290 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); 291 292 /** 293 * qcom_scm_cpu_power_down() - Power down the cpu 294 * @flags: Flags to flush cache 295 * 296 * This is an end point to power down cpu. If there was a pending interrupt, 297 * the control would return from this function, otherwise, the cpu jumps to the 298 * warm boot entry point set for this cpu upon reset. 299 */ 300 void qcom_scm_cpu_power_down(u32 flags) 301 { 302 struct qcom_scm_desc desc = { 303 .svc = QCOM_SCM_SVC_BOOT, 304 .cmd = QCOM_SCM_BOOT_TERMINATE_PC, 305 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK, 306 .arginfo = QCOM_SCM_ARGS(1), 307 .owner = ARM_SMCCC_OWNER_SIP, 308 }; 309 310 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); 311 } 312 EXPORT_SYMBOL(qcom_scm_cpu_power_down); 313 314 int qcom_scm_set_remote_state(u32 state, u32 id) 315 { 316 struct qcom_scm_desc desc = { 317 .svc = QCOM_SCM_SVC_BOOT, 318 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE, 319 .arginfo = QCOM_SCM_ARGS(2), 320 .args[0] = state, 321 .args[1] = id, 322 .owner = ARM_SMCCC_OWNER_SIP, 323 }; 324 struct qcom_scm_res res; 325 int ret; 326 327 ret = qcom_scm_call(__scm->dev, &desc, &res); 328 329 return ret ? : res.result[0]; 330 } 331 EXPORT_SYMBOL(qcom_scm_set_remote_state); 332 333 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable) 334 { 335 struct qcom_scm_desc desc = { 336 .svc = QCOM_SCM_SVC_BOOT, 337 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE, 338 .arginfo = QCOM_SCM_ARGS(2), 339 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE, 340 .owner = ARM_SMCCC_OWNER_SIP, 341 }; 342 343 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0; 344 345 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 346 } 347 348 static void qcom_scm_set_download_mode(bool enable) 349 { 350 bool avail; 351 int ret = 0; 352 353 avail = __qcom_scm_is_call_available(__scm->dev, 354 QCOM_SCM_SVC_BOOT, 355 QCOM_SCM_BOOT_SET_DLOAD_MODE); 356 if (avail) { 357 ret = __qcom_scm_set_dload_mode(__scm->dev, enable); 358 } else if (__scm->dload_mode_addr) { 359 ret = qcom_scm_io_writel(__scm->dload_mode_addr, 360 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0); 361 } else { 362 dev_err(__scm->dev, 363 "No available mechanism for setting download mode\n"); 364 } 365 366 if (ret) 367 dev_err(__scm->dev, "failed to set download mode: %d\n", ret); 368 } 369 370 /** 371 * qcom_scm_pas_init_image() - Initialize peripheral authentication service 372 * state machine for a given peripheral, using the 373 * metadata 374 * @peripheral: peripheral id 375 * @metadata: pointer to memory containing ELF header, program header table 376 * and optional blob of data used for authenticating the metadata 377 * and the rest of the firmware 378 * @size: size of the metadata 379 * @ctx: optional metadata context 380 * 381 * Return: 0 on success. 382 * 383 * Upon successful return, the PAS metadata context (@ctx) will be used to 384 * track the metadata allocation, this needs to be released by invoking 385 * qcom_scm_pas_metadata_release() by the caller. 386 */ 387 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size, 388 struct qcom_scm_pas_metadata *ctx) 389 { 390 dma_addr_t mdata_phys; 391 void *mdata_buf; 392 int ret; 393 struct qcom_scm_desc desc = { 394 .svc = QCOM_SCM_SVC_PIL, 395 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE, 396 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW), 397 .args[0] = peripheral, 398 .owner = ARM_SMCCC_OWNER_SIP, 399 }; 400 struct qcom_scm_res res; 401 402 /* 403 * During the scm call memory protection will be enabled for the meta 404 * data blob, so make sure it's physically contiguous, 4K aligned and 405 * non-cachable to avoid XPU violations. 406 */ 407 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys, 408 GFP_KERNEL); 409 if (!mdata_buf) { 410 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n"); 411 return -ENOMEM; 412 } 413 memcpy(mdata_buf, metadata, size); 414 415 ret = qcom_scm_clk_enable(); 416 if (ret) 417 goto out; 418 419 desc.args[1] = mdata_phys; 420 421 ret = qcom_scm_call(__scm->dev, &desc, &res); 422 423 qcom_scm_clk_disable(); 424 425 out: 426 if (ret < 0 || !ctx) { 427 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys); 428 } else if (ctx) { 429 ctx->ptr = mdata_buf; 430 ctx->phys = mdata_phys; 431 ctx->size = size; 432 } 433 434 return ret ? : res.result[0]; 435 } 436 EXPORT_SYMBOL(qcom_scm_pas_init_image); 437 438 /** 439 * qcom_scm_pas_metadata_release() - release metadata context 440 * @ctx: metadata context 441 */ 442 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx) 443 { 444 if (!ctx->ptr) 445 return; 446 447 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys); 448 449 ctx->ptr = NULL; 450 ctx->phys = 0; 451 ctx->size = 0; 452 } 453 EXPORT_SYMBOL(qcom_scm_pas_metadata_release); 454 455 /** 456 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral 457 * for firmware loading 458 * @peripheral: peripheral id 459 * @addr: start address of memory area to prepare 460 * @size: size of the memory area to prepare 461 * 462 * Returns 0 on success. 463 */ 464 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) 465 { 466 int ret; 467 struct qcom_scm_desc desc = { 468 .svc = QCOM_SCM_SVC_PIL, 469 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP, 470 .arginfo = QCOM_SCM_ARGS(3), 471 .args[0] = peripheral, 472 .args[1] = addr, 473 .args[2] = size, 474 .owner = ARM_SMCCC_OWNER_SIP, 475 }; 476 struct qcom_scm_res res; 477 478 ret = qcom_scm_clk_enable(); 479 if (ret) 480 return ret; 481 482 ret = qcom_scm_call(__scm->dev, &desc, &res); 483 qcom_scm_clk_disable(); 484 485 return ret ? : res.result[0]; 486 } 487 EXPORT_SYMBOL(qcom_scm_pas_mem_setup); 488 489 /** 490 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware 491 * and reset the remote processor 492 * @peripheral: peripheral id 493 * 494 * Return 0 on success. 495 */ 496 int qcom_scm_pas_auth_and_reset(u32 peripheral) 497 { 498 int ret; 499 struct qcom_scm_desc desc = { 500 .svc = QCOM_SCM_SVC_PIL, 501 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET, 502 .arginfo = QCOM_SCM_ARGS(1), 503 .args[0] = peripheral, 504 .owner = ARM_SMCCC_OWNER_SIP, 505 }; 506 struct qcom_scm_res res; 507 508 ret = qcom_scm_clk_enable(); 509 if (ret) 510 return ret; 511 512 ret = qcom_scm_call(__scm->dev, &desc, &res); 513 qcom_scm_clk_disable(); 514 515 return ret ? : res.result[0]; 516 } 517 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset); 518 519 /** 520 * qcom_scm_pas_shutdown() - Shut down the remote processor 521 * @peripheral: peripheral id 522 * 523 * Returns 0 on success. 524 */ 525 int qcom_scm_pas_shutdown(u32 peripheral) 526 { 527 int ret; 528 struct qcom_scm_desc desc = { 529 .svc = QCOM_SCM_SVC_PIL, 530 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN, 531 .arginfo = QCOM_SCM_ARGS(1), 532 .args[0] = peripheral, 533 .owner = ARM_SMCCC_OWNER_SIP, 534 }; 535 struct qcom_scm_res res; 536 537 ret = qcom_scm_clk_enable(); 538 if (ret) 539 return ret; 540 541 ret = qcom_scm_call(__scm->dev, &desc, &res); 542 543 qcom_scm_clk_disable(); 544 545 return ret ? : res.result[0]; 546 } 547 EXPORT_SYMBOL(qcom_scm_pas_shutdown); 548 549 /** 550 * qcom_scm_pas_supported() - Check if the peripheral authentication service is 551 * available for the given peripherial 552 * @peripheral: peripheral id 553 * 554 * Returns true if PAS is supported for this peripheral, otherwise false. 555 */ 556 bool qcom_scm_pas_supported(u32 peripheral) 557 { 558 int ret; 559 struct qcom_scm_desc desc = { 560 .svc = QCOM_SCM_SVC_PIL, 561 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED, 562 .arginfo = QCOM_SCM_ARGS(1), 563 .args[0] = peripheral, 564 .owner = ARM_SMCCC_OWNER_SIP, 565 }; 566 struct qcom_scm_res res; 567 568 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, 569 QCOM_SCM_PIL_PAS_IS_SUPPORTED)) 570 return false; 571 572 ret = qcom_scm_call(__scm->dev, &desc, &res); 573 574 return ret ? false : !!res.result[0]; 575 } 576 EXPORT_SYMBOL(qcom_scm_pas_supported); 577 578 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) 579 { 580 struct qcom_scm_desc desc = { 581 .svc = QCOM_SCM_SVC_PIL, 582 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET, 583 .arginfo = QCOM_SCM_ARGS(2), 584 .args[0] = reset, 585 .args[1] = 0, 586 .owner = ARM_SMCCC_OWNER_SIP, 587 }; 588 struct qcom_scm_res res; 589 int ret; 590 591 ret = qcom_scm_call(__scm->dev, &desc, &res); 592 593 return ret ? : res.result[0]; 594 } 595 596 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, 597 unsigned long idx) 598 { 599 if (idx != 0) 600 return -EINVAL; 601 602 return __qcom_scm_pas_mss_reset(__scm->dev, 1); 603 } 604 605 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, 606 unsigned long idx) 607 { 608 if (idx != 0) 609 return -EINVAL; 610 611 return __qcom_scm_pas_mss_reset(__scm->dev, 0); 612 } 613 614 static const struct reset_control_ops qcom_scm_pas_reset_ops = { 615 .assert = qcom_scm_pas_reset_assert, 616 .deassert = qcom_scm_pas_reset_deassert, 617 }; 618 619 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) 620 { 621 struct qcom_scm_desc desc = { 622 .svc = QCOM_SCM_SVC_IO, 623 .cmd = QCOM_SCM_IO_READ, 624 .arginfo = QCOM_SCM_ARGS(1), 625 .args[0] = addr, 626 .owner = ARM_SMCCC_OWNER_SIP, 627 }; 628 struct qcom_scm_res res; 629 int ret; 630 631 632 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res); 633 if (ret >= 0) 634 *val = res.result[0]; 635 636 return ret < 0 ? ret : 0; 637 } 638 EXPORT_SYMBOL(qcom_scm_io_readl); 639 640 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) 641 { 642 struct qcom_scm_desc desc = { 643 .svc = QCOM_SCM_SVC_IO, 644 .cmd = QCOM_SCM_IO_WRITE, 645 .arginfo = QCOM_SCM_ARGS(2), 646 .args[0] = addr, 647 .args[1] = val, 648 .owner = ARM_SMCCC_OWNER_SIP, 649 }; 650 651 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 652 } 653 EXPORT_SYMBOL(qcom_scm_io_writel); 654 655 /** 656 * qcom_scm_restore_sec_cfg_available() - Check if secure environment 657 * supports restore security config interface. 658 * 659 * Return true if restore-cfg interface is supported, false if not. 660 */ 661 bool qcom_scm_restore_sec_cfg_available(void) 662 { 663 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP, 664 QCOM_SCM_MP_RESTORE_SEC_CFG); 665 } 666 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available); 667 668 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) 669 { 670 struct qcom_scm_desc desc = { 671 .svc = QCOM_SCM_SVC_MP, 672 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG, 673 .arginfo = QCOM_SCM_ARGS(2), 674 .args[0] = device_id, 675 .args[1] = spare, 676 .owner = ARM_SMCCC_OWNER_SIP, 677 }; 678 struct qcom_scm_res res; 679 int ret; 680 681 ret = qcom_scm_call(__scm->dev, &desc, &res); 682 683 return ret ? : res.result[0]; 684 } 685 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg); 686 687 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) 688 { 689 struct qcom_scm_desc desc = { 690 .svc = QCOM_SCM_SVC_MP, 691 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE, 692 .arginfo = QCOM_SCM_ARGS(1), 693 .args[0] = spare, 694 .owner = ARM_SMCCC_OWNER_SIP, 695 }; 696 struct qcom_scm_res res; 697 int ret; 698 699 ret = qcom_scm_call(__scm->dev, &desc, &res); 700 701 if (size) 702 *size = res.result[0]; 703 704 return ret ? : res.result[1]; 705 } 706 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size); 707 708 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) 709 { 710 struct qcom_scm_desc desc = { 711 .svc = QCOM_SCM_SVC_MP, 712 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT, 713 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, 714 QCOM_SCM_VAL), 715 .args[0] = addr, 716 .args[1] = size, 717 .args[2] = spare, 718 .owner = ARM_SMCCC_OWNER_SIP, 719 }; 720 int ret; 721 722 ret = qcom_scm_call(__scm->dev, &desc, NULL); 723 724 /* the pg table has been initialized already, ignore the error */ 725 if (ret == -EPERM) 726 ret = 0; 727 728 return ret; 729 } 730 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init); 731 732 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size) 733 { 734 struct qcom_scm_desc desc = { 735 .svc = QCOM_SCM_SVC_MP, 736 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE, 737 .arginfo = QCOM_SCM_ARGS(2), 738 .args[0] = size, 739 .args[1] = spare, 740 .owner = ARM_SMCCC_OWNER_SIP, 741 }; 742 743 return qcom_scm_call(__scm->dev, &desc, NULL); 744 } 745 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size); 746 747 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size, 748 u32 cp_nonpixel_start, 749 u32 cp_nonpixel_size) 750 { 751 int ret; 752 struct qcom_scm_desc desc = { 753 .svc = QCOM_SCM_SVC_MP, 754 .cmd = QCOM_SCM_MP_VIDEO_VAR, 755 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, 756 QCOM_SCM_VAL, QCOM_SCM_VAL), 757 .args[0] = cp_start, 758 .args[1] = cp_size, 759 .args[2] = cp_nonpixel_start, 760 .args[3] = cp_nonpixel_size, 761 .owner = ARM_SMCCC_OWNER_SIP, 762 }; 763 struct qcom_scm_res res; 764 765 ret = qcom_scm_call(__scm->dev, &desc, &res); 766 767 return ret ? : res.result[0]; 768 } 769 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var); 770 771 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, 772 size_t mem_sz, phys_addr_t src, size_t src_sz, 773 phys_addr_t dest, size_t dest_sz) 774 { 775 int ret; 776 struct qcom_scm_desc desc = { 777 .svc = QCOM_SCM_SVC_MP, 778 .cmd = QCOM_SCM_MP_ASSIGN, 779 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, 780 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, 781 QCOM_SCM_VAL, QCOM_SCM_VAL), 782 .args[0] = mem_region, 783 .args[1] = mem_sz, 784 .args[2] = src, 785 .args[3] = src_sz, 786 .args[4] = dest, 787 .args[5] = dest_sz, 788 .args[6] = 0, 789 .owner = ARM_SMCCC_OWNER_SIP, 790 }; 791 struct qcom_scm_res res; 792 793 ret = qcom_scm_call(dev, &desc, &res); 794 795 return ret ? : res.result[0]; 796 } 797 798 /** 799 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership 800 * @mem_addr: mem region whose ownership need to be reassigned 801 * @mem_sz: size of the region. 802 * @srcvm: vmid for current set of owners, each set bit in 803 * flag indicate a unique owner 804 * @newvm: array having new owners and corresponding permission 805 * flags 806 * @dest_cnt: number of owners in next set. 807 * 808 * Return negative errno on failure or 0 on success with @srcvm updated. 809 */ 810 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, 811 unsigned int *srcvm, 812 const struct qcom_scm_vmperm *newvm, 813 unsigned int dest_cnt) 814 { 815 struct qcom_scm_current_perm_info *destvm; 816 struct qcom_scm_mem_map_info *mem_to_map; 817 phys_addr_t mem_to_map_phys; 818 phys_addr_t dest_phys; 819 dma_addr_t ptr_phys; 820 size_t mem_to_map_sz; 821 size_t dest_sz; 822 size_t src_sz; 823 size_t ptr_sz; 824 int next_vm; 825 __le32 *src; 826 void *ptr; 827 int ret, i, b; 828 unsigned long srcvm_bits = *srcvm; 829 830 src_sz = hweight_long(srcvm_bits) * sizeof(*src); 831 mem_to_map_sz = sizeof(*mem_to_map); 832 dest_sz = dest_cnt * sizeof(*destvm); 833 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + 834 ALIGN(dest_sz, SZ_64); 835 836 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL); 837 if (!ptr) 838 return -ENOMEM; 839 840 /* Fill source vmid detail */ 841 src = ptr; 842 i = 0; 843 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG) 844 src[i++] = cpu_to_le32(b); 845 846 /* Fill details of mem buff to map */ 847 mem_to_map = ptr + ALIGN(src_sz, SZ_64); 848 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); 849 mem_to_map->mem_addr = cpu_to_le64(mem_addr); 850 mem_to_map->mem_size = cpu_to_le64(mem_sz); 851 852 next_vm = 0; 853 /* Fill details of next vmid detail */ 854 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); 855 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); 856 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { 857 destvm->vmid = cpu_to_le32(newvm->vmid); 858 destvm->perm = cpu_to_le32(newvm->perm); 859 destvm->ctx = 0; 860 destvm->ctx_size = 0; 861 next_vm |= BIT(newvm->vmid); 862 } 863 864 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz, 865 ptr_phys, src_sz, dest_phys, dest_sz); 866 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys); 867 if (ret) { 868 dev_err(__scm->dev, 869 "Assign memory protection call failed %d\n", ret); 870 return -EINVAL; 871 } 872 873 *srcvm = next_vm; 874 return 0; 875 } 876 EXPORT_SYMBOL(qcom_scm_assign_mem); 877 878 /** 879 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available 880 */ 881 bool qcom_scm_ocmem_lock_available(void) 882 { 883 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM, 884 QCOM_SCM_OCMEM_LOCK_CMD); 885 } 886 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available); 887 888 /** 889 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM 890 * region to the specified initiator 891 * 892 * @id: tz initiator id 893 * @offset: OCMEM offset 894 * @size: OCMEM size 895 * @mode: access mode (WIDE/NARROW) 896 */ 897 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size, 898 u32 mode) 899 { 900 struct qcom_scm_desc desc = { 901 .svc = QCOM_SCM_SVC_OCMEM, 902 .cmd = QCOM_SCM_OCMEM_LOCK_CMD, 903 .args[0] = id, 904 .args[1] = offset, 905 .args[2] = size, 906 .args[3] = mode, 907 .arginfo = QCOM_SCM_ARGS(4), 908 }; 909 910 return qcom_scm_call(__scm->dev, &desc, NULL); 911 } 912 EXPORT_SYMBOL(qcom_scm_ocmem_lock); 913 914 /** 915 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM 916 * region from the specified initiator 917 * 918 * @id: tz initiator id 919 * @offset: OCMEM offset 920 * @size: OCMEM size 921 */ 922 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) 923 { 924 struct qcom_scm_desc desc = { 925 .svc = QCOM_SCM_SVC_OCMEM, 926 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD, 927 .args[0] = id, 928 .args[1] = offset, 929 .args[2] = size, 930 .arginfo = QCOM_SCM_ARGS(3), 931 }; 932 933 return qcom_scm_call(__scm->dev, &desc, NULL); 934 } 935 EXPORT_SYMBOL(qcom_scm_ocmem_unlock); 936 937 /** 938 * qcom_scm_ice_available() - Is the ICE key programming interface available? 939 * 940 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and 941 * qcom_scm_ice_set_key() are available. 942 */ 943 bool qcom_scm_ice_available(void) 944 { 945 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, 946 QCOM_SCM_ES_INVALIDATE_ICE_KEY) && 947 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, 948 QCOM_SCM_ES_CONFIG_SET_ICE_KEY); 949 } 950 EXPORT_SYMBOL(qcom_scm_ice_available); 951 952 /** 953 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key 954 * @index: the keyslot to invalidate 955 * 956 * The UFSHCI and eMMC standards define a standard way to do this, but it 957 * doesn't work on these SoCs; only this SCM call does. 958 * 959 * It is assumed that the SoC has only one ICE instance being used, as this SCM 960 * call doesn't specify which ICE instance the keyslot belongs to. 961 * 962 * Return: 0 on success; -errno on failure. 963 */ 964 int qcom_scm_ice_invalidate_key(u32 index) 965 { 966 struct qcom_scm_desc desc = { 967 .svc = QCOM_SCM_SVC_ES, 968 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY, 969 .arginfo = QCOM_SCM_ARGS(1), 970 .args[0] = index, 971 .owner = ARM_SMCCC_OWNER_SIP, 972 }; 973 974 return qcom_scm_call(__scm->dev, &desc, NULL); 975 } 976 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key); 977 978 /** 979 * qcom_scm_ice_set_key() - Set an inline encryption key 980 * @index: the keyslot into which to set the key 981 * @key: the key to program 982 * @key_size: the size of the key in bytes 983 * @cipher: the encryption algorithm the key is for 984 * @data_unit_size: the encryption data unit size, i.e. the size of each 985 * individual plaintext and ciphertext. Given in 512-byte 986 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc. 987 * 988 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it 989 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline. 990 * 991 * The UFSHCI and eMMC standards define a standard way to do this, but it 992 * doesn't work on these SoCs; only this SCM call does. 993 * 994 * It is assumed that the SoC has only one ICE instance being used, as this SCM 995 * call doesn't specify which ICE instance the keyslot belongs to. 996 * 997 * Return: 0 on success; -errno on failure. 998 */ 999 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, 1000 enum qcom_scm_ice_cipher cipher, u32 data_unit_size) 1001 { 1002 struct qcom_scm_desc desc = { 1003 .svc = QCOM_SCM_SVC_ES, 1004 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY, 1005 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, 1006 QCOM_SCM_VAL, QCOM_SCM_VAL, 1007 QCOM_SCM_VAL), 1008 .args[0] = index, 1009 .args[2] = key_size, 1010 .args[3] = cipher, 1011 .args[4] = data_unit_size, 1012 .owner = ARM_SMCCC_OWNER_SIP, 1013 }; 1014 void *keybuf; 1015 dma_addr_t key_phys; 1016 int ret; 1017 1018 /* 1019 * 'key' may point to vmalloc()'ed memory, but we need to pass a 1020 * physical address that's been properly flushed. The sanctioned way to 1021 * do this is by using the DMA API. But as is best practice for crypto 1022 * keys, we also must wipe the key after use. This makes kmemdup() + 1023 * dma_map_single() not clearly correct, since the DMA API can use 1024 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming 1025 * keys is normally rare and thus not performance-critical. 1026 */ 1027 1028 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys, 1029 GFP_KERNEL); 1030 if (!keybuf) 1031 return -ENOMEM; 1032 memcpy(keybuf, key, key_size); 1033 desc.args[1] = key_phys; 1034 1035 ret = qcom_scm_call(__scm->dev, &desc, NULL); 1036 1037 memzero_explicit(keybuf, key_size); 1038 1039 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys); 1040 return ret; 1041 } 1042 EXPORT_SYMBOL(qcom_scm_ice_set_key); 1043 1044 /** 1045 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. 1046 * 1047 * Return true if HDCP is supported, false if not. 1048 */ 1049 bool qcom_scm_hdcp_available(void) 1050 { 1051 bool avail; 1052 int ret = qcom_scm_clk_enable(); 1053 1054 if (ret) 1055 return ret; 1056 1057 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP, 1058 QCOM_SCM_HDCP_INVOKE); 1059 1060 qcom_scm_clk_disable(); 1061 1062 return avail; 1063 } 1064 EXPORT_SYMBOL(qcom_scm_hdcp_available); 1065 1066 /** 1067 * qcom_scm_hdcp_req() - Send HDCP request. 1068 * @req: HDCP request array 1069 * @req_cnt: HDCP request array count 1070 * @resp: response buffer passed to SCM 1071 * 1072 * Write HDCP register(s) through SCM. 1073 */ 1074 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) 1075 { 1076 int ret; 1077 struct qcom_scm_desc desc = { 1078 .svc = QCOM_SCM_SVC_HDCP, 1079 .cmd = QCOM_SCM_HDCP_INVOKE, 1080 .arginfo = QCOM_SCM_ARGS(10), 1081 .args = { 1082 req[0].addr, 1083 req[0].val, 1084 req[1].addr, 1085 req[1].val, 1086 req[2].addr, 1087 req[2].val, 1088 req[3].addr, 1089 req[3].val, 1090 req[4].addr, 1091 req[4].val 1092 }, 1093 .owner = ARM_SMCCC_OWNER_SIP, 1094 }; 1095 struct qcom_scm_res res; 1096 1097 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) 1098 return -ERANGE; 1099 1100 ret = qcom_scm_clk_enable(); 1101 if (ret) 1102 return ret; 1103 1104 ret = qcom_scm_call(__scm->dev, &desc, &res); 1105 *resp = res.result[0]; 1106 1107 qcom_scm_clk_disable(); 1108 1109 return ret; 1110 } 1111 EXPORT_SYMBOL(qcom_scm_hdcp_req); 1112 1113 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt) 1114 { 1115 struct qcom_scm_desc desc = { 1116 .svc = QCOM_SCM_SVC_SMMU_PROGRAM, 1117 .cmd = QCOM_SCM_SMMU_PT_FORMAT, 1118 .arginfo = QCOM_SCM_ARGS(3), 1119 .args[0] = sec_id, 1120 .args[1] = ctx_num, 1121 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */ 1122 .owner = ARM_SMCCC_OWNER_SIP, 1123 }; 1124 1125 return qcom_scm_call(__scm->dev, &desc, NULL); 1126 } 1127 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format); 1128 1129 int qcom_scm_qsmmu500_wait_safe_toggle(bool en) 1130 { 1131 struct qcom_scm_desc desc = { 1132 .svc = QCOM_SCM_SVC_SMMU_PROGRAM, 1133 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1, 1134 .arginfo = QCOM_SCM_ARGS(2), 1135 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL, 1136 .args[1] = en, 1137 .owner = ARM_SMCCC_OWNER_SIP, 1138 }; 1139 1140 1141 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 1142 } 1143 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle); 1144 1145 bool qcom_scm_lmh_dcvsh_available(void) 1146 { 1147 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH); 1148 } 1149 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available); 1150 1151 int qcom_scm_lmh_profile_change(u32 profile_id) 1152 { 1153 struct qcom_scm_desc desc = { 1154 .svc = QCOM_SCM_SVC_LMH, 1155 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE, 1156 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), 1157 .args[0] = profile_id, 1158 .owner = ARM_SMCCC_OWNER_SIP, 1159 }; 1160 1161 return qcom_scm_call(__scm->dev, &desc, NULL); 1162 } 1163 EXPORT_SYMBOL(qcom_scm_lmh_profile_change); 1164 1165 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val, 1166 u64 limit_node, u32 node_id, u64 version) 1167 { 1168 dma_addr_t payload_phys; 1169 u32 *payload_buf; 1170 int ret, payload_size = 5 * sizeof(u32); 1171 1172 struct qcom_scm_desc desc = { 1173 .svc = QCOM_SCM_SVC_LMH, 1174 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH, 1175 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL, 1176 QCOM_SCM_VAL, QCOM_SCM_VAL), 1177 .args[1] = payload_size, 1178 .args[2] = limit_node, 1179 .args[3] = node_id, 1180 .args[4] = version, 1181 .owner = ARM_SMCCC_OWNER_SIP, 1182 }; 1183 1184 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL); 1185 if (!payload_buf) 1186 return -ENOMEM; 1187 1188 payload_buf[0] = payload_fn; 1189 payload_buf[1] = 0; 1190 payload_buf[2] = payload_reg; 1191 payload_buf[3] = 1; 1192 payload_buf[4] = payload_val; 1193 1194 desc.args[0] = payload_phys; 1195 1196 ret = qcom_scm_call(__scm->dev, &desc, NULL); 1197 1198 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys); 1199 return ret; 1200 } 1201 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh); 1202 1203 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr) 1204 { 1205 struct device_node *tcsr; 1206 struct device_node *np = dev->of_node; 1207 struct resource res; 1208 u32 offset; 1209 int ret; 1210 1211 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0); 1212 if (!tcsr) 1213 return 0; 1214 1215 ret = of_address_to_resource(tcsr, 0, &res); 1216 of_node_put(tcsr); 1217 if (ret) 1218 return ret; 1219 1220 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset); 1221 if (ret < 0) 1222 return ret; 1223 1224 *addr = res.start + offset; 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * qcom_scm_is_available() - Checks if SCM is available 1231 */ 1232 bool qcom_scm_is_available(void) 1233 { 1234 return !!__scm; 1235 } 1236 EXPORT_SYMBOL(qcom_scm_is_available); 1237 1238 static int qcom_scm_probe(struct platform_device *pdev) 1239 { 1240 struct qcom_scm *scm; 1241 unsigned long clks; 1242 int ret; 1243 1244 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL); 1245 if (!scm) 1246 return -ENOMEM; 1247 1248 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr); 1249 if (ret < 0) 1250 return ret; 1251 1252 clks = (unsigned long)of_device_get_match_data(&pdev->dev); 1253 1254 scm->core_clk = devm_clk_get(&pdev->dev, "core"); 1255 if (IS_ERR(scm->core_clk)) { 1256 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER) 1257 return PTR_ERR(scm->core_clk); 1258 1259 if (clks & SCM_HAS_CORE_CLK) { 1260 dev_err(&pdev->dev, "failed to acquire core clk\n"); 1261 return PTR_ERR(scm->core_clk); 1262 } 1263 1264 scm->core_clk = NULL; 1265 } 1266 1267 scm->iface_clk = devm_clk_get(&pdev->dev, "iface"); 1268 if (IS_ERR(scm->iface_clk)) { 1269 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER) 1270 return PTR_ERR(scm->iface_clk); 1271 1272 if (clks & SCM_HAS_IFACE_CLK) { 1273 dev_err(&pdev->dev, "failed to acquire iface clk\n"); 1274 return PTR_ERR(scm->iface_clk); 1275 } 1276 1277 scm->iface_clk = NULL; 1278 } 1279 1280 scm->bus_clk = devm_clk_get(&pdev->dev, "bus"); 1281 if (IS_ERR(scm->bus_clk)) { 1282 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER) 1283 return PTR_ERR(scm->bus_clk); 1284 1285 if (clks & SCM_HAS_BUS_CLK) { 1286 dev_err(&pdev->dev, "failed to acquire bus clk\n"); 1287 return PTR_ERR(scm->bus_clk); 1288 } 1289 1290 scm->bus_clk = NULL; 1291 } 1292 1293 scm->reset.ops = &qcom_scm_pas_reset_ops; 1294 scm->reset.nr_resets = 1; 1295 scm->reset.of_node = pdev->dev.of_node; 1296 ret = devm_reset_controller_register(&pdev->dev, &scm->reset); 1297 if (ret) 1298 return ret; 1299 1300 /* vote for max clk rate for highest performance */ 1301 ret = clk_set_rate(scm->core_clk, INT_MAX); 1302 if (ret) 1303 return ret; 1304 1305 __scm = scm; 1306 __scm->dev = &pdev->dev; 1307 1308 __get_convention(); 1309 1310 /* 1311 * If requested enable "download mode", from this point on warmboot 1312 * will cause the the boot stages to enter download mode, unless 1313 * disabled below by a clean shutdown/reboot. 1314 */ 1315 if (download_mode) 1316 qcom_scm_set_download_mode(true); 1317 1318 return 0; 1319 } 1320 1321 static void qcom_scm_shutdown(struct platform_device *pdev) 1322 { 1323 /* Clean shutdown, disable download mode to allow normal restart */ 1324 if (download_mode) 1325 qcom_scm_set_download_mode(false); 1326 } 1327 1328 static const struct of_device_id qcom_scm_dt_match[] = { 1329 { .compatible = "qcom,scm-apq8064", 1330 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */ 1331 }, 1332 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK | 1333 SCM_HAS_IFACE_CLK | 1334 SCM_HAS_BUS_CLK) 1335 }, 1336 { .compatible = "qcom,scm-ipq4019" }, 1337 { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK | 1338 SCM_HAS_IFACE_CLK | 1339 SCM_HAS_BUS_CLK) }, 1340 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK }, 1341 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK }, 1342 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK | 1343 SCM_HAS_IFACE_CLK | 1344 SCM_HAS_BUS_CLK) 1345 }, 1346 { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK | 1347 SCM_HAS_IFACE_CLK | 1348 SCM_HAS_BUS_CLK) 1349 }, 1350 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK | 1351 SCM_HAS_IFACE_CLK | 1352 SCM_HAS_BUS_CLK) 1353 }, 1354 { .compatible = "qcom,scm-msm8994" }, 1355 { .compatible = "qcom,scm-msm8996" }, 1356 { .compatible = "qcom,scm" }, 1357 {} 1358 }; 1359 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match); 1360 1361 static struct platform_driver qcom_scm_driver = { 1362 .driver = { 1363 .name = "qcom_scm", 1364 .of_match_table = qcom_scm_dt_match, 1365 .suppress_bind_attrs = true, 1366 }, 1367 .probe = qcom_scm_probe, 1368 .shutdown = qcom_scm_shutdown, 1369 }; 1370 1371 static int __init qcom_scm_init(void) 1372 { 1373 return platform_driver_register(&qcom_scm_driver); 1374 } 1375 subsys_initcall(qcom_scm_init); 1376 1377 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver"); 1378 MODULE_LICENSE("GPL v2"); 1379