1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved. 3 * Copyright (C) 2015 Linaro Ltd. 4 */ 5 #include <linux/platform_device.h> 6 #include <linux/init.h> 7 #include <linux/interrupt.h> 8 #include <linux/completion.h> 9 #include <linux/cpumask.h> 10 #include <linux/export.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interconnect.h> 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/firmware/qcom/qcom_scm.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/of_platform.h> 20 #include <linux/clk.h> 21 #include <linux/reset-controller.h> 22 #include <linux/arm-smccc.h> 23 24 #include "qcom_scm.h" 25 26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT); 27 module_param(download_mode, bool, 0); 28 29 struct qcom_scm { 30 struct device *dev; 31 struct clk *core_clk; 32 struct clk *iface_clk; 33 struct clk *bus_clk; 34 struct icc_path *path; 35 struct completion waitq_comp; 36 struct reset_controller_dev reset; 37 38 /* control access to the interconnect path */ 39 struct mutex scm_bw_lock; 40 int scm_vote_count; 41 42 u64 dload_mode_addr; 43 }; 44 45 struct qcom_scm_current_perm_info { 46 __le32 vmid; 47 __le32 perm; 48 __le64 ctx; 49 __le32 ctx_size; 50 __le32 unused; 51 }; 52 53 struct qcom_scm_mem_map_info { 54 __le64 mem_addr; 55 __le64 mem_size; 56 }; 57 58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */ 59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = { 60 0, BIT(0), BIT(3), BIT(5) 61 }; 62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = { 63 BIT(2), BIT(1), BIT(4), BIT(6) 64 }; 65 66 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE BIT(0) 67 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL BIT(1) 68 69 static const char * const qcom_scm_convention_names[] = { 70 [SMC_CONVENTION_UNKNOWN] = "unknown", 71 [SMC_CONVENTION_ARM_32] = "smc arm 32", 72 [SMC_CONVENTION_ARM_64] = "smc arm 64", 73 [SMC_CONVENTION_LEGACY] = "smc legacy", 74 }; 75 76 static struct qcom_scm *__scm; 77 78 static int qcom_scm_clk_enable(void) 79 { 80 int ret; 81 82 ret = clk_prepare_enable(__scm->core_clk); 83 if (ret) 84 goto bail; 85 86 ret = clk_prepare_enable(__scm->iface_clk); 87 if (ret) 88 goto disable_core; 89 90 ret = clk_prepare_enable(__scm->bus_clk); 91 if (ret) 92 goto disable_iface; 93 94 return 0; 95 96 disable_iface: 97 clk_disable_unprepare(__scm->iface_clk); 98 disable_core: 99 clk_disable_unprepare(__scm->core_clk); 100 bail: 101 return ret; 102 } 103 104 static void qcom_scm_clk_disable(void) 105 { 106 clk_disable_unprepare(__scm->core_clk); 107 clk_disable_unprepare(__scm->iface_clk); 108 clk_disable_unprepare(__scm->bus_clk); 109 } 110 111 static int qcom_scm_bw_enable(void) 112 { 113 int ret = 0; 114 115 if (!__scm->path) 116 return 0; 117 118 if (IS_ERR(__scm->path)) 119 return -EINVAL; 120 121 mutex_lock(&__scm->scm_bw_lock); 122 if (!__scm->scm_vote_count) { 123 ret = icc_set_bw(__scm->path, 0, UINT_MAX); 124 if (ret < 0) { 125 dev_err(__scm->dev, "failed to set bandwidth request\n"); 126 goto err_bw; 127 } 128 } 129 __scm->scm_vote_count++; 130 err_bw: 131 mutex_unlock(&__scm->scm_bw_lock); 132 133 return ret; 134 } 135 136 static void qcom_scm_bw_disable(void) 137 { 138 if (IS_ERR_OR_NULL(__scm->path)) 139 return; 140 141 mutex_lock(&__scm->scm_bw_lock); 142 if (__scm->scm_vote_count-- == 1) 143 icc_set_bw(__scm->path, 0, 0); 144 mutex_unlock(&__scm->scm_bw_lock); 145 } 146 147 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN; 148 static DEFINE_SPINLOCK(scm_query_lock); 149 150 static enum qcom_scm_convention __get_convention(void) 151 { 152 unsigned long flags; 153 struct qcom_scm_desc desc = { 154 .svc = QCOM_SCM_SVC_INFO, 155 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, 156 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO, 157 QCOM_SCM_INFO_IS_CALL_AVAIL) | 158 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT), 159 .arginfo = QCOM_SCM_ARGS(1), 160 .owner = ARM_SMCCC_OWNER_SIP, 161 }; 162 struct qcom_scm_res res; 163 enum qcom_scm_convention probed_convention; 164 int ret; 165 bool forced = false; 166 167 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN)) 168 return qcom_scm_convention; 169 170 /* 171 * Device isn't required as there is only one argument - no device 172 * needed to dma_map_single to secure world 173 */ 174 probed_convention = SMC_CONVENTION_ARM_64; 175 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); 176 if (!ret && res.result[0] == 1) 177 goto found; 178 179 /* 180 * Some SC7180 firmwares didn't implement the 181 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64 182 * calling conventions on these firmwares. Luckily we don't make any 183 * early calls into the firmware on these SoCs so the device pointer 184 * will be valid here to check if the compatible matches. 185 */ 186 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) { 187 forced = true; 188 goto found; 189 } 190 191 probed_convention = SMC_CONVENTION_ARM_32; 192 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); 193 if (!ret && res.result[0] == 1) 194 goto found; 195 196 probed_convention = SMC_CONVENTION_LEGACY; 197 found: 198 spin_lock_irqsave(&scm_query_lock, flags); 199 if (probed_convention != qcom_scm_convention) { 200 qcom_scm_convention = probed_convention; 201 pr_info("qcom_scm: convention: %s%s\n", 202 qcom_scm_convention_names[qcom_scm_convention], 203 forced ? " (forced)" : ""); 204 } 205 spin_unlock_irqrestore(&scm_query_lock, flags); 206 207 return qcom_scm_convention; 208 } 209 210 /** 211 * qcom_scm_call() - Invoke a syscall in the secure world 212 * @dev: device 213 * @desc: Descriptor structure containing arguments and return values 214 * @res: Structure containing results from SMC/HVC call 215 * 216 * Sends a command to the SCM and waits for the command to finish processing. 217 * This should *only* be called in pre-emptible context. 218 */ 219 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc, 220 struct qcom_scm_res *res) 221 { 222 might_sleep(); 223 switch (__get_convention()) { 224 case SMC_CONVENTION_ARM_32: 225 case SMC_CONVENTION_ARM_64: 226 return scm_smc_call(dev, desc, res, false); 227 case SMC_CONVENTION_LEGACY: 228 return scm_legacy_call(dev, desc, res); 229 default: 230 pr_err("Unknown current SCM calling convention.\n"); 231 return -EINVAL; 232 } 233 } 234 235 /** 236 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call() 237 * @dev: device 238 * @desc: Descriptor structure containing arguments and return values 239 * @res: Structure containing results from SMC/HVC call 240 * 241 * Sends a command to the SCM and waits for the command to finish processing. 242 * This can be called in atomic context. 243 */ 244 static int qcom_scm_call_atomic(struct device *dev, 245 const struct qcom_scm_desc *desc, 246 struct qcom_scm_res *res) 247 { 248 switch (__get_convention()) { 249 case SMC_CONVENTION_ARM_32: 250 case SMC_CONVENTION_ARM_64: 251 return scm_smc_call(dev, desc, res, true); 252 case SMC_CONVENTION_LEGACY: 253 return scm_legacy_call_atomic(dev, desc, res); 254 default: 255 pr_err("Unknown current SCM calling convention.\n"); 256 return -EINVAL; 257 } 258 } 259 260 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id, 261 u32 cmd_id) 262 { 263 int ret; 264 struct qcom_scm_desc desc = { 265 .svc = QCOM_SCM_SVC_INFO, 266 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, 267 .owner = ARM_SMCCC_OWNER_SIP, 268 }; 269 struct qcom_scm_res res; 270 271 desc.arginfo = QCOM_SCM_ARGS(1); 272 switch (__get_convention()) { 273 case SMC_CONVENTION_ARM_32: 274 case SMC_CONVENTION_ARM_64: 275 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) | 276 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); 277 break; 278 case SMC_CONVENTION_LEGACY: 279 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id); 280 break; 281 default: 282 pr_err("Unknown SMC convention being used\n"); 283 return false; 284 } 285 286 ret = qcom_scm_call(dev, &desc, &res); 287 288 return ret ? false : !!res.result[0]; 289 } 290 291 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits) 292 { 293 int cpu; 294 unsigned int flags = 0; 295 struct qcom_scm_desc desc = { 296 .svc = QCOM_SCM_SVC_BOOT, 297 .cmd = QCOM_SCM_BOOT_SET_ADDR, 298 .arginfo = QCOM_SCM_ARGS(2), 299 .owner = ARM_SMCCC_OWNER_SIP, 300 }; 301 302 for_each_present_cpu(cpu) { 303 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS) 304 return -EINVAL; 305 flags |= cpu_bits[cpu]; 306 } 307 308 desc.args[0] = flags; 309 desc.args[1] = virt_to_phys(entry); 310 311 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); 312 } 313 314 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags) 315 { 316 struct qcom_scm_desc desc = { 317 .svc = QCOM_SCM_SVC_BOOT, 318 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC, 319 .owner = ARM_SMCCC_OWNER_SIP, 320 .arginfo = QCOM_SCM_ARGS(6), 321 .args = { 322 virt_to_phys(entry), 323 /* Apply to all CPUs in all affinity levels */ 324 ~0ULL, ~0ULL, ~0ULL, ~0ULL, 325 flags, 326 }, 327 }; 328 329 /* Need a device for DMA of the additional arguments */ 330 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY) 331 return -EOPNOTSUPP; 332 333 return qcom_scm_call(__scm->dev, &desc, NULL); 334 } 335 336 /** 337 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus 338 * @entry: Entry point function for the cpus 339 * 340 * Set the Linux entry point for the SCM to transfer control to when coming 341 * out of a power down. CPU power down may be executed on cpuidle or hotplug. 342 */ 343 int qcom_scm_set_warm_boot_addr(void *entry) 344 { 345 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT)) 346 /* Fallback to old SCM call */ 347 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits); 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr); 351 352 /** 353 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus 354 * @entry: Entry point function for the cpus 355 */ 356 int qcom_scm_set_cold_boot_addr(void *entry) 357 { 358 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT)) 359 /* Fallback to old SCM call */ 360 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits); 361 return 0; 362 } 363 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr); 364 365 /** 366 * qcom_scm_cpu_power_down() - Power down the cpu 367 * @flags: Flags to flush cache 368 * 369 * This is an end point to power down cpu. If there was a pending interrupt, 370 * the control would return from this function, otherwise, the cpu jumps to the 371 * warm boot entry point set for this cpu upon reset. 372 */ 373 void qcom_scm_cpu_power_down(u32 flags) 374 { 375 struct qcom_scm_desc desc = { 376 .svc = QCOM_SCM_SVC_BOOT, 377 .cmd = QCOM_SCM_BOOT_TERMINATE_PC, 378 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK, 379 .arginfo = QCOM_SCM_ARGS(1), 380 .owner = ARM_SMCCC_OWNER_SIP, 381 }; 382 383 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); 384 } 385 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down); 386 387 int qcom_scm_set_remote_state(u32 state, u32 id) 388 { 389 struct qcom_scm_desc desc = { 390 .svc = QCOM_SCM_SVC_BOOT, 391 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE, 392 .arginfo = QCOM_SCM_ARGS(2), 393 .args[0] = state, 394 .args[1] = id, 395 .owner = ARM_SMCCC_OWNER_SIP, 396 }; 397 struct qcom_scm_res res; 398 int ret; 399 400 ret = qcom_scm_call(__scm->dev, &desc, &res); 401 402 return ret ? : res.result[0]; 403 } 404 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state); 405 406 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable) 407 { 408 struct qcom_scm_desc desc = { 409 .svc = QCOM_SCM_SVC_BOOT, 410 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE, 411 .arginfo = QCOM_SCM_ARGS(2), 412 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE, 413 .owner = ARM_SMCCC_OWNER_SIP, 414 }; 415 416 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0; 417 418 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 419 } 420 421 static void qcom_scm_set_download_mode(bool enable) 422 { 423 bool avail; 424 int ret = 0; 425 426 avail = __qcom_scm_is_call_available(__scm->dev, 427 QCOM_SCM_SVC_BOOT, 428 QCOM_SCM_BOOT_SET_DLOAD_MODE); 429 if (avail) { 430 ret = __qcom_scm_set_dload_mode(__scm->dev, enable); 431 } else if (__scm->dload_mode_addr) { 432 ret = qcom_scm_io_writel(__scm->dload_mode_addr, 433 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0); 434 } else { 435 dev_err(__scm->dev, 436 "No available mechanism for setting download mode\n"); 437 } 438 439 if (ret) 440 dev_err(__scm->dev, "failed to set download mode: %d\n", ret); 441 } 442 443 /** 444 * qcom_scm_pas_init_image() - Initialize peripheral authentication service 445 * state machine for a given peripheral, using the 446 * metadata 447 * @peripheral: peripheral id 448 * @metadata: pointer to memory containing ELF header, program header table 449 * and optional blob of data used for authenticating the metadata 450 * and the rest of the firmware 451 * @size: size of the metadata 452 * @ctx: optional metadata context 453 * 454 * Return: 0 on success. 455 * 456 * Upon successful return, the PAS metadata context (@ctx) will be used to 457 * track the metadata allocation, this needs to be released by invoking 458 * qcom_scm_pas_metadata_release() by the caller. 459 */ 460 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size, 461 struct qcom_scm_pas_metadata *ctx) 462 { 463 dma_addr_t mdata_phys; 464 void *mdata_buf; 465 int ret; 466 struct qcom_scm_desc desc = { 467 .svc = QCOM_SCM_SVC_PIL, 468 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE, 469 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW), 470 .args[0] = peripheral, 471 .owner = ARM_SMCCC_OWNER_SIP, 472 }; 473 struct qcom_scm_res res; 474 475 /* 476 * During the scm call memory protection will be enabled for the meta 477 * data blob, so make sure it's physically contiguous, 4K aligned and 478 * non-cachable to avoid XPU violations. 479 */ 480 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys, 481 GFP_KERNEL); 482 if (!mdata_buf) { 483 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n"); 484 return -ENOMEM; 485 } 486 memcpy(mdata_buf, metadata, size); 487 488 ret = qcom_scm_clk_enable(); 489 if (ret) 490 goto out; 491 492 ret = qcom_scm_bw_enable(); 493 if (ret) 494 return ret; 495 496 desc.args[1] = mdata_phys; 497 498 ret = qcom_scm_call(__scm->dev, &desc, &res); 499 500 qcom_scm_bw_disable(); 501 qcom_scm_clk_disable(); 502 503 out: 504 if (ret < 0 || !ctx) { 505 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys); 506 } else if (ctx) { 507 ctx->ptr = mdata_buf; 508 ctx->phys = mdata_phys; 509 ctx->size = size; 510 } 511 512 return ret ? : res.result[0]; 513 } 514 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image); 515 516 /** 517 * qcom_scm_pas_metadata_release() - release metadata context 518 * @ctx: metadata context 519 */ 520 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx) 521 { 522 if (!ctx->ptr) 523 return; 524 525 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys); 526 527 ctx->ptr = NULL; 528 ctx->phys = 0; 529 ctx->size = 0; 530 } 531 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release); 532 533 /** 534 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral 535 * for firmware loading 536 * @peripheral: peripheral id 537 * @addr: start address of memory area to prepare 538 * @size: size of the memory area to prepare 539 * 540 * Returns 0 on success. 541 */ 542 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) 543 { 544 int ret; 545 struct qcom_scm_desc desc = { 546 .svc = QCOM_SCM_SVC_PIL, 547 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP, 548 .arginfo = QCOM_SCM_ARGS(3), 549 .args[0] = peripheral, 550 .args[1] = addr, 551 .args[2] = size, 552 .owner = ARM_SMCCC_OWNER_SIP, 553 }; 554 struct qcom_scm_res res; 555 556 ret = qcom_scm_clk_enable(); 557 if (ret) 558 return ret; 559 560 ret = qcom_scm_bw_enable(); 561 if (ret) 562 return ret; 563 564 ret = qcom_scm_call(__scm->dev, &desc, &res); 565 qcom_scm_bw_disable(); 566 qcom_scm_clk_disable(); 567 568 return ret ? : res.result[0]; 569 } 570 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup); 571 572 /** 573 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware 574 * and reset the remote processor 575 * @peripheral: peripheral id 576 * 577 * Return 0 on success. 578 */ 579 int qcom_scm_pas_auth_and_reset(u32 peripheral) 580 { 581 int ret; 582 struct qcom_scm_desc desc = { 583 .svc = QCOM_SCM_SVC_PIL, 584 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET, 585 .arginfo = QCOM_SCM_ARGS(1), 586 .args[0] = peripheral, 587 .owner = ARM_SMCCC_OWNER_SIP, 588 }; 589 struct qcom_scm_res res; 590 591 ret = qcom_scm_clk_enable(); 592 if (ret) 593 return ret; 594 595 ret = qcom_scm_bw_enable(); 596 if (ret) 597 return ret; 598 599 ret = qcom_scm_call(__scm->dev, &desc, &res); 600 qcom_scm_bw_disable(); 601 qcom_scm_clk_disable(); 602 603 return ret ? : res.result[0]; 604 } 605 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset); 606 607 /** 608 * qcom_scm_pas_shutdown() - Shut down the remote processor 609 * @peripheral: peripheral id 610 * 611 * Returns 0 on success. 612 */ 613 int qcom_scm_pas_shutdown(u32 peripheral) 614 { 615 int ret; 616 struct qcom_scm_desc desc = { 617 .svc = QCOM_SCM_SVC_PIL, 618 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN, 619 .arginfo = QCOM_SCM_ARGS(1), 620 .args[0] = peripheral, 621 .owner = ARM_SMCCC_OWNER_SIP, 622 }; 623 struct qcom_scm_res res; 624 625 ret = qcom_scm_clk_enable(); 626 if (ret) 627 return ret; 628 629 ret = qcom_scm_bw_enable(); 630 if (ret) 631 return ret; 632 633 ret = qcom_scm_call(__scm->dev, &desc, &res); 634 635 qcom_scm_bw_disable(); 636 qcom_scm_clk_disable(); 637 638 return ret ? : res.result[0]; 639 } 640 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown); 641 642 /** 643 * qcom_scm_pas_supported() - Check if the peripheral authentication service is 644 * available for the given peripherial 645 * @peripheral: peripheral id 646 * 647 * Returns true if PAS is supported for this peripheral, otherwise false. 648 */ 649 bool qcom_scm_pas_supported(u32 peripheral) 650 { 651 int ret; 652 struct qcom_scm_desc desc = { 653 .svc = QCOM_SCM_SVC_PIL, 654 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED, 655 .arginfo = QCOM_SCM_ARGS(1), 656 .args[0] = peripheral, 657 .owner = ARM_SMCCC_OWNER_SIP, 658 }; 659 struct qcom_scm_res res; 660 661 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, 662 QCOM_SCM_PIL_PAS_IS_SUPPORTED)) 663 return false; 664 665 ret = qcom_scm_call(__scm->dev, &desc, &res); 666 667 return ret ? false : !!res.result[0]; 668 } 669 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported); 670 671 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) 672 { 673 struct qcom_scm_desc desc = { 674 .svc = QCOM_SCM_SVC_PIL, 675 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET, 676 .arginfo = QCOM_SCM_ARGS(2), 677 .args[0] = reset, 678 .args[1] = 0, 679 .owner = ARM_SMCCC_OWNER_SIP, 680 }; 681 struct qcom_scm_res res; 682 int ret; 683 684 ret = qcom_scm_call(__scm->dev, &desc, &res); 685 686 return ret ? : res.result[0]; 687 } 688 689 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, 690 unsigned long idx) 691 { 692 if (idx != 0) 693 return -EINVAL; 694 695 return __qcom_scm_pas_mss_reset(__scm->dev, 1); 696 } 697 698 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, 699 unsigned long idx) 700 { 701 if (idx != 0) 702 return -EINVAL; 703 704 return __qcom_scm_pas_mss_reset(__scm->dev, 0); 705 } 706 707 static const struct reset_control_ops qcom_scm_pas_reset_ops = { 708 .assert = qcom_scm_pas_reset_assert, 709 .deassert = qcom_scm_pas_reset_deassert, 710 }; 711 712 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) 713 { 714 struct qcom_scm_desc desc = { 715 .svc = QCOM_SCM_SVC_IO, 716 .cmd = QCOM_SCM_IO_READ, 717 .arginfo = QCOM_SCM_ARGS(1), 718 .args[0] = addr, 719 .owner = ARM_SMCCC_OWNER_SIP, 720 }; 721 struct qcom_scm_res res; 722 int ret; 723 724 725 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res); 726 if (ret >= 0) 727 *val = res.result[0]; 728 729 return ret < 0 ? ret : 0; 730 } 731 EXPORT_SYMBOL_GPL(qcom_scm_io_readl); 732 733 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) 734 { 735 struct qcom_scm_desc desc = { 736 .svc = QCOM_SCM_SVC_IO, 737 .cmd = QCOM_SCM_IO_WRITE, 738 .arginfo = QCOM_SCM_ARGS(2), 739 .args[0] = addr, 740 .args[1] = val, 741 .owner = ARM_SMCCC_OWNER_SIP, 742 }; 743 744 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 745 } 746 EXPORT_SYMBOL_GPL(qcom_scm_io_writel); 747 748 /** 749 * qcom_scm_restore_sec_cfg_available() - Check if secure environment 750 * supports restore security config interface. 751 * 752 * Return true if restore-cfg interface is supported, false if not. 753 */ 754 bool qcom_scm_restore_sec_cfg_available(void) 755 { 756 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP, 757 QCOM_SCM_MP_RESTORE_SEC_CFG); 758 } 759 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available); 760 761 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) 762 { 763 struct qcom_scm_desc desc = { 764 .svc = QCOM_SCM_SVC_MP, 765 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG, 766 .arginfo = QCOM_SCM_ARGS(2), 767 .args[0] = device_id, 768 .args[1] = spare, 769 .owner = ARM_SMCCC_OWNER_SIP, 770 }; 771 struct qcom_scm_res res; 772 int ret; 773 774 ret = qcom_scm_call(__scm->dev, &desc, &res); 775 776 return ret ? : res.result[0]; 777 } 778 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg); 779 780 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) 781 { 782 struct qcom_scm_desc desc = { 783 .svc = QCOM_SCM_SVC_MP, 784 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE, 785 .arginfo = QCOM_SCM_ARGS(1), 786 .args[0] = spare, 787 .owner = ARM_SMCCC_OWNER_SIP, 788 }; 789 struct qcom_scm_res res; 790 int ret; 791 792 ret = qcom_scm_call(__scm->dev, &desc, &res); 793 794 if (size) 795 *size = res.result[0]; 796 797 return ret ? : res.result[1]; 798 } 799 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size); 800 801 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) 802 { 803 struct qcom_scm_desc desc = { 804 .svc = QCOM_SCM_SVC_MP, 805 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT, 806 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, 807 QCOM_SCM_VAL), 808 .args[0] = addr, 809 .args[1] = size, 810 .args[2] = spare, 811 .owner = ARM_SMCCC_OWNER_SIP, 812 }; 813 int ret; 814 815 ret = qcom_scm_call(__scm->dev, &desc, NULL); 816 817 /* the pg table has been initialized already, ignore the error */ 818 if (ret == -EPERM) 819 ret = 0; 820 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init); 824 825 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size) 826 { 827 struct qcom_scm_desc desc = { 828 .svc = QCOM_SCM_SVC_MP, 829 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE, 830 .arginfo = QCOM_SCM_ARGS(2), 831 .args[0] = size, 832 .args[1] = spare, 833 .owner = ARM_SMCCC_OWNER_SIP, 834 }; 835 836 return qcom_scm_call(__scm->dev, &desc, NULL); 837 } 838 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size); 839 840 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size, 841 u32 cp_nonpixel_start, 842 u32 cp_nonpixel_size) 843 { 844 int ret; 845 struct qcom_scm_desc desc = { 846 .svc = QCOM_SCM_SVC_MP, 847 .cmd = QCOM_SCM_MP_VIDEO_VAR, 848 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, 849 QCOM_SCM_VAL, QCOM_SCM_VAL), 850 .args[0] = cp_start, 851 .args[1] = cp_size, 852 .args[2] = cp_nonpixel_start, 853 .args[3] = cp_nonpixel_size, 854 .owner = ARM_SMCCC_OWNER_SIP, 855 }; 856 struct qcom_scm_res res; 857 858 ret = qcom_scm_call(__scm->dev, &desc, &res); 859 860 return ret ? : res.result[0]; 861 } 862 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var); 863 864 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, 865 size_t mem_sz, phys_addr_t src, size_t src_sz, 866 phys_addr_t dest, size_t dest_sz) 867 { 868 int ret; 869 struct qcom_scm_desc desc = { 870 .svc = QCOM_SCM_SVC_MP, 871 .cmd = QCOM_SCM_MP_ASSIGN, 872 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, 873 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, 874 QCOM_SCM_VAL, QCOM_SCM_VAL), 875 .args[0] = mem_region, 876 .args[1] = mem_sz, 877 .args[2] = src, 878 .args[3] = src_sz, 879 .args[4] = dest, 880 .args[5] = dest_sz, 881 .args[6] = 0, 882 .owner = ARM_SMCCC_OWNER_SIP, 883 }; 884 struct qcom_scm_res res; 885 886 ret = qcom_scm_call(dev, &desc, &res); 887 888 return ret ? : res.result[0]; 889 } 890 891 /** 892 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership 893 * @mem_addr: mem region whose ownership need to be reassigned 894 * @mem_sz: size of the region. 895 * @srcvm: vmid for current set of owners, each set bit in 896 * flag indicate a unique owner 897 * @newvm: array having new owners and corresponding permission 898 * flags 899 * @dest_cnt: number of owners in next set. 900 * 901 * Return negative errno on failure or 0 on success with @srcvm updated. 902 */ 903 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, 904 u64 *srcvm, 905 const struct qcom_scm_vmperm *newvm, 906 unsigned int dest_cnt) 907 { 908 struct qcom_scm_current_perm_info *destvm; 909 struct qcom_scm_mem_map_info *mem_to_map; 910 phys_addr_t mem_to_map_phys; 911 phys_addr_t dest_phys; 912 dma_addr_t ptr_phys; 913 size_t mem_to_map_sz; 914 size_t dest_sz; 915 size_t src_sz; 916 size_t ptr_sz; 917 int next_vm; 918 __le32 *src; 919 void *ptr; 920 int ret, i, b; 921 u64 srcvm_bits = *srcvm; 922 923 src_sz = hweight64(srcvm_bits) * sizeof(*src); 924 mem_to_map_sz = sizeof(*mem_to_map); 925 dest_sz = dest_cnt * sizeof(*destvm); 926 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + 927 ALIGN(dest_sz, SZ_64); 928 929 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL); 930 if (!ptr) 931 return -ENOMEM; 932 933 /* Fill source vmid detail */ 934 src = ptr; 935 i = 0; 936 for (b = 0; b < BITS_PER_TYPE(u64); b++) { 937 if (srcvm_bits & BIT(b)) 938 src[i++] = cpu_to_le32(b); 939 } 940 941 /* Fill details of mem buff to map */ 942 mem_to_map = ptr + ALIGN(src_sz, SZ_64); 943 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); 944 mem_to_map->mem_addr = cpu_to_le64(mem_addr); 945 mem_to_map->mem_size = cpu_to_le64(mem_sz); 946 947 next_vm = 0; 948 /* Fill details of next vmid detail */ 949 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); 950 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); 951 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { 952 destvm->vmid = cpu_to_le32(newvm->vmid); 953 destvm->perm = cpu_to_le32(newvm->perm); 954 destvm->ctx = 0; 955 destvm->ctx_size = 0; 956 next_vm |= BIT(newvm->vmid); 957 } 958 959 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz, 960 ptr_phys, src_sz, dest_phys, dest_sz); 961 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys); 962 if (ret) { 963 dev_err(__scm->dev, 964 "Assign memory protection call failed %d\n", ret); 965 return -EINVAL; 966 } 967 968 *srcvm = next_vm; 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem); 972 973 /** 974 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available 975 */ 976 bool qcom_scm_ocmem_lock_available(void) 977 { 978 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM, 979 QCOM_SCM_OCMEM_LOCK_CMD); 980 } 981 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available); 982 983 /** 984 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM 985 * region to the specified initiator 986 * 987 * @id: tz initiator id 988 * @offset: OCMEM offset 989 * @size: OCMEM size 990 * @mode: access mode (WIDE/NARROW) 991 */ 992 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size, 993 u32 mode) 994 { 995 struct qcom_scm_desc desc = { 996 .svc = QCOM_SCM_SVC_OCMEM, 997 .cmd = QCOM_SCM_OCMEM_LOCK_CMD, 998 .args[0] = id, 999 .args[1] = offset, 1000 .args[2] = size, 1001 .args[3] = mode, 1002 .arginfo = QCOM_SCM_ARGS(4), 1003 }; 1004 1005 return qcom_scm_call(__scm->dev, &desc, NULL); 1006 } 1007 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock); 1008 1009 /** 1010 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM 1011 * region from the specified initiator 1012 * 1013 * @id: tz initiator id 1014 * @offset: OCMEM offset 1015 * @size: OCMEM size 1016 */ 1017 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) 1018 { 1019 struct qcom_scm_desc desc = { 1020 .svc = QCOM_SCM_SVC_OCMEM, 1021 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD, 1022 .args[0] = id, 1023 .args[1] = offset, 1024 .args[2] = size, 1025 .arginfo = QCOM_SCM_ARGS(3), 1026 }; 1027 1028 return qcom_scm_call(__scm->dev, &desc, NULL); 1029 } 1030 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock); 1031 1032 /** 1033 * qcom_scm_ice_available() - Is the ICE key programming interface available? 1034 * 1035 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and 1036 * qcom_scm_ice_set_key() are available. 1037 */ 1038 bool qcom_scm_ice_available(void) 1039 { 1040 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, 1041 QCOM_SCM_ES_INVALIDATE_ICE_KEY) && 1042 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, 1043 QCOM_SCM_ES_CONFIG_SET_ICE_KEY); 1044 } 1045 EXPORT_SYMBOL_GPL(qcom_scm_ice_available); 1046 1047 /** 1048 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key 1049 * @index: the keyslot to invalidate 1050 * 1051 * The UFSHCI and eMMC standards define a standard way to do this, but it 1052 * doesn't work on these SoCs; only this SCM call does. 1053 * 1054 * It is assumed that the SoC has only one ICE instance being used, as this SCM 1055 * call doesn't specify which ICE instance the keyslot belongs to. 1056 * 1057 * Return: 0 on success; -errno on failure. 1058 */ 1059 int qcom_scm_ice_invalidate_key(u32 index) 1060 { 1061 struct qcom_scm_desc desc = { 1062 .svc = QCOM_SCM_SVC_ES, 1063 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY, 1064 .arginfo = QCOM_SCM_ARGS(1), 1065 .args[0] = index, 1066 .owner = ARM_SMCCC_OWNER_SIP, 1067 }; 1068 1069 return qcom_scm_call(__scm->dev, &desc, NULL); 1070 } 1071 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key); 1072 1073 /** 1074 * qcom_scm_ice_set_key() - Set an inline encryption key 1075 * @index: the keyslot into which to set the key 1076 * @key: the key to program 1077 * @key_size: the size of the key in bytes 1078 * @cipher: the encryption algorithm the key is for 1079 * @data_unit_size: the encryption data unit size, i.e. the size of each 1080 * individual plaintext and ciphertext. Given in 512-byte 1081 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc. 1082 * 1083 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it 1084 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline. 1085 * 1086 * The UFSHCI and eMMC standards define a standard way to do this, but it 1087 * doesn't work on these SoCs; only this SCM call does. 1088 * 1089 * It is assumed that the SoC has only one ICE instance being used, as this SCM 1090 * call doesn't specify which ICE instance the keyslot belongs to. 1091 * 1092 * Return: 0 on success; -errno on failure. 1093 */ 1094 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, 1095 enum qcom_scm_ice_cipher cipher, u32 data_unit_size) 1096 { 1097 struct qcom_scm_desc desc = { 1098 .svc = QCOM_SCM_SVC_ES, 1099 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY, 1100 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, 1101 QCOM_SCM_VAL, QCOM_SCM_VAL, 1102 QCOM_SCM_VAL), 1103 .args[0] = index, 1104 .args[2] = key_size, 1105 .args[3] = cipher, 1106 .args[4] = data_unit_size, 1107 .owner = ARM_SMCCC_OWNER_SIP, 1108 }; 1109 void *keybuf; 1110 dma_addr_t key_phys; 1111 int ret; 1112 1113 /* 1114 * 'key' may point to vmalloc()'ed memory, but we need to pass a 1115 * physical address that's been properly flushed. The sanctioned way to 1116 * do this is by using the DMA API. But as is best practice for crypto 1117 * keys, we also must wipe the key after use. This makes kmemdup() + 1118 * dma_map_single() not clearly correct, since the DMA API can use 1119 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming 1120 * keys is normally rare and thus not performance-critical. 1121 */ 1122 1123 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys, 1124 GFP_KERNEL); 1125 if (!keybuf) 1126 return -ENOMEM; 1127 memcpy(keybuf, key, key_size); 1128 desc.args[1] = key_phys; 1129 1130 ret = qcom_scm_call(__scm->dev, &desc, NULL); 1131 1132 memzero_explicit(keybuf, key_size); 1133 1134 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key); 1138 1139 /** 1140 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. 1141 * 1142 * Return true if HDCP is supported, false if not. 1143 */ 1144 bool qcom_scm_hdcp_available(void) 1145 { 1146 bool avail; 1147 int ret = qcom_scm_clk_enable(); 1148 1149 if (ret) 1150 return ret; 1151 1152 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP, 1153 QCOM_SCM_HDCP_INVOKE); 1154 1155 qcom_scm_clk_disable(); 1156 1157 return avail; 1158 } 1159 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available); 1160 1161 /** 1162 * qcom_scm_hdcp_req() - Send HDCP request. 1163 * @req: HDCP request array 1164 * @req_cnt: HDCP request array count 1165 * @resp: response buffer passed to SCM 1166 * 1167 * Write HDCP register(s) through SCM. 1168 */ 1169 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) 1170 { 1171 int ret; 1172 struct qcom_scm_desc desc = { 1173 .svc = QCOM_SCM_SVC_HDCP, 1174 .cmd = QCOM_SCM_HDCP_INVOKE, 1175 .arginfo = QCOM_SCM_ARGS(10), 1176 .args = { 1177 req[0].addr, 1178 req[0].val, 1179 req[1].addr, 1180 req[1].val, 1181 req[2].addr, 1182 req[2].val, 1183 req[3].addr, 1184 req[3].val, 1185 req[4].addr, 1186 req[4].val 1187 }, 1188 .owner = ARM_SMCCC_OWNER_SIP, 1189 }; 1190 struct qcom_scm_res res; 1191 1192 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) 1193 return -ERANGE; 1194 1195 ret = qcom_scm_clk_enable(); 1196 if (ret) 1197 return ret; 1198 1199 ret = qcom_scm_call(__scm->dev, &desc, &res); 1200 *resp = res.result[0]; 1201 1202 qcom_scm_clk_disable(); 1203 1204 return ret; 1205 } 1206 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req); 1207 1208 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt) 1209 { 1210 struct qcom_scm_desc desc = { 1211 .svc = QCOM_SCM_SVC_SMMU_PROGRAM, 1212 .cmd = QCOM_SCM_SMMU_PT_FORMAT, 1213 .arginfo = QCOM_SCM_ARGS(3), 1214 .args[0] = sec_id, 1215 .args[1] = ctx_num, 1216 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */ 1217 .owner = ARM_SMCCC_OWNER_SIP, 1218 }; 1219 1220 return qcom_scm_call(__scm->dev, &desc, NULL); 1221 } 1222 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format); 1223 1224 int qcom_scm_qsmmu500_wait_safe_toggle(bool en) 1225 { 1226 struct qcom_scm_desc desc = { 1227 .svc = QCOM_SCM_SVC_SMMU_PROGRAM, 1228 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1, 1229 .arginfo = QCOM_SCM_ARGS(2), 1230 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL, 1231 .args[1] = en, 1232 .owner = ARM_SMCCC_OWNER_SIP, 1233 }; 1234 1235 1236 return qcom_scm_call_atomic(__scm->dev, &desc, NULL); 1237 } 1238 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle); 1239 1240 bool qcom_scm_lmh_dcvsh_available(void) 1241 { 1242 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH); 1243 } 1244 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available); 1245 1246 int qcom_scm_lmh_profile_change(u32 profile_id) 1247 { 1248 struct qcom_scm_desc desc = { 1249 .svc = QCOM_SCM_SVC_LMH, 1250 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE, 1251 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), 1252 .args[0] = profile_id, 1253 .owner = ARM_SMCCC_OWNER_SIP, 1254 }; 1255 1256 return qcom_scm_call(__scm->dev, &desc, NULL); 1257 } 1258 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change); 1259 1260 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val, 1261 u64 limit_node, u32 node_id, u64 version) 1262 { 1263 dma_addr_t payload_phys; 1264 u32 *payload_buf; 1265 int ret, payload_size = 5 * sizeof(u32); 1266 1267 struct qcom_scm_desc desc = { 1268 .svc = QCOM_SCM_SVC_LMH, 1269 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH, 1270 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL, 1271 QCOM_SCM_VAL, QCOM_SCM_VAL), 1272 .args[1] = payload_size, 1273 .args[2] = limit_node, 1274 .args[3] = node_id, 1275 .args[4] = version, 1276 .owner = ARM_SMCCC_OWNER_SIP, 1277 }; 1278 1279 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL); 1280 if (!payload_buf) 1281 return -ENOMEM; 1282 1283 payload_buf[0] = payload_fn; 1284 payload_buf[1] = 0; 1285 payload_buf[2] = payload_reg; 1286 payload_buf[3] = 1; 1287 payload_buf[4] = payload_val; 1288 1289 desc.args[0] = payload_phys; 1290 1291 ret = qcom_scm_call(__scm->dev, &desc, NULL); 1292 1293 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys); 1294 return ret; 1295 } 1296 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh); 1297 1298 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr) 1299 { 1300 struct device_node *tcsr; 1301 struct device_node *np = dev->of_node; 1302 struct resource res; 1303 u32 offset; 1304 int ret; 1305 1306 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0); 1307 if (!tcsr) 1308 return 0; 1309 1310 ret = of_address_to_resource(tcsr, 0, &res); 1311 of_node_put(tcsr); 1312 if (ret) 1313 return ret; 1314 1315 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset); 1316 if (ret < 0) 1317 return ret; 1318 1319 *addr = res.start + offset; 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * qcom_scm_is_available() - Checks if SCM is available 1326 */ 1327 bool qcom_scm_is_available(void) 1328 { 1329 return !!__scm; 1330 } 1331 EXPORT_SYMBOL_GPL(qcom_scm_is_available); 1332 1333 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx) 1334 { 1335 /* FW currently only supports a single wq_ctx (zero). 1336 * TODO: Update this logic to include dynamic allocation and lookup of 1337 * completion structs when FW supports more wq_ctx values. 1338 */ 1339 if (wq_ctx != 0) { 1340 dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n"); 1341 return -EINVAL; 1342 } 1343 1344 return 0; 1345 } 1346 1347 int qcom_scm_wait_for_wq_completion(u32 wq_ctx) 1348 { 1349 int ret; 1350 1351 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx); 1352 if (ret) 1353 return ret; 1354 1355 wait_for_completion(&__scm->waitq_comp); 1356 1357 return 0; 1358 } 1359 1360 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx) 1361 { 1362 int ret; 1363 1364 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx); 1365 if (ret) 1366 return ret; 1367 1368 complete(&__scm->waitq_comp); 1369 1370 return 0; 1371 } 1372 1373 static irqreturn_t qcom_scm_irq_handler(int irq, void *data) 1374 { 1375 int ret; 1376 struct qcom_scm *scm = data; 1377 u32 wq_ctx, flags, more_pending = 0; 1378 1379 do { 1380 ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending); 1381 if (ret) { 1382 dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret); 1383 goto out; 1384 } 1385 1386 if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE && 1387 flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) { 1388 dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags); 1389 goto out; 1390 } 1391 1392 ret = qcom_scm_waitq_wakeup(scm, wq_ctx); 1393 if (ret) 1394 goto out; 1395 } while (more_pending); 1396 1397 out: 1398 return IRQ_HANDLED; 1399 } 1400 1401 static int qcom_scm_probe(struct platform_device *pdev) 1402 { 1403 struct qcom_scm *scm; 1404 int irq, ret; 1405 1406 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL); 1407 if (!scm) 1408 return -ENOMEM; 1409 1410 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr); 1411 if (ret < 0) 1412 return ret; 1413 1414 mutex_init(&scm->scm_bw_lock); 1415 1416 scm->path = devm_of_icc_get(&pdev->dev, NULL); 1417 if (IS_ERR(scm->path)) 1418 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path), 1419 "failed to acquire interconnect path\n"); 1420 1421 scm->core_clk = devm_clk_get_optional(&pdev->dev, "core"); 1422 if (IS_ERR(scm->core_clk)) 1423 return PTR_ERR(scm->core_clk); 1424 1425 scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface"); 1426 if (IS_ERR(scm->iface_clk)) 1427 return PTR_ERR(scm->iface_clk); 1428 1429 scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); 1430 if (IS_ERR(scm->bus_clk)) 1431 return PTR_ERR(scm->bus_clk); 1432 1433 scm->reset.ops = &qcom_scm_pas_reset_ops; 1434 scm->reset.nr_resets = 1; 1435 scm->reset.of_node = pdev->dev.of_node; 1436 ret = devm_reset_controller_register(&pdev->dev, &scm->reset); 1437 if (ret) 1438 return ret; 1439 1440 /* vote for max clk rate for highest performance */ 1441 ret = clk_set_rate(scm->core_clk, INT_MAX); 1442 if (ret) 1443 return ret; 1444 1445 __scm = scm; 1446 __scm->dev = &pdev->dev; 1447 1448 init_completion(&__scm->waitq_comp); 1449 1450 irq = platform_get_irq_optional(pdev, 0); 1451 if (irq < 0) { 1452 if (irq != -ENXIO) 1453 return irq; 1454 } else { 1455 ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler, 1456 IRQF_ONESHOT, "qcom-scm", __scm); 1457 if (ret < 0) 1458 return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n"); 1459 } 1460 1461 __get_convention(); 1462 1463 /* 1464 * If requested enable "download mode", from this point on warmboot 1465 * will cause the boot stages to enter download mode, unless 1466 * disabled below by a clean shutdown/reboot. 1467 */ 1468 if (download_mode) 1469 qcom_scm_set_download_mode(true); 1470 1471 return 0; 1472 } 1473 1474 static void qcom_scm_shutdown(struct platform_device *pdev) 1475 { 1476 /* Clean shutdown, disable download mode to allow normal restart */ 1477 qcom_scm_set_download_mode(false); 1478 } 1479 1480 static const struct of_device_id qcom_scm_dt_match[] = { 1481 { .compatible = "qcom,scm" }, 1482 1483 /* Legacy entries kept for backwards compatibility */ 1484 { .compatible = "qcom,scm-apq8064" }, 1485 { .compatible = "qcom,scm-apq8084" }, 1486 { .compatible = "qcom,scm-ipq4019" }, 1487 { .compatible = "qcom,scm-msm8953" }, 1488 { .compatible = "qcom,scm-msm8974" }, 1489 { .compatible = "qcom,scm-msm8996" }, 1490 {} 1491 }; 1492 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match); 1493 1494 static struct platform_driver qcom_scm_driver = { 1495 .driver = { 1496 .name = "qcom_scm", 1497 .of_match_table = qcom_scm_dt_match, 1498 .suppress_bind_attrs = true, 1499 }, 1500 .probe = qcom_scm_probe, 1501 .shutdown = qcom_scm_shutdown, 1502 }; 1503 1504 static int __init qcom_scm_init(void) 1505 { 1506 return platform_driver_register(&qcom_scm_driver); 1507 } 1508 subsys_initcall(qcom_scm_init); 1509 1510 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver"); 1511 MODULE_LICENSE("GPL v2"); 1512