xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision 3fc7c707)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23 
24 #include "qcom_scm.h"
25 
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28 
29 struct qcom_scm {
30 	struct device *dev;
31 	struct clk *core_clk;
32 	struct clk *iface_clk;
33 	struct clk *bus_clk;
34 	struct icc_path *path;
35 	struct completion waitq_comp;
36 	struct reset_controller_dev reset;
37 
38 	/* control access to the interconnect path */
39 	struct mutex scm_bw_lock;
40 	int scm_vote_count;
41 
42 	u64 dload_mode_addr;
43 };
44 
45 struct qcom_scm_current_perm_info {
46 	__le32 vmid;
47 	__le32 perm;
48 	__le64 ctx;
49 	__le32 ctx_size;
50 	__le32 unused;
51 };
52 
53 struct qcom_scm_mem_map_info {
54 	__le64 mem_addr;
55 	__le64 mem_size;
56 };
57 
58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60 	0, BIT(0), BIT(3), BIT(5)
61 };
62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63 	BIT(2), BIT(1), BIT(4), BIT(6)
64 };
65 
66 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
67 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL	BIT(1)
68 
69 static const char * const qcom_scm_convention_names[] = {
70 	[SMC_CONVENTION_UNKNOWN] = "unknown",
71 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
72 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
73 	[SMC_CONVENTION_LEGACY] = "smc legacy",
74 };
75 
76 static struct qcom_scm *__scm;
77 
78 static int qcom_scm_clk_enable(void)
79 {
80 	int ret;
81 
82 	ret = clk_prepare_enable(__scm->core_clk);
83 	if (ret)
84 		goto bail;
85 
86 	ret = clk_prepare_enable(__scm->iface_clk);
87 	if (ret)
88 		goto disable_core;
89 
90 	ret = clk_prepare_enable(__scm->bus_clk);
91 	if (ret)
92 		goto disable_iface;
93 
94 	return 0;
95 
96 disable_iface:
97 	clk_disable_unprepare(__scm->iface_clk);
98 disable_core:
99 	clk_disable_unprepare(__scm->core_clk);
100 bail:
101 	return ret;
102 }
103 
104 static void qcom_scm_clk_disable(void)
105 {
106 	clk_disable_unprepare(__scm->core_clk);
107 	clk_disable_unprepare(__scm->iface_clk);
108 	clk_disable_unprepare(__scm->bus_clk);
109 }
110 
111 static int qcom_scm_bw_enable(void)
112 {
113 	int ret = 0;
114 
115 	if (!__scm->path)
116 		return 0;
117 
118 	if (IS_ERR(__scm->path))
119 		return -EINVAL;
120 
121 	mutex_lock(&__scm->scm_bw_lock);
122 	if (!__scm->scm_vote_count) {
123 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
124 		if (ret < 0) {
125 			dev_err(__scm->dev, "failed to set bandwidth request\n");
126 			goto err_bw;
127 		}
128 	}
129 	__scm->scm_vote_count++;
130 err_bw:
131 	mutex_unlock(&__scm->scm_bw_lock);
132 
133 	return ret;
134 }
135 
136 static void qcom_scm_bw_disable(void)
137 {
138 	if (IS_ERR_OR_NULL(__scm->path))
139 		return;
140 
141 	mutex_lock(&__scm->scm_bw_lock);
142 	if (__scm->scm_vote_count-- == 1)
143 		icc_set_bw(__scm->path, 0, 0);
144 	mutex_unlock(&__scm->scm_bw_lock);
145 }
146 
147 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
148 static DEFINE_SPINLOCK(scm_query_lock);
149 
150 static enum qcom_scm_convention __get_convention(void)
151 {
152 	unsigned long flags;
153 	struct qcom_scm_desc desc = {
154 		.svc = QCOM_SCM_SVC_INFO,
155 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
156 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
157 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
158 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
159 		.arginfo = QCOM_SCM_ARGS(1),
160 		.owner = ARM_SMCCC_OWNER_SIP,
161 	};
162 	struct qcom_scm_res res;
163 	enum qcom_scm_convention probed_convention;
164 	int ret;
165 	bool forced = false;
166 
167 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
168 		return qcom_scm_convention;
169 
170 	/*
171 	 * Device isn't required as there is only one argument - no device
172 	 * needed to dma_map_single to secure world
173 	 */
174 	probed_convention = SMC_CONVENTION_ARM_64;
175 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
176 	if (!ret && res.result[0] == 1)
177 		goto found;
178 
179 	/*
180 	 * Some SC7180 firmwares didn't implement the
181 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
182 	 * calling conventions on these firmwares. Luckily we don't make any
183 	 * early calls into the firmware on these SoCs so the device pointer
184 	 * will be valid here to check if the compatible matches.
185 	 */
186 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
187 		forced = true;
188 		goto found;
189 	}
190 
191 	probed_convention = SMC_CONVENTION_ARM_32;
192 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
193 	if (!ret && res.result[0] == 1)
194 		goto found;
195 
196 	probed_convention = SMC_CONVENTION_LEGACY;
197 found:
198 	spin_lock_irqsave(&scm_query_lock, flags);
199 	if (probed_convention != qcom_scm_convention) {
200 		qcom_scm_convention = probed_convention;
201 		pr_info("qcom_scm: convention: %s%s\n",
202 			qcom_scm_convention_names[qcom_scm_convention],
203 			forced ? " (forced)" : "");
204 	}
205 	spin_unlock_irqrestore(&scm_query_lock, flags);
206 
207 	return qcom_scm_convention;
208 }
209 
210 /**
211  * qcom_scm_call() - Invoke a syscall in the secure world
212  * @dev:	device
213  * @desc:	Descriptor structure containing arguments and return values
214  * @res:        Structure containing results from SMC/HVC call
215  *
216  * Sends a command to the SCM and waits for the command to finish processing.
217  * This should *only* be called in pre-emptible context.
218  */
219 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
220 			 struct qcom_scm_res *res)
221 {
222 	might_sleep();
223 	switch (__get_convention()) {
224 	case SMC_CONVENTION_ARM_32:
225 	case SMC_CONVENTION_ARM_64:
226 		return scm_smc_call(dev, desc, res, false);
227 	case SMC_CONVENTION_LEGACY:
228 		return scm_legacy_call(dev, desc, res);
229 	default:
230 		pr_err("Unknown current SCM calling convention.\n");
231 		return -EINVAL;
232 	}
233 }
234 
235 /**
236  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
237  * @dev:	device
238  * @desc:	Descriptor structure containing arguments and return values
239  * @res:	Structure containing results from SMC/HVC call
240  *
241  * Sends a command to the SCM and waits for the command to finish processing.
242  * This can be called in atomic context.
243  */
244 static int qcom_scm_call_atomic(struct device *dev,
245 				const struct qcom_scm_desc *desc,
246 				struct qcom_scm_res *res)
247 {
248 	switch (__get_convention()) {
249 	case SMC_CONVENTION_ARM_32:
250 	case SMC_CONVENTION_ARM_64:
251 		return scm_smc_call(dev, desc, res, true);
252 	case SMC_CONVENTION_LEGACY:
253 		return scm_legacy_call_atomic(dev, desc, res);
254 	default:
255 		pr_err("Unknown current SCM calling convention.\n");
256 		return -EINVAL;
257 	}
258 }
259 
260 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
261 					 u32 cmd_id)
262 {
263 	int ret;
264 	struct qcom_scm_desc desc = {
265 		.svc = QCOM_SCM_SVC_INFO,
266 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
267 		.owner = ARM_SMCCC_OWNER_SIP,
268 	};
269 	struct qcom_scm_res res;
270 
271 	desc.arginfo = QCOM_SCM_ARGS(1);
272 	switch (__get_convention()) {
273 	case SMC_CONVENTION_ARM_32:
274 	case SMC_CONVENTION_ARM_64:
275 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
276 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
277 		break;
278 	case SMC_CONVENTION_LEGACY:
279 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
280 		break;
281 	default:
282 		pr_err("Unknown SMC convention being used\n");
283 		return false;
284 	}
285 
286 	ret = qcom_scm_call(dev, &desc, &res);
287 
288 	return ret ? false : !!res.result[0];
289 }
290 
291 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
292 {
293 	int cpu;
294 	unsigned int flags = 0;
295 	struct qcom_scm_desc desc = {
296 		.svc = QCOM_SCM_SVC_BOOT,
297 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
298 		.arginfo = QCOM_SCM_ARGS(2),
299 		.owner = ARM_SMCCC_OWNER_SIP,
300 	};
301 
302 	for_each_present_cpu(cpu) {
303 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
304 			return -EINVAL;
305 		flags |= cpu_bits[cpu];
306 	}
307 
308 	desc.args[0] = flags;
309 	desc.args[1] = virt_to_phys(entry);
310 
311 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
312 }
313 
314 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
315 {
316 	struct qcom_scm_desc desc = {
317 		.svc = QCOM_SCM_SVC_BOOT,
318 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
319 		.owner = ARM_SMCCC_OWNER_SIP,
320 		.arginfo = QCOM_SCM_ARGS(6),
321 		.args = {
322 			virt_to_phys(entry),
323 			/* Apply to all CPUs in all affinity levels */
324 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
325 			flags,
326 		},
327 	};
328 
329 	/* Need a device for DMA of the additional arguments */
330 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
331 		return -EOPNOTSUPP;
332 
333 	return qcom_scm_call(__scm->dev, &desc, NULL);
334 }
335 
336 /**
337  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
338  * @entry: Entry point function for the cpus
339  *
340  * Set the Linux entry point for the SCM to transfer control to when coming
341  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
342  */
343 int qcom_scm_set_warm_boot_addr(void *entry)
344 {
345 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
346 		/* Fallback to old SCM call */
347 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
348 	return 0;
349 }
350 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
351 
352 /**
353  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
354  * @entry: Entry point function for the cpus
355  */
356 int qcom_scm_set_cold_boot_addr(void *entry)
357 {
358 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
359 		/* Fallback to old SCM call */
360 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
361 	return 0;
362 }
363 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
364 
365 /**
366  * qcom_scm_cpu_power_down() - Power down the cpu
367  * @flags:	Flags to flush cache
368  *
369  * This is an end point to power down cpu. If there was a pending interrupt,
370  * the control would return from this function, otherwise, the cpu jumps to the
371  * warm boot entry point set for this cpu upon reset.
372  */
373 void qcom_scm_cpu_power_down(u32 flags)
374 {
375 	struct qcom_scm_desc desc = {
376 		.svc = QCOM_SCM_SVC_BOOT,
377 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
378 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
379 		.arginfo = QCOM_SCM_ARGS(1),
380 		.owner = ARM_SMCCC_OWNER_SIP,
381 	};
382 
383 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
384 }
385 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
386 
387 int qcom_scm_set_remote_state(u32 state, u32 id)
388 {
389 	struct qcom_scm_desc desc = {
390 		.svc = QCOM_SCM_SVC_BOOT,
391 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
392 		.arginfo = QCOM_SCM_ARGS(2),
393 		.args[0] = state,
394 		.args[1] = id,
395 		.owner = ARM_SMCCC_OWNER_SIP,
396 	};
397 	struct qcom_scm_res res;
398 	int ret;
399 
400 	ret = qcom_scm_call(__scm->dev, &desc, &res);
401 
402 	return ret ? : res.result[0];
403 }
404 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
405 
406 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
407 {
408 	struct qcom_scm_desc desc = {
409 		.svc = QCOM_SCM_SVC_BOOT,
410 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
411 		.arginfo = QCOM_SCM_ARGS(2),
412 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
413 		.owner = ARM_SMCCC_OWNER_SIP,
414 	};
415 
416 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
417 
418 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
419 }
420 
421 static void qcom_scm_set_download_mode(bool enable)
422 {
423 	bool avail;
424 	int ret = 0;
425 
426 	avail = __qcom_scm_is_call_available(__scm->dev,
427 					     QCOM_SCM_SVC_BOOT,
428 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
429 	if (avail) {
430 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
431 	} else if (__scm->dload_mode_addr) {
432 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
433 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
434 	} else {
435 		dev_err(__scm->dev,
436 			"No available mechanism for setting download mode\n");
437 	}
438 
439 	if (ret)
440 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
441 }
442 
443 /**
444  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
445  *			       state machine for a given peripheral, using the
446  *			       metadata
447  * @peripheral: peripheral id
448  * @metadata:	pointer to memory containing ELF header, program header table
449  *		and optional blob of data used for authenticating the metadata
450  *		and the rest of the firmware
451  * @size:	size of the metadata
452  * @ctx:	optional metadata context
453  *
454  * Return: 0 on success.
455  *
456  * Upon successful return, the PAS metadata context (@ctx) will be used to
457  * track the metadata allocation, this needs to be released by invoking
458  * qcom_scm_pas_metadata_release() by the caller.
459  */
460 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
461 			    struct qcom_scm_pas_metadata *ctx)
462 {
463 	dma_addr_t mdata_phys;
464 	void *mdata_buf;
465 	int ret;
466 	struct qcom_scm_desc desc = {
467 		.svc = QCOM_SCM_SVC_PIL,
468 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
469 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
470 		.args[0] = peripheral,
471 		.owner = ARM_SMCCC_OWNER_SIP,
472 	};
473 	struct qcom_scm_res res;
474 
475 	/*
476 	 * During the scm call memory protection will be enabled for the meta
477 	 * data blob, so make sure it's physically contiguous, 4K aligned and
478 	 * non-cachable to avoid XPU violations.
479 	 */
480 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
481 				       GFP_KERNEL);
482 	if (!mdata_buf) {
483 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
484 		return -ENOMEM;
485 	}
486 	memcpy(mdata_buf, metadata, size);
487 
488 	ret = qcom_scm_clk_enable();
489 	if (ret)
490 		goto out;
491 
492 	ret = qcom_scm_bw_enable();
493 	if (ret)
494 		return ret;
495 
496 	desc.args[1] = mdata_phys;
497 
498 	ret = qcom_scm_call(__scm->dev, &desc, &res);
499 
500 	qcom_scm_bw_disable();
501 	qcom_scm_clk_disable();
502 
503 out:
504 	if (ret < 0 || !ctx) {
505 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
506 	} else if (ctx) {
507 		ctx->ptr = mdata_buf;
508 		ctx->phys = mdata_phys;
509 		ctx->size = size;
510 	}
511 
512 	return ret ? : res.result[0];
513 }
514 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
515 
516 /**
517  * qcom_scm_pas_metadata_release() - release metadata context
518  * @ctx:	metadata context
519  */
520 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
521 {
522 	if (!ctx->ptr)
523 		return;
524 
525 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
526 
527 	ctx->ptr = NULL;
528 	ctx->phys = 0;
529 	ctx->size = 0;
530 }
531 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
532 
533 /**
534  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
535  *			      for firmware loading
536  * @peripheral:	peripheral id
537  * @addr:	start address of memory area to prepare
538  * @size:	size of the memory area to prepare
539  *
540  * Returns 0 on success.
541  */
542 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
543 {
544 	int ret;
545 	struct qcom_scm_desc desc = {
546 		.svc = QCOM_SCM_SVC_PIL,
547 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
548 		.arginfo = QCOM_SCM_ARGS(3),
549 		.args[0] = peripheral,
550 		.args[1] = addr,
551 		.args[2] = size,
552 		.owner = ARM_SMCCC_OWNER_SIP,
553 	};
554 	struct qcom_scm_res res;
555 
556 	ret = qcom_scm_clk_enable();
557 	if (ret)
558 		return ret;
559 
560 	ret = qcom_scm_bw_enable();
561 	if (ret)
562 		return ret;
563 
564 	ret = qcom_scm_call(__scm->dev, &desc, &res);
565 	qcom_scm_bw_disable();
566 	qcom_scm_clk_disable();
567 
568 	return ret ? : res.result[0];
569 }
570 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
571 
572 /**
573  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
574  *				   and reset the remote processor
575  * @peripheral:	peripheral id
576  *
577  * Return 0 on success.
578  */
579 int qcom_scm_pas_auth_and_reset(u32 peripheral)
580 {
581 	int ret;
582 	struct qcom_scm_desc desc = {
583 		.svc = QCOM_SCM_SVC_PIL,
584 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
585 		.arginfo = QCOM_SCM_ARGS(1),
586 		.args[0] = peripheral,
587 		.owner = ARM_SMCCC_OWNER_SIP,
588 	};
589 	struct qcom_scm_res res;
590 
591 	ret = qcom_scm_clk_enable();
592 	if (ret)
593 		return ret;
594 
595 	ret = qcom_scm_bw_enable();
596 	if (ret)
597 		return ret;
598 
599 	ret = qcom_scm_call(__scm->dev, &desc, &res);
600 	qcom_scm_bw_disable();
601 	qcom_scm_clk_disable();
602 
603 	return ret ? : res.result[0];
604 }
605 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
606 
607 /**
608  * qcom_scm_pas_shutdown() - Shut down the remote processor
609  * @peripheral: peripheral id
610  *
611  * Returns 0 on success.
612  */
613 int qcom_scm_pas_shutdown(u32 peripheral)
614 {
615 	int ret;
616 	struct qcom_scm_desc desc = {
617 		.svc = QCOM_SCM_SVC_PIL,
618 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
619 		.arginfo = QCOM_SCM_ARGS(1),
620 		.args[0] = peripheral,
621 		.owner = ARM_SMCCC_OWNER_SIP,
622 	};
623 	struct qcom_scm_res res;
624 
625 	ret = qcom_scm_clk_enable();
626 	if (ret)
627 		return ret;
628 
629 	ret = qcom_scm_bw_enable();
630 	if (ret)
631 		return ret;
632 
633 	ret = qcom_scm_call(__scm->dev, &desc, &res);
634 
635 	qcom_scm_bw_disable();
636 	qcom_scm_clk_disable();
637 
638 	return ret ? : res.result[0];
639 }
640 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
641 
642 /**
643  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
644  *			      available for the given peripherial
645  * @peripheral:	peripheral id
646  *
647  * Returns true if PAS is supported for this peripheral, otherwise false.
648  */
649 bool qcom_scm_pas_supported(u32 peripheral)
650 {
651 	int ret;
652 	struct qcom_scm_desc desc = {
653 		.svc = QCOM_SCM_SVC_PIL,
654 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
655 		.arginfo = QCOM_SCM_ARGS(1),
656 		.args[0] = peripheral,
657 		.owner = ARM_SMCCC_OWNER_SIP,
658 	};
659 	struct qcom_scm_res res;
660 
661 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
662 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
663 		return false;
664 
665 	ret = qcom_scm_call(__scm->dev, &desc, &res);
666 
667 	return ret ? false : !!res.result[0];
668 }
669 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
670 
671 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
672 {
673 	struct qcom_scm_desc desc = {
674 		.svc = QCOM_SCM_SVC_PIL,
675 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
676 		.arginfo = QCOM_SCM_ARGS(2),
677 		.args[0] = reset,
678 		.args[1] = 0,
679 		.owner = ARM_SMCCC_OWNER_SIP,
680 	};
681 	struct qcom_scm_res res;
682 	int ret;
683 
684 	ret = qcom_scm_call(__scm->dev, &desc, &res);
685 
686 	return ret ? : res.result[0];
687 }
688 
689 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
690 				     unsigned long idx)
691 {
692 	if (idx != 0)
693 		return -EINVAL;
694 
695 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
696 }
697 
698 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
699 				       unsigned long idx)
700 {
701 	if (idx != 0)
702 		return -EINVAL;
703 
704 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
705 }
706 
707 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
708 	.assert = qcom_scm_pas_reset_assert,
709 	.deassert = qcom_scm_pas_reset_deassert,
710 };
711 
712 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
713 {
714 	struct qcom_scm_desc desc = {
715 		.svc = QCOM_SCM_SVC_IO,
716 		.cmd = QCOM_SCM_IO_READ,
717 		.arginfo = QCOM_SCM_ARGS(1),
718 		.args[0] = addr,
719 		.owner = ARM_SMCCC_OWNER_SIP,
720 	};
721 	struct qcom_scm_res res;
722 	int ret;
723 
724 
725 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
726 	if (ret >= 0)
727 		*val = res.result[0];
728 
729 	return ret < 0 ? ret : 0;
730 }
731 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
732 
733 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
734 {
735 	struct qcom_scm_desc desc = {
736 		.svc = QCOM_SCM_SVC_IO,
737 		.cmd = QCOM_SCM_IO_WRITE,
738 		.arginfo = QCOM_SCM_ARGS(2),
739 		.args[0] = addr,
740 		.args[1] = val,
741 		.owner = ARM_SMCCC_OWNER_SIP,
742 	};
743 
744 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
745 }
746 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
747 
748 /**
749  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
750  * supports restore security config interface.
751  *
752  * Return true if restore-cfg interface is supported, false if not.
753  */
754 bool qcom_scm_restore_sec_cfg_available(void)
755 {
756 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
757 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
758 }
759 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
760 
761 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
762 {
763 	struct qcom_scm_desc desc = {
764 		.svc = QCOM_SCM_SVC_MP,
765 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
766 		.arginfo = QCOM_SCM_ARGS(2),
767 		.args[0] = device_id,
768 		.args[1] = spare,
769 		.owner = ARM_SMCCC_OWNER_SIP,
770 	};
771 	struct qcom_scm_res res;
772 	int ret;
773 
774 	ret = qcom_scm_call(__scm->dev, &desc, &res);
775 
776 	return ret ? : res.result[0];
777 }
778 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
779 
780 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
781 {
782 	struct qcom_scm_desc desc = {
783 		.svc = QCOM_SCM_SVC_MP,
784 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
785 		.arginfo = QCOM_SCM_ARGS(1),
786 		.args[0] = spare,
787 		.owner = ARM_SMCCC_OWNER_SIP,
788 	};
789 	struct qcom_scm_res res;
790 	int ret;
791 
792 	ret = qcom_scm_call(__scm->dev, &desc, &res);
793 
794 	if (size)
795 		*size = res.result[0];
796 
797 	return ret ? : res.result[1];
798 }
799 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
800 
801 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
802 {
803 	struct qcom_scm_desc desc = {
804 		.svc = QCOM_SCM_SVC_MP,
805 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
806 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
807 					 QCOM_SCM_VAL),
808 		.args[0] = addr,
809 		.args[1] = size,
810 		.args[2] = spare,
811 		.owner = ARM_SMCCC_OWNER_SIP,
812 	};
813 	int ret;
814 
815 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
816 
817 	/* the pg table has been initialized already, ignore the error */
818 	if (ret == -EPERM)
819 		ret = 0;
820 
821 	return ret;
822 }
823 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
824 
825 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
826 {
827 	struct qcom_scm_desc desc = {
828 		.svc = QCOM_SCM_SVC_MP,
829 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
830 		.arginfo = QCOM_SCM_ARGS(2),
831 		.args[0] = size,
832 		.args[1] = spare,
833 		.owner = ARM_SMCCC_OWNER_SIP,
834 	};
835 
836 	return qcom_scm_call(__scm->dev, &desc, NULL);
837 }
838 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
839 
840 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
841 				   u32 cp_nonpixel_start,
842 				   u32 cp_nonpixel_size)
843 {
844 	int ret;
845 	struct qcom_scm_desc desc = {
846 		.svc = QCOM_SCM_SVC_MP,
847 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
848 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
849 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
850 		.args[0] = cp_start,
851 		.args[1] = cp_size,
852 		.args[2] = cp_nonpixel_start,
853 		.args[3] = cp_nonpixel_size,
854 		.owner = ARM_SMCCC_OWNER_SIP,
855 	};
856 	struct qcom_scm_res res;
857 
858 	ret = qcom_scm_call(__scm->dev, &desc, &res);
859 
860 	return ret ? : res.result[0];
861 }
862 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
863 
864 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
865 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
866 				 phys_addr_t dest, size_t dest_sz)
867 {
868 	int ret;
869 	struct qcom_scm_desc desc = {
870 		.svc = QCOM_SCM_SVC_MP,
871 		.cmd = QCOM_SCM_MP_ASSIGN,
872 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
873 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
874 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
875 		.args[0] = mem_region,
876 		.args[1] = mem_sz,
877 		.args[2] = src,
878 		.args[3] = src_sz,
879 		.args[4] = dest,
880 		.args[5] = dest_sz,
881 		.args[6] = 0,
882 		.owner = ARM_SMCCC_OWNER_SIP,
883 	};
884 	struct qcom_scm_res res;
885 
886 	ret = qcom_scm_call(dev, &desc, &res);
887 
888 	return ret ? : res.result[0];
889 }
890 
891 /**
892  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
893  * @mem_addr: mem region whose ownership need to be reassigned
894  * @mem_sz:   size of the region.
895  * @srcvm:    vmid for current set of owners, each set bit in
896  *            flag indicate a unique owner
897  * @newvm:    array having new owners and corresponding permission
898  *            flags
899  * @dest_cnt: number of owners in next set.
900  *
901  * Return negative errno on failure or 0 on success with @srcvm updated.
902  */
903 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
904 			u64 *srcvm,
905 			const struct qcom_scm_vmperm *newvm,
906 			unsigned int dest_cnt)
907 {
908 	struct qcom_scm_current_perm_info *destvm;
909 	struct qcom_scm_mem_map_info *mem_to_map;
910 	phys_addr_t mem_to_map_phys;
911 	phys_addr_t dest_phys;
912 	dma_addr_t ptr_phys;
913 	size_t mem_to_map_sz;
914 	size_t dest_sz;
915 	size_t src_sz;
916 	size_t ptr_sz;
917 	int next_vm;
918 	__le32 *src;
919 	void *ptr;
920 	int ret, i, b;
921 	u64 srcvm_bits = *srcvm;
922 
923 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
924 	mem_to_map_sz = sizeof(*mem_to_map);
925 	dest_sz = dest_cnt * sizeof(*destvm);
926 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
927 			ALIGN(dest_sz, SZ_64);
928 
929 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
930 	if (!ptr)
931 		return -ENOMEM;
932 
933 	/* Fill source vmid detail */
934 	src = ptr;
935 	i = 0;
936 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
937 		if (srcvm_bits & BIT(b))
938 			src[i++] = cpu_to_le32(b);
939 	}
940 
941 	/* Fill details of mem buff to map */
942 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
943 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
944 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
945 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
946 
947 	next_vm = 0;
948 	/* Fill details of next vmid detail */
949 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
950 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
951 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
952 		destvm->vmid = cpu_to_le32(newvm->vmid);
953 		destvm->perm = cpu_to_le32(newvm->perm);
954 		destvm->ctx = 0;
955 		destvm->ctx_size = 0;
956 		next_vm |= BIT(newvm->vmid);
957 	}
958 
959 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
960 				    ptr_phys, src_sz, dest_phys, dest_sz);
961 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
962 	if (ret) {
963 		dev_err(__scm->dev,
964 			"Assign memory protection call failed %d\n", ret);
965 		return -EINVAL;
966 	}
967 
968 	*srcvm = next_vm;
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
972 
973 /**
974  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
975  */
976 bool qcom_scm_ocmem_lock_available(void)
977 {
978 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
979 					    QCOM_SCM_OCMEM_LOCK_CMD);
980 }
981 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
982 
983 /**
984  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
985  * region to the specified initiator
986  *
987  * @id:     tz initiator id
988  * @offset: OCMEM offset
989  * @size:   OCMEM size
990  * @mode:   access mode (WIDE/NARROW)
991  */
992 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
993 			u32 mode)
994 {
995 	struct qcom_scm_desc desc = {
996 		.svc = QCOM_SCM_SVC_OCMEM,
997 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
998 		.args[0] = id,
999 		.args[1] = offset,
1000 		.args[2] = size,
1001 		.args[3] = mode,
1002 		.arginfo = QCOM_SCM_ARGS(4),
1003 	};
1004 
1005 	return qcom_scm_call(__scm->dev, &desc, NULL);
1006 }
1007 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1008 
1009 /**
1010  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1011  * region from the specified initiator
1012  *
1013  * @id:     tz initiator id
1014  * @offset: OCMEM offset
1015  * @size:   OCMEM size
1016  */
1017 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1018 {
1019 	struct qcom_scm_desc desc = {
1020 		.svc = QCOM_SCM_SVC_OCMEM,
1021 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1022 		.args[0] = id,
1023 		.args[1] = offset,
1024 		.args[2] = size,
1025 		.arginfo = QCOM_SCM_ARGS(3),
1026 	};
1027 
1028 	return qcom_scm_call(__scm->dev, &desc, NULL);
1029 }
1030 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1031 
1032 /**
1033  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1034  *
1035  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1036  *	   qcom_scm_ice_set_key() are available.
1037  */
1038 bool qcom_scm_ice_available(void)
1039 {
1040 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1041 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1042 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1043 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1044 }
1045 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1046 
1047 /**
1048  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1049  * @index: the keyslot to invalidate
1050  *
1051  * The UFSHCI and eMMC standards define a standard way to do this, but it
1052  * doesn't work on these SoCs; only this SCM call does.
1053  *
1054  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1055  * call doesn't specify which ICE instance the keyslot belongs to.
1056  *
1057  * Return: 0 on success; -errno on failure.
1058  */
1059 int qcom_scm_ice_invalidate_key(u32 index)
1060 {
1061 	struct qcom_scm_desc desc = {
1062 		.svc = QCOM_SCM_SVC_ES,
1063 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1064 		.arginfo = QCOM_SCM_ARGS(1),
1065 		.args[0] = index,
1066 		.owner = ARM_SMCCC_OWNER_SIP,
1067 	};
1068 
1069 	return qcom_scm_call(__scm->dev, &desc, NULL);
1070 }
1071 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1072 
1073 /**
1074  * qcom_scm_ice_set_key() - Set an inline encryption key
1075  * @index: the keyslot into which to set the key
1076  * @key: the key to program
1077  * @key_size: the size of the key in bytes
1078  * @cipher: the encryption algorithm the key is for
1079  * @data_unit_size: the encryption data unit size, i.e. the size of each
1080  *		    individual plaintext and ciphertext.  Given in 512-byte
1081  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1082  *
1083  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1084  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1085  *
1086  * The UFSHCI and eMMC standards define a standard way to do this, but it
1087  * doesn't work on these SoCs; only this SCM call does.
1088  *
1089  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1090  * call doesn't specify which ICE instance the keyslot belongs to.
1091  *
1092  * Return: 0 on success; -errno on failure.
1093  */
1094 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1095 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1096 {
1097 	struct qcom_scm_desc desc = {
1098 		.svc = QCOM_SCM_SVC_ES,
1099 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1100 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1101 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1102 					 QCOM_SCM_VAL),
1103 		.args[0] = index,
1104 		.args[2] = key_size,
1105 		.args[3] = cipher,
1106 		.args[4] = data_unit_size,
1107 		.owner = ARM_SMCCC_OWNER_SIP,
1108 	};
1109 	void *keybuf;
1110 	dma_addr_t key_phys;
1111 	int ret;
1112 
1113 	/*
1114 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1115 	 * physical address that's been properly flushed.  The sanctioned way to
1116 	 * do this is by using the DMA API.  But as is best practice for crypto
1117 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1118 	 * dma_map_single() not clearly correct, since the DMA API can use
1119 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1120 	 * keys is normally rare and thus not performance-critical.
1121 	 */
1122 
1123 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1124 				    GFP_KERNEL);
1125 	if (!keybuf)
1126 		return -ENOMEM;
1127 	memcpy(keybuf, key, key_size);
1128 	desc.args[1] = key_phys;
1129 
1130 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1131 
1132 	memzero_explicit(keybuf, key_size);
1133 
1134 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1138 
1139 /**
1140  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1141  *
1142  * Return true if HDCP is supported, false if not.
1143  */
1144 bool qcom_scm_hdcp_available(void)
1145 {
1146 	bool avail;
1147 	int ret = qcom_scm_clk_enable();
1148 
1149 	if (ret)
1150 		return ret;
1151 
1152 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1153 						QCOM_SCM_HDCP_INVOKE);
1154 
1155 	qcom_scm_clk_disable();
1156 
1157 	return avail;
1158 }
1159 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1160 
1161 /**
1162  * qcom_scm_hdcp_req() - Send HDCP request.
1163  * @req: HDCP request array
1164  * @req_cnt: HDCP request array count
1165  * @resp: response buffer passed to SCM
1166  *
1167  * Write HDCP register(s) through SCM.
1168  */
1169 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1170 {
1171 	int ret;
1172 	struct qcom_scm_desc desc = {
1173 		.svc = QCOM_SCM_SVC_HDCP,
1174 		.cmd = QCOM_SCM_HDCP_INVOKE,
1175 		.arginfo = QCOM_SCM_ARGS(10),
1176 		.args = {
1177 			req[0].addr,
1178 			req[0].val,
1179 			req[1].addr,
1180 			req[1].val,
1181 			req[2].addr,
1182 			req[2].val,
1183 			req[3].addr,
1184 			req[3].val,
1185 			req[4].addr,
1186 			req[4].val
1187 		},
1188 		.owner = ARM_SMCCC_OWNER_SIP,
1189 	};
1190 	struct qcom_scm_res res;
1191 
1192 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1193 		return -ERANGE;
1194 
1195 	ret = qcom_scm_clk_enable();
1196 	if (ret)
1197 		return ret;
1198 
1199 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1200 	*resp = res.result[0];
1201 
1202 	qcom_scm_clk_disable();
1203 
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1207 
1208 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1209 {
1210 	struct qcom_scm_desc desc = {
1211 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1212 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1213 		.arginfo = QCOM_SCM_ARGS(3),
1214 		.args[0] = sec_id,
1215 		.args[1] = ctx_num,
1216 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1217 		.owner = ARM_SMCCC_OWNER_SIP,
1218 	};
1219 
1220 	return qcom_scm_call(__scm->dev, &desc, NULL);
1221 }
1222 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1223 
1224 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1225 {
1226 	struct qcom_scm_desc desc = {
1227 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1228 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1229 		.arginfo = QCOM_SCM_ARGS(2),
1230 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1231 		.args[1] = en,
1232 		.owner = ARM_SMCCC_OWNER_SIP,
1233 	};
1234 
1235 
1236 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1237 }
1238 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1239 
1240 bool qcom_scm_lmh_dcvsh_available(void)
1241 {
1242 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1243 }
1244 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1245 
1246 int qcom_scm_lmh_profile_change(u32 profile_id)
1247 {
1248 	struct qcom_scm_desc desc = {
1249 		.svc = QCOM_SCM_SVC_LMH,
1250 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1251 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1252 		.args[0] = profile_id,
1253 		.owner = ARM_SMCCC_OWNER_SIP,
1254 	};
1255 
1256 	return qcom_scm_call(__scm->dev, &desc, NULL);
1257 }
1258 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1259 
1260 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1261 		       u64 limit_node, u32 node_id, u64 version)
1262 {
1263 	dma_addr_t payload_phys;
1264 	u32 *payload_buf;
1265 	int ret, payload_size = 5 * sizeof(u32);
1266 
1267 	struct qcom_scm_desc desc = {
1268 		.svc = QCOM_SCM_SVC_LMH,
1269 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1270 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1271 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1272 		.args[1] = payload_size,
1273 		.args[2] = limit_node,
1274 		.args[3] = node_id,
1275 		.args[4] = version,
1276 		.owner = ARM_SMCCC_OWNER_SIP,
1277 	};
1278 
1279 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1280 	if (!payload_buf)
1281 		return -ENOMEM;
1282 
1283 	payload_buf[0] = payload_fn;
1284 	payload_buf[1] = 0;
1285 	payload_buf[2] = payload_reg;
1286 	payload_buf[3] = 1;
1287 	payload_buf[4] = payload_val;
1288 
1289 	desc.args[0] = payload_phys;
1290 
1291 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1292 
1293 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1297 
1298 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1299 {
1300 	struct device_node *tcsr;
1301 	struct device_node *np = dev->of_node;
1302 	struct resource res;
1303 	u32 offset;
1304 	int ret;
1305 
1306 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1307 	if (!tcsr)
1308 		return 0;
1309 
1310 	ret = of_address_to_resource(tcsr, 0, &res);
1311 	of_node_put(tcsr);
1312 	if (ret)
1313 		return ret;
1314 
1315 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	*addr = res.start + offset;
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * qcom_scm_is_available() - Checks if SCM is available
1326  */
1327 bool qcom_scm_is_available(void)
1328 {
1329 	return !!__scm;
1330 }
1331 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1332 
1333 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1334 {
1335 	/* FW currently only supports a single wq_ctx (zero).
1336 	 * TODO: Update this logic to include dynamic allocation and lookup of
1337 	 * completion structs when FW supports more wq_ctx values.
1338 	 */
1339 	if (wq_ctx != 0) {
1340 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1341 		return -EINVAL;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1348 {
1349 	int ret;
1350 
1351 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1352 	if (ret)
1353 		return ret;
1354 
1355 	wait_for_completion(&__scm->waitq_comp);
1356 
1357 	return 0;
1358 }
1359 
1360 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1361 {
1362 	int ret;
1363 
1364 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1365 	if (ret)
1366 		return ret;
1367 
1368 	complete(&__scm->waitq_comp);
1369 
1370 	return 0;
1371 }
1372 
1373 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1374 {
1375 	int ret;
1376 	struct qcom_scm *scm = data;
1377 	u32 wq_ctx, flags, more_pending = 0;
1378 
1379 	do {
1380 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1381 		if (ret) {
1382 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1383 			goto out;
1384 		}
1385 
1386 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1387 		    flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1388 			dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1389 			goto out;
1390 		}
1391 
1392 		ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1393 		if (ret)
1394 			goto out;
1395 	} while (more_pending);
1396 
1397 out:
1398 	return IRQ_HANDLED;
1399 }
1400 
1401 static int qcom_scm_probe(struct platform_device *pdev)
1402 {
1403 	struct qcom_scm *scm;
1404 	int irq, ret;
1405 
1406 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1407 	if (!scm)
1408 		return -ENOMEM;
1409 
1410 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1411 	if (ret < 0)
1412 		return ret;
1413 
1414 	mutex_init(&scm->scm_bw_lock);
1415 
1416 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1417 	if (IS_ERR(scm->path))
1418 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1419 				     "failed to acquire interconnect path\n");
1420 
1421 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1422 	if (IS_ERR(scm->core_clk))
1423 		return PTR_ERR(scm->core_clk);
1424 
1425 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1426 	if (IS_ERR(scm->iface_clk))
1427 		return PTR_ERR(scm->iface_clk);
1428 
1429 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1430 	if (IS_ERR(scm->bus_clk))
1431 		return PTR_ERR(scm->bus_clk);
1432 
1433 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1434 	scm->reset.nr_resets = 1;
1435 	scm->reset.of_node = pdev->dev.of_node;
1436 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1437 	if (ret)
1438 		return ret;
1439 
1440 	/* vote for max clk rate for highest performance */
1441 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1442 	if (ret)
1443 		return ret;
1444 
1445 	__scm = scm;
1446 	__scm->dev = &pdev->dev;
1447 
1448 	init_completion(&__scm->waitq_comp);
1449 
1450 	irq = platform_get_irq_optional(pdev, 0);
1451 	if (irq < 0) {
1452 		if (irq != -ENXIO)
1453 			return irq;
1454 	} else {
1455 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1456 						IRQF_ONESHOT, "qcom-scm", __scm);
1457 		if (ret < 0)
1458 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1459 	}
1460 
1461 	__get_convention();
1462 
1463 	/*
1464 	 * If requested enable "download mode", from this point on warmboot
1465 	 * will cause the boot stages to enter download mode, unless
1466 	 * disabled below by a clean shutdown/reboot.
1467 	 */
1468 	if (download_mode)
1469 		qcom_scm_set_download_mode(true);
1470 
1471 	return 0;
1472 }
1473 
1474 static void qcom_scm_shutdown(struct platform_device *pdev)
1475 {
1476 	/* Clean shutdown, disable download mode to allow normal restart */
1477 	qcom_scm_set_download_mode(false);
1478 }
1479 
1480 static const struct of_device_id qcom_scm_dt_match[] = {
1481 	{ .compatible = "qcom,scm" },
1482 
1483 	/* Legacy entries kept for backwards compatibility */
1484 	{ .compatible = "qcom,scm-apq8064" },
1485 	{ .compatible = "qcom,scm-apq8084" },
1486 	{ .compatible = "qcom,scm-ipq4019" },
1487 	{ .compatible = "qcom,scm-msm8953" },
1488 	{ .compatible = "qcom,scm-msm8974" },
1489 	{ .compatible = "qcom,scm-msm8996" },
1490 	{}
1491 };
1492 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1493 
1494 static struct platform_driver qcom_scm_driver = {
1495 	.driver = {
1496 		.name	= "qcom_scm",
1497 		.of_match_table = qcom_scm_dt_match,
1498 		.suppress_bind_attrs = true,
1499 	},
1500 	.probe = qcom_scm_probe,
1501 	.shutdown = qcom_scm_shutdown,
1502 };
1503 
1504 static int __init qcom_scm_init(void)
1505 {
1506 	return platform_driver_register(&qcom_scm_driver);
1507 }
1508 subsys_initcall(qcom_scm_init);
1509 
1510 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1511 MODULE_LICENSE("GPL v2");
1512