xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23 
24 #include "qcom_scm.h"
25 
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28 
29 #define SCM_HAS_CORE_CLK	BIT(0)
30 #define SCM_HAS_IFACE_CLK	BIT(1)
31 #define SCM_HAS_BUS_CLK		BIT(2)
32 
33 struct qcom_scm {
34 	struct device *dev;
35 	struct clk *core_clk;
36 	struct clk *iface_clk;
37 	struct clk *bus_clk;
38 	struct icc_path *path;
39 	struct completion waitq_comp;
40 	struct reset_controller_dev reset;
41 
42 	/* control access to the interconnect path */
43 	struct mutex scm_bw_lock;
44 	int scm_vote_count;
45 
46 	u64 dload_mode_addr;
47 };
48 
49 struct qcom_scm_current_perm_info {
50 	__le32 vmid;
51 	__le32 perm;
52 	__le64 ctx;
53 	__le32 ctx_size;
54 	__le32 unused;
55 };
56 
57 struct qcom_scm_mem_map_info {
58 	__le64 mem_addr;
59 	__le64 mem_size;
60 };
61 
62 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
63 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
64 	0, BIT(0), BIT(3), BIT(5)
65 };
66 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
67 	BIT(2), BIT(1), BIT(4), BIT(6)
68 };
69 
70 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
71 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL	BIT(1)
72 
73 static const char * const qcom_scm_convention_names[] = {
74 	[SMC_CONVENTION_UNKNOWN] = "unknown",
75 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
76 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
77 	[SMC_CONVENTION_LEGACY] = "smc legacy",
78 };
79 
80 static struct qcom_scm *__scm;
81 
82 static int qcom_scm_clk_enable(void)
83 {
84 	int ret;
85 
86 	ret = clk_prepare_enable(__scm->core_clk);
87 	if (ret)
88 		goto bail;
89 
90 	ret = clk_prepare_enable(__scm->iface_clk);
91 	if (ret)
92 		goto disable_core;
93 
94 	ret = clk_prepare_enable(__scm->bus_clk);
95 	if (ret)
96 		goto disable_iface;
97 
98 	return 0;
99 
100 disable_iface:
101 	clk_disable_unprepare(__scm->iface_clk);
102 disable_core:
103 	clk_disable_unprepare(__scm->core_clk);
104 bail:
105 	return ret;
106 }
107 
108 static void qcom_scm_clk_disable(void)
109 {
110 	clk_disable_unprepare(__scm->core_clk);
111 	clk_disable_unprepare(__scm->iface_clk);
112 	clk_disable_unprepare(__scm->bus_clk);
113 }
114 
115 static int qcom_scm_bw_enable(void)
116 {
117 	int ret = 0;
118 
119 	if (!__scm->path)
120 		return 0;
121 
122 	if (IS_ERR(__scm->path))
123 		return -EINVAL;
124 
125 	mutex_lock(&__scm->scm_bw_lock);
126 	if (!__scm->scm_vote_count) {
127 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
128 		if (ret < 0) {
129 			dev_err(__scm->dev, "failed to set bandwidth request\n");
130 			goto err_bw;
131 		}
132 	}
133 	__scm->scm_vote_count++;
134 err_bw:
135 	mutex_unlock(&__scm->scm_bw_lock);
136 
137 	return ret;
138 }
139 
140 static void qcom_scm_bw_disable(void)
141 {
142 	if (IS_ERR_OR_NULL(__scm->path))
143 		return;
144 
145 	mutex_lock(&__scm->scm_bw_lock);
146 	if (__scm->scm_vote_count-- == 1)
147 		icc_set_bw(__scm->path, 0, 0);
148 	mutex_unlock(&__scm->scm_bw_lock);
149 }
150 
151 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
152 static DEFINE_SPINLOCK(scm_query_lock);
153 
154 static enum qcom_scm_convention __get_convention(void)
155 {
156 	unsigned long flags;
157 	struct qcom_scm_desc desc = {
158 		.svc = QCOM_SCM_SVC_INFO,
159 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
160 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
161 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
162 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
163 		.arginfo = QCOM_SCM_ARGS(1),
164 		.owner = ARM_SMCCC_OWNER_SIP,
165 	};
166 	struct qcom_scm_res res;
167 	enum qcom_scm_convention probed_convention;
168 	int ret;
169 	bool forced = false;
170 
171 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
172 		return qcom_scm_convention;
173 
174 	/*
175 	 * Device isn't required as there is only one argument - no device
176 	 * needed to dma_map_single to secure world
177 	 */
178 	probed_convention = SMC_CONVENTION_ARM_64;
179 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
180 	if (!ret && res.result[0] == 1)
181 		goto found;
182 
183 	/*
184 	 * Some SC7180 firmwares didn't implement the
185 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
186 	 * calling conventions on these firmwares. Luckily we don't make any
187 	 * early calls into the firmware on these SoCs so the device pointer
188 	 * will be valid here to check if the compatible matches.
189 	 */
190 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
191 		forced = true;
192 		goto found;
193 	}
194 
195 	probed_convention = SMC_CONVENTION_ARM_32;
196 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
197 	if (!ret && res.result[0] == 1)
198 		goto found;
199 
200 	probed_convention = SMC_CONVENTION_LEGACY;
201 found:
202 	spin_lock_irqsave(&scm_query_lock, flags);
203 	if (probed_convention != qcom_scm_convention) {
204 		qcom_scm_convention = probed_convention;
205 		pr_info("qcom_scm: convention: %s%s\n",
206 			qcom_scm_convention_names[qcom_scm_convention],
207 			forced ? " (forced)" : "");
208 	}
209 	spin_unlock_irqrestore(&scm_query_lock, flags);
210 
211 	return qcom_scm_convention;
212 }
213 
214 /**
215  * qcom_scm_call() - Invoke a syscall in the secure world
216  * @dev:	device
217  * @desc:	Descriptor structure containing arguments and return values
218  * @res:        Structure containing results from SMC/HVC call
219  *
220  * Sends a command to the SCM and waits for the command to finish processing.
221  * This should *only* be called in pre-emptible context.
222  */
223 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
224 			 struct qcom_scm_res *res)
225 {
226 	might_sleep();
227 	switch (__get_convention()) {
228 	case SMC_CONVENTION_ARM_32:
229 	case SMC_CONVENTION_ARM_64:
230 		return scm_smc_call(dev, desc, res, false);
231 	case SMC_CONVENTION_LEGACY:
232 		return scm_legacy_call(dev, desc, res);
233 	default:
234 		pr_err("Unknown current SCM calling convention.\n");
235 		return -EINVAL;
236 	}
237 }
238 
239 /**
240  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
241  * @dev:	device
242  * @desc:	Descriptor structure containing arguments and return values
243  * @res:	Structure containing results from SMC/HVC call
244  *
245  * Sends a command to the SCM and waits for the command to finish processing.
246  * This can be called in atomic context.
247  */
248 static int qcom_scm_call_atomic(struct device *dev,
249 				const struct qcom_scm_desc *desc,
250 				struct qcom_scm_res *res)
251 {
252 	switch (__get_convention()) {
253 	case SMC_CONVENTION_ARM_32:
254 	case SMC_CONVENTION_ARM_64:
255 		return scm_smc_call(dev, desc, res, true);
256 	case SMC_CONVENTION_LEGACY:
257 		return scm_legacy_call_atomic(dev, desc, res);
258 	default:
259 		pr_err("Unknown current SCM calling convention.\n");
260 		return -EINVAL;
261 	}
262 }
263 
264 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
265 					 u32 cmd_id)
266 {
267 	int ret;
268 	struct qcom_scm_desc desc = {
269 		.svc = QCOM_SCM_SVC_INFO,
270 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
271 		.owner = ARM_SMCCC_OWNER_SIP,
272 	};
273 	struct qcom_scm_res res;
274 
275 	desc.arginfo = QCOM_SCM_ARGS(1);
276 	switch (__get_convention()) {
277 	case SMC_CONVENTION_ARM_32:
278 	case SMC_CONVENTION_ARM_64:
279 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
280 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
281 		break;
282 	case SMC_CONVENTION_LEGACY:
283 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
284 		break;
285 	default:
286 		pr_err("Unknown SMC convention being used\n");
287 		return false;
288 	}
289 
290 	ret = qcom_scm_call(dev, &desc, &res);
291 
292 	return ret ? false : !!res.result[0];
293 }
294 
295 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
296 {
297 	int cpu;
298 	unsigned int flags = 0;
299 	struct qcom_scm_desc desc = {
300 		.svc = QCOM_SCM_SVC_BOOT,
301 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
302 		.arginfo = QCOM_SCM_ARGS(2),
303 		.owner = ARM_SMCCC_OWNER_SIP,
304 	};
305 
306 	for_each_present_cpu(cpu) {
307 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
308 			return -EINVAL;
309 		flags |= cpu_bits[cpu];
310 	}
311 
312 	desc.args[0] = flags;
313 	desc.args[1] = virt_to_phys(entry);
314 
315 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
316 }
317 
318 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
319 {
320 	struct qcom_scm_desc desc = {
321 		.svc = QCOM_SCM_SVC_BOOT,
322 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
323 		.owner = ARM_SMCCC_OWNER_SIP,
324 		.arginfo = QCOM_SCM_ARGS(6),
325 		.args = {
326 			virt_to_phys(entry),
327 			/* Apply to all CPUs in all affinity levels */
328 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
329 			flags,
330 		},
331 	};
332 
333 	/* Need a device for DMA of the additional arguments */
334 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
335 		return -EOPNOTSUPP;
336 
337 	return qcom_scm_call(__scm->dev, &desc, NULL);
338 }
339 
340 /**
341  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
342  * @entry: Entry point function for the cpus
343  *
344  * Set the Linux entry point for the SCM to transfer control to when coming
345  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
346  */
347 int qcom_scm_set_warm_boot_addr(void *entry)
348 {
349 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
350 		/* Fallback to old SCM call */
351 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
352 	return 0;
353 }
354 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
355 
356 /**
357  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
358  * @entry: Entry point function for the cpus
359  */
360 int qcom_scm_set_cold_boot_addr(void *entry)
361 {
362 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
363 		/* Fallback to old SCM call */
364 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
365 	return 0;
366 }
367 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
368 
369 /**
370  * qcom_scm_cpu_power_down() - Power down the cpu
371  * @flags:	Flags to flush cache
372  *
373  * This is an end point to power down cpu. If there was a pending interrupt,
374  * the control would return from this function, otherwise, the cpu jumps to the
375  * warm boot entry point set for this cpu upon reset.
376  */
377 void qcom_scm_cpu_power_down(u32 flags)
378 {
379 	struct qcom_scm_desc desc = {
380 		.svc = QCOM_SCM_SVC_BOOT,
381 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
382 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
383 		.arginfo = QCOM_SCM_ARGS(1),
384 		.owner = ARM_SMCCC_OWNER_SIP,
385 	};
386 
387 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
388 }
389 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
390 
391 int qcom_scm_set_remote_state(u32 state, u32 id)
392 {
393 	struct qcom_scm_desc desc = {
394 		.svc = QCOM_SCM_SVC_BOOT,
395 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
396 		.arginfo = QCOM_SCM_ARGS(2),
397 		.args[0] = state,
398 		.args[1] = id,
399 		.owner = ARM_SMCCC_OWNER_SIP,
400 	};
401 	struct qcom_scm_res res;
402 	int ret;
403 
404 	ret = qcom_scm_call(__scm->dev, &desc, &res);
405 
406 	return ret ? : res.result[0];
407 }
408 EXPORT_SYMBOL(qcom_scm_set_remote_state);
409 
410 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
411 {
412 	struct qcom_scm_desc desc = {
413 		.svc = QCOM_SCM_SVC_BOOT,
414 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
415 		.arginfo = QCOM_SCM_ARGS(2),
416 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
417 		.owner = ARM_SMCCC_OWNER_SIP,
418 	};
419 
420 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
421 
422 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
423 }
424 
425 static void qcom_scm_set_download_mode(bool enable)
426 {
427 	bool avail;
428 	int ret = 0;
429 
430 	avail = __qcom_scm_is_call_available(__scm->dev,
431 					     QCOM_SCM_SVC_BOOT,
432 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
433 	if (avail) {
434 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
435 	} else if (__scm->dload_mode_addr) {
436 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
437 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
438 	} else {
439 		dev_err(__scm->dev,
440 			"No available mechanism for setting download mode\n");
441 	}
442 
443 	if (ret)
444 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
445 }
446 
447 /**
448  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
449  *			       state machine for a given peripheral, using the
450  *			       metadata
451  * @peripheral: peripheral id
452  * @metadata:	pointer to memory containing ELF header, program header table
453  *		and optional blob of data used for authenticating the metadata
454  *		and the rest of the firmware
455  * @size:	size of the metadata
456  * @ctx:	optional metadata context
457  *
458  * Return: 0 on success.
459  *
460  * Upon successful return, the PAS metadata context (@ctx) will be used to
461  * track the metadata allocation, this needs to be released by invoking
462  * qcom_scm_pas_metadata_release() by the caller.
463  */
464 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
465 			    struct qcom_scm_pas_metadata *ctx)
466 {
467 	dma_addr_t mdata_phys;
468 	void *mdata_buf;
469 	int ret;
470 	struct qcom_scm_desc desc = {
471 		.svc = QCOM_SCM_SVC_PIL,
472 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
473 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
474 		.args[0] = peripheral,
475 		.owner = ARM_SMCCC_OWNER_SIP,
476 	};
477 	struct qcom_scm_res res;
478 
479 	/*
480 	 * During the scm call memory protection will be enabled for the meta
481 	 * data blob, so make sure it's physically contiguous, 4K aligned and
482 	 * non-cachable to avoid XPU violations.
483 	 */
484 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
485 				       GFP_KERNEL);
486 	if (!mdata_buf) {
487 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
488 		return -ENOMEM;
489 	}
490 	memcpy(mdata_buf, metadata, size);
491 
492 	ret = qcom_scm_clk_enable();
493 	if (ret)
494 		goto out;
495 
496 	ret = qcom_scm_bw_enable();
497 	if (ret)
498 		return ret;
499 
500 	desc.args[1] = mdata_phys;
501 
502 	ret = qcom_scm_call(__scm->dev, &desc, &res);
503 
504 	qcom_scm_bw_disable();
505 	qcom_scm_clk_disable();
506 
507 out:
508 	if (ret < 0 || !ctx) {
509 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
510 	} else if (ctx) {
511 		ctx->ptr = mdata_buf;
512 		ctx->phys = mdata_phys;
513 		ctx->size = size;
514 	}
515 
516 	return ret ? : res.result[0];
517 }
518 EXPORT_SYMBOL(qcom_scm_pas_init_image);
519 
520 /**
521  * qcom_scm_pas_metadata_release() - release metadata context
522  * @ctx:	metadata context
523  */
524 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
525 {
526 	if (!ctx->ptr)
527 		return;
528 
529 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
530 
531 	ctx->ptr = NULL;
532 	ctx->phys = 0;
533 	ctx->size = 0;
534 }
535 EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
536 
537 /**
538  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
539  *			      for firmware loading
540  * @peripheral:	peripheral id
541  * @addr:	start address of memory area to prepare
542  * @size:	size of the memory area to prepare
543  *
544  * Returns 0 on success.
545  */
546 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
547 {
548 	int ret;
549 	struct qcom_scm_desc desc = {
550 		.svc = QCOM_SCM_SVC_PIL,
551 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
552 		.arginfo = QCOM_SCM_ARGS(3),
553 		.args[0] = peripheral,
554 		.args[1] = addr,
555 		.args[2] = size,
556 		.owner = ARM_SMCCC_OWNER_SIP,
557 	};
558 	struct qcom_scm_res res;
559 
560 	ret = qcom_scm_clk_enable();
561 	if (ret)
562 		return ret;
563 
564 	ret = qcom_scm_bw_enable();
565 	if (ret)
566 		return ret;
567 
568 	ret = qcom_scm_call(__scm->dev, &desc, &res);
569 	qcom_scm_bw_disable();
570 	qcom_scm_clk_disable();
571 
572 	return ret ? : res.result[0];
573 }
574 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
575 
576 /**
577  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
578  *				   and reset the remote processor
579  * @peripheral:	peripheral id
580  *
581  * Return 0 on success.
582  */
583 int qcom_scm_pas_auth_and_reset(u32 peripheral)
584 {
585 	int ret;
586 	struct qcom_scm_desc desc = {
587 		.svc = QCOM_SCM_SVC_PIL,
588 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
589 		.arginfo = QCOM_SCM_ARGS(1),
590 		.args[0] = peripheral,
591 		.owner = ARM_SMCCC_OWNER_SIP,
592 	};
593 	struct qcom_scm_res res;
594 
595 	ret = qcom_scm_clk_enable();
596 	if (ret)
597 		return ret;
598 
599 	ret = qcom_scm_bw_enable();
600 	if (ret)
601 		return ret;
602 
603 	ret = qcom_scm_call(__scm->dev, &desc, &res);
604 	qcom_scm_bw_disable();
605 	qcom_scm_clk_disable();
606 
607 	return ret ? : res.result[0];
608 }
609 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
610 
611 /**
612  * qcom_scm_pas_shutdown() - Shut down the remote processor
613  * @peripheral: peripheral id
614  *
615  * Returns 0 on success.
616  */
617 int qcom_scm_pas_shutdown(u32 peripheral)
618 {
619 	int ret;
620 	struct qcom_scm_desc desc = {
621 		.svc = QCOM_SCM_SVC_PIL,
622 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
623 		.arginfo = QCOM_SCM_ARGS(1),
624 		.args[0] = peripheral,
625 		.owner = ARM_SMCCC_OWNER_SIP,
626 	};
627 	struct qcom_scm_res res;
628 
629 	ret = qcom_scm_clk_enable();
630 	if (ret)
631 		return ret;
632 
633 	ret = qcom_scm_bw_enable();
634 	if (ret)
635 		return ret;
636 
637 	ret = qcom_scm_call(__scm->dev, &desc, &res);
638 
639 	qcom_scm_bw_disable();
640 	qcom_scm_clk_disable();
641 
642 	return ret ? : res.result[0];
643 }
644 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
645 
646 /**
647  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
648  *			      available for the given peripherial
649  * @peripheral:	peripheral id
650  *
651  * Returns true if PAS is supported for this peripheral, otherwise false.
652  */
653 bool qcom_scm_pas_supported(u32 peripheral)
654 {
655 	int ret;
656 	struct qcom_scm_desc desc = {
657 		.svc = QCOM_SCM_SVC_PIL,
658 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
659 		.arginfo = QCOM_SCM_ARGS(1),
660 		.args[0] = peripheral,
661 		.owner = ARM_SMCCC_OWNER_SIP,
662 	};
663 	struct qcom_scm_res res;
664 
665 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
666 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
667 		return false;
668 
669 	ret = qcom_scm_call(__scm->dev, &desc, &res);
670 
671 	return ret ? false : !!res.result[0];
672 }
673 EXPORT_SYMBOL(qcom_scm_pas_supported);
674 
675 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
676 {
677 	struct qcom_scm_desc desc = {
678 		.svc = QCOM_SCM_SVC_PIL,
679 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
680 		.arginfo = QCOM_SCM_ARGS(2),
681 		.args[0] = reset,
682 		.args[1] = 0,
683 		.owner = ARM_SMCCC_OWNER_SIP,
684 	};
685 	struct qcom_scm_res res;
686 	int ret;
687 
688 	ret = qcom_scm_call(__scm->dev, &desc, &res);
689 
690 	return ret ? : res.result[0];
691 }
692 
693 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
694 				     unsigned long idx)
695 {
696 	if (idx != 0)
697 		return -EINVAL;
698 
699 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
700 }
701 
702 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
703 				       unsigned long idx)
704 {
705 	if (idx != 0)
706 		return -EINVAL;
707 
708 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
709 }
710 
711 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
712 	.assert = qcom_scm_pas_reset_assert,
713 	.deassert = qcom_scm_pas_reset_deassert,
714 };
715 
716 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
717 {
718 	struct qcom_scm_desc desc = {
719 		.svc = QCOM_SCM_SVC_IO,
720 		.cmd = QCOM_SCM_IO_READ,
721 		.arginfo = QCOM_SCM_ARGS(1),
722 		.args[0] = addr,
723 		.owner = ARM_SMCCC_OWNER_SIP,
724 	};
725 	struct qcom_scm_res res;
726 	int ret;
727 
728 
729 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
730 	if (ret >= 0)
731 		*val = res.result[0];
732 
733 	return ret < 0 ? ret : 0;
734 }
735 EXPORT_SYMBOL(qcom_scm_io_readl);
736 
737 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
738 {
739 	struct qcom_scm_desc desc = {
740 		.svc = QCOM_SCM_SVC_IO,
741 		.cmd = QCOM_SCM_IO_WRITE,
742 		.arginfo = QCOM_SCM_ARGS(2),
743 		.args[0] = addr,
744 		.args[1] = val,
745 		.owner = ARM_SMCCC_OWNER_SIP,
746 	};
747 
748 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
749 }
750 EXPORT_SYMBOL(qcom_scm_io_writel);
751 
752 /**
753  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
754  * supports restore security config interface.
755  *
756  * Return true if restore-cfg interface is supported, false if not.
757  */
758 bool qcom_scm_restore_sec_cfg_available(void)
759 {
760 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
761 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
762 }
763 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
764 
765 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
766 {
767 	struct qcom_scm_desc desc = {
768 		.svc = QCOM_SCM_SVC_MP,
769 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
770 		.arginfo = QCOM_SCM_ARGS(2),
771 		.args[0] = device_id,
772 		.args[1] = spare,
773 		.owner = ARM_SMCCC_OWNER_SIP,
774 	};
775 	struct qcom_scm_res res;
776 	int ret;
777 
778 	ret = qcom_scm_call(__scm->dev, &desc, &res);
779 
780 	return ret ? : res.result[0];
781 }
782 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
783 
784 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
785 {
786 	struct qcom_scm_desc desc = {
787 		.svc = QCOM_SCM_SVC_MP,
788 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
789 		.arginfo = QCOM_SCM_ARGS(1),
790 		.args[0] = spare,
791 		.owner = ARM_SMCCC_OWNER_SIP,
792 	};
793 	struct qcom_scm_res res;
794 	int ret;
795 
796 	ret = qcom_scm_call(__scm->dev, &desc, &res);
797 
798 	if (size)
799 		*size = res.result[0];
800 
801 	return ret ? : res.result[1];
802 }
803 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
804 
805 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
806 {
807 	struct qcom_scm_desc desc = {
808 		.svc = QCOM_SCM_SVC_MP,
809 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
810 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
811 					 QCOM_SCM_VAL),
812 		.args[0] = addr,
813 		.args[1] = size,
814 		.args[2] = spare,
815 		.owner = ARM_SMCCC_OWNER_SIP,
816 	};
817 	int ret;
818 
819 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
820 
821 	/* the pg table has been initialized already, ignore the error */
822 	if (ret == -EPERM)
823 		ret = 0;
824 
825 	return ret;
826 }
827 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
828 
829 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
830 {
831 	struct qcom_scm_desc desc = {
832 		.svc = QCOM_SCM_SVC_MP,
833 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
834 		.arginfo = QCOM_SCM_ARGS(2),
835 		.args[0] = size,
836 		.args[1] = spare,
837 		.owner = ARM_SMCCC_OWNER_SIP,
838 	};
839 
840 	return qcom_scm_call(__scm->dev, &desc, NULL);
841 }
842 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
843 
844 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
845 				   u32 cp_nonpixel_start,
846 				   u32 cp_nonpixel_size)
847 {
848 	int ret;
849 	struct qcom_scm_desc desc = {
850 		.svc = QCOM_SCM_SVC_MP,
851 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
852 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
853 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
854 		.args[0] = cp_start,
855 		.args[1] = cp_size,
856 		.args[2] = cp_nonpixel_start,
857 		.args[3] = cp_nonpixel_size,
858 		.owner = ARM_SMCCC_OWNER_SIP,
859 	};
860 	struct qcom_scm_res res;
861 
862 	ret = qcom_scm_call(__scm->dev, &desc, &res);
863 
864 	return ret ? : res.result[0];
865 }
866 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
867 
868 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
869 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
870 				 phys_addr_t dest, size_t dest_sz)
871 {
872 	int ret;
873 	struct qcom_scm_desc desc = {
874 		.svc = QCOM_SCM_SVC_MP,
875 		.cmd = QCOM_SCM_MP_ASSIGN,
876 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
877 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
878 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
879 		.args[0] = mem_region,
880 		.args[1] = mem_sz,
881 		.args[2] = src,
882 		.args[3] = src_sz,
883 		.args[4] = dest,
884 		.args[5] = dest_sz,
885 		.args[6] = 0,
886 		.owner = ARM_SMCCC_OWNER_SIP,
887 	};
888 	struct qcom_scm_res res;
889 
890 	ret = qcom_scm_call(dev, &desc, &res);
891 
892 	return ret ? : res.result[0];
893 }
894 
895 /**
896  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
897  * @mem_addr: mem region whose ownership need to be reassigned
898  * @mem_sz:   size of the region.
899  * @srcvm:    vmid for current set of owners, each set bit in
900  *            flag indicate a unique owner
901  * @newvm:    array having new owners and corresponding permission
902  *            flags
903  * @dest_cnt: number of owners in next set.
904  *
905  * Return negative errno on failure or 0 on success with @srcvm updated.
906  */
907 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
908 			unsigned int *srcvm,
909 			const struct qcom_scm_vmperm *newvm,
910 			unsigned int dest_cnt)
911 {
912 	struct qcom_scm_current_perm_info *destvm;
913 	struct qcom_scm_mem_map_info *mem_to_map;
914 	phys_addr_t mem_to_map_phys;
915 	phys_addr_t dest_phys;
916 	dma_addr_t ptr_phys;
917 	size_t mem_to_map_sz;
918 	size_t dest_sz;
919 	size_t src_sz;
920 	size_t ptr_sz;
921 	int next_vm;
922 	__le32 *src;
923 	void *ptr;
924 	int ret, i, b;
925 	unsigned long srcvm_bits = *srcvm;
926 
927 	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
928 	mem_to_map_sz = sizeof(*mem_to_map);
929 	dest_sz = dest_cnt * sizeof(*destvm);
930 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
931 			ALIGN(dest_sz, SZ_64);
932 
933 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
934 	if (!ptr)
935 		return -ENOMEM;
936 
937 	/* Fill source vmid detail */
938 	src = ptr;
939 	i = 0;
940 	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
941 		src[i++] = cpu_to_le32(b);
942 
943 	/* Fill details of mem buff to map */
944 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
945 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
946 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
947 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
948 
949 	next_vm = 0;
950 	/* Fill details of next vmid detail */
951 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
952 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
953 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
954 		destvm->vmid = cpu_to_le32(newvm->vmid);
955 		destvm->perm = cpu_to_le32(newvm->perm);
956 		destvm->ctx = 0;
957 		destvm->ctx_size = 0;
958 		next_vm |= BIT(newvm->vmid);
959 	}
960 
961 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
962 				    ptr_phys, src_sz, dest_phys, dest_sz);
963 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
964 	if (ret) {
965 		dev_err(__scm->dev,
966 			"Assign memory protection call failed %d\n", ret);
967 		return -EINVAL;
968 	}
969 
970 	*srcvm = next_vm;
971 	return 0;
972 }
973 EXPORT_SYMBOL(qcom_scm_assign_mem);
974 
975 /**
976  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
977  */
978 bool qcom_scm_ocmem_lock_available(void)
979 {
980 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
981 					    QCOM_SCM_OCMEM_LOCK_CMD);
982 }
983 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
984 
985 /**
986  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
987  * region to the specified initiator
988  *
989  * @id:     tz initiator id
990  * @offset: OCMEM offset
991  * @size:   OCMEM size
992  * @mode:   access mode (WIDE/NARROW)
993  */
994 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
995 			u32 mode)
996 {
997 	struct qcom_scm_desc desc = {
998 		.svc = QCOM_SCM_SVC_OCMEM,
999 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1000 		.args[0] = id,
1001 		.args[1] = offset,
1002 		.args[2] = size,
1003 		.args[3] = mode,
1004 		.arginfo = QCOM_SCM_ARGS(4),
1005 	};
1006 
1007 	return qcom_scm_call(__scm->dev, &desc, NULL);
1008 }
1009 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
1010 
1011 /**
1012  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1013  * region from the specified initiator
1014  *
1015  * @id:     tz initiator id
1016  * @offset: OCMEM offset
1017  * @size:   OCMEM size
1018  */
1019 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1020 {
1021 	struct qcom_scm_desc desc = {
1022 		.svc = QCOM_SCM_SVC_OCMEM,
1023 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1024 		.args[0] = id,
1025 		.args[1] = offset,
1026 		.args[2] = size,
1027 		.arginfo = QCOM_SCM_ARGS(3),
1028 	};
1029 
1030 	return qcom_scm_call(__scm->dev, &desc, NULL);
1031 }
1032 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
1033 
1034 /**
1035  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1036  *
1037  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1038  *	   qcom_scm_ice_set_key() are available.
1039  */
1040 bool qcom_scm_ice_available(void)
1041 {
1042 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1043 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1044 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1045 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1046 }
1047 EXPORT_SYMBOL(qcom_scm_ice_available);
1048 
1049 /**
1050  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1051  * @index: the keyslot to invalidate
1052  *
1053  * The UFSHCI and eMMC standards define a standard way to do this, but it
1054  * doesn't work on these SoCs; only this SCM call does.
1055  *
1056  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1057  * call doesn't specify which ICE instance the keyslot belongs to.
1058  *
1059  * Return: 0 on success; -errno on failure.
1060  */
1061 int qcom_scm_ice_invalidate_key(u32 index)
1062 {
1063 	struct qcom_scm_desc desc = {
1064 		.svc = QCOM_SCM_SVC_ES,
1065 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1066 		.arginfo = QCOM_SCM_ARGS(1),
1067 		.args[0] = index,
1068 		.owner = ARM_SMCCC_OWNER_SIP,
1069 	};
1070 
1071 	return qcom_scm_call(__scm->dev, &desc, NULL);
1072 }
1073 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1074 
1075 /**
1076  * qcom_scm_ice_set_key() - Set an inline encryption key
1077  * @index: the keyslot into which to set the key
1078  * @key: the key to program
1079  * @key_size: the size of the key in bytes
1080  * @cipher: the encryption algorithm the key is for
1081  * @data_unit_size: the encryption data unit size, i.e. the size of each
1082  *		    individual plaintext and ciphertext.  Given in 512-byte
1083  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1084  *
1085  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1086  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1087  *
1088  * The UFSHCI and eMMC standards define a standard way to do this, but it
1089  * doesn't work on these SoCs; only this SCM call does.
1090  *
1091  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1092  * call doesn't specify which ICE instance the keyslot belongs to.
1093  *
1094  * Return: 0 on success; -errno on failure.
1095  */
1096 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1097 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1098 {
1099 	struct qcom_scm_desc desc = {
1100 		.svc = QCOM_SCM_SVC_ES,
1101 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1102 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1103 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1104 					 QCOM_SCM_VAL),
1105 		.args[0] = index,
1106 		.args[2] = key_size,
1107 		.args[3] = cipher,
1108 		.args[4] = data_unit_size,
1109 		.owner = ARM_SMCCC_OWNER_SIP,
1110 	};
1111 	void *keybuf;
1112 	dma_addr_t key_phys;
1113 	int ret;
1114 
1115 	/*
1116 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1117 	 * physical address that's been properly flushed.  The sanctioned way to
1118 	 * do this is by using the DMA API.  But as is best practice for crypto
1119 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1120 	 * dma_map_single() not clearly correct, since the DMA API can use
1121 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1122 	 * keys is normally rare and thus not performance-critical.
1123 	 */
1124 
1125 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1126 				    GFP_KERNEL);
1127 	if (!keybuf)
1128 		return -ENOMEM;
1129 	memcpy(keybuf, key, key_size);
1130 	desc.args[1] = key_phys;
1131 
1132 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1133 
1134 	memzero_explicit(keybuf, key_size);
1135 
1136 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1140 
1141 /**
1142  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1143  *
1144  * Return true if HDCP is supported, false if not.
1145  */
1146 bool qcom_scm_hdcp_available(void)
1147 {
1148 	bool avail;
1149 	int ret = qcom_scm_clk_enable();
1150 
1151 	if (ret)
1152 		return ret;
1153 
1154 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1155 						QCOM_SCM_HDCP_INVOKE);
1156 
1157 	qcom_scm_clk_disable();
1158 
1159 	return avail;
1160 }
1161 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1162 
1163 /**
1164  * qcom_scm_hdcp_req() - Send HDCP request.
1165  * @req: HDCP request array
1166  * @req_cnt: HDCP request array count
1167  * @resp: response buffer passed to SCM
1168  *
1169  * Write HDCP register(s) through SCM.
1170  */
1171 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1172 {
1173 	int ret;
1174 	struct qcom_scm_desc desc = {
1175 		.svc = QCOM_SCM_SVC_HDCP,
1176 		.cmd = QCOM_SCM_HDCP_INVOKE,
1177 		.arginfo = QCOM_SCM_ARGS(10),
1178 		.args = {
1179 			req[0].addr,
1180 			req[0].val,
1181 			req[1].addr,
1182 			req[1].val,
1183 			req[2].addr,
1184 			req[2].val,
1185 			req[3].addr,
1186 			req[3].val,
1187 			req[4].addr,
1188 			req[4].val
1189 		},
1190 		.owner = ARM_SMCCC_OWNER_SIP,
1191 	};
1192 	struct qcom_scm_res res;
1193 
1194 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1195 		return -ERANGE;
1196 
1197 	ret = qcom_scm_clk_enable();
1198 	if (ret)
1199 		return ret;
1200 
1201 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1202 	*resp = res.result[0];
1203 
1204 	qcom_scm_clk_disable();
1205 
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1209 
1210 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1211 {
1212 	struct qcom_scm_desc desc = {
1213 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1214 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1215 		.arginfo = QCOM_SCM_ARGS(3),
1216 		.args[0] = sec_id,
1217 		.args[1] = ctx_num,
1218 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1219 		.owner = ARM_SMCCC_OWNER_SIP,
1220 	};
1221 
1222 	return qcom_scm_call(__scm->dev, &desc, NULL);
1223 }
1224 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1225 
1226 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1227 {
1228 	struct qcom_scm_desc desc = {
1229 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1230 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1231 		.arginfo = QCOM_SCM_ARGS(2),
1232 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1233 		.args[1] = en,
1234 		.owner = ARM_SMCCC_OWNER_SIP,
1235 	};
1236 
1237 
1238 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1239 }
1240 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1241 
1242 bool qcom_scm_lmh_dcvsh_available(void)
1243 {
1244 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1245 }
1246 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1247 
1248 int qcom_scm_lmh_profile_change(u32 profile_id)
1249 {
1250 	struct qcom_scm_desc desc = {
1251 		.svc = QCOM_SCM_SVC_LMH,
1252 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1253 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1254 		.args[0] = profile_id,
1255 		.owner = ARM_SMCCC_OWNER_SIP,
1256 	};
1257 
1258 	return qcom_scm_call(__scm->dev, &desc, NULL);
1259 }
1260 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1261 
1262 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1263 		       u64 limit_node, u32 node_id, u64 version)
1264 {
1265 	dma_addr_t payload_phys;
1266 	u32 *payload_buf;
1267 	int ret, payload_size = 5 * sizeof(u32);
1268 
1269 	struct qcom_scm_desc desc = {
1270 		.svc = QCOM_SCM_SVC_LMH,
1271 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1272 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1273 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1274 		.args[1] = payload_size,
1275 		.args[2] = limit_node,
1276 		.args[3] = node_id,
1277 		.args[4] = version,
1278 		.owner = ARM_SMCCC_OWNER_SIP,
1279 	};
1280 
1281 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1282 	if (!payload_buf)
1283 		return -ENOMEM;
1284 
1285 	payload_buf[0] = payload_fn;
1286 	payload_buf[1] = 0;
1287 	payload_buf[2] = payload_reg;
1288 	payload_buf[3] = 1;
1289 	payload_buf[4] = payload_val;
1290 
1291 	desc.args[0] = payload_phys;
1292 
1293 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1294 
1295 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1299 
1300 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1301 {
1302 	struct device_node *tcsr;
1303 	struct device_node *np = dev->of_node;
1304 	struct resource res;
1305 	u32 offset;
1306 	int ret;
1307 
1308 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1309 	if (!tcsr)
1310 		return 0;
1311 
1312 	ret = of_address_to_resource(tcsr, 0, &res);
1313 	of_node_put(tcsr);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1318 	if (ret < 0)
1319 		return ret;
1320 
1321 	*addr = res.start + offset;
1322 
1323 	return 0;
1324 }
1325 
1326 /**
1327  * qcom_scm_is_available() - Checks if SCM is available
1328  */
1329 bool qcom_scm_is_available(void)
1330 {
1331 	return !!__scm;
1332 }
1333 EXPORT_SYMBOL(qcom_scm_is_available);
1334 
1335 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1336 {
1337 	/* FW currently only supports a single wq_ctx (zero).
1338 	 * TODO: Update this logic to include dynamic allocation and lookup of
1339 	 * completion structs when FW supports more wq_ctx values.
1340 	 */
1341 	if (wq_ctx != 0) {
1342 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1350 {
1351 	int ret;
1352 
1353 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1354 	if (ret)
1355 		return ret;
1356 
1357 	wait_for_completion(&__scm->waitq_comp);
1358 
1359 	return 0;
1360 }
1361 
1362 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1363 {
1364 	int ret;
1365 
1366 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1367 	if (ret)
1368 		return ret;
1369 
1370 	complete(&__scm->waitq_comp);
1371 
1372 	return 0;
1373 }
1374 
1375 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1376 {
1377 	int ret;
1378 	struct qcom_scm *scm = data;
1379 	u32 wq_ctx, flags, more_pending = 0;
1380 
1381 	do {
1382 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1383 		if (ret) {
1384 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1385 			goto out;
1386 		}
1387 
1388 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1389 		    flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1390 			dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1391 			goto out;
1392 		}
1393 
1394 		ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1395 		if (ret)
1396 			goto out;
1397 	} while (more_pending);
1398 
1399 out:
1400 	return IRQ_HANDLED;
1401 }
1402 
1403 static int qcom_scm_probe(struct platform_device *pdev)
1404 {
1405 	struct qcom_scm *scm;
1406 	unsigned long clks;
1407 	int irq, ret;
1408 
1409 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1410 	if (!scm)
1411 		return -ENOMEM;
1412 
1413 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1414 	if (ret < 0)
1415 		return ret;
1416 
1417 	mutex_init(&scm->scm_bw_lock);
1418 
1419 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1420 
1421 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1422 	if (IS_ERR(scm->path))
1423 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1424 				     "failed to acquire interconnect path\n");
1425 
1426 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1427 	if (IS_ERR(scm->core_clk)) {
1428 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1429 			return PTR_ERR(scm->core_clk);
1430 
1431 		if (clks & SCM_HAS_CORE_CLK) {
1432 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1433 			return PTR_ERR(scm->core_clk);
1434 		}
1435 
1436 		scm->core_clk = NULL;
1437 	}
1438 
1439 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1440 	if (IS_ERR(scm->iface_clk)) {
1441 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1442 			return PTR_ERR(scm->iface_clk);
1443 
1444 		if (clks & SCM_HAS_IFACE_CLK) {
1445 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1446 			return PTR_ERR(scm->iface_clk);
1447 		}
1448 
1449 		scm->iface_clk = NULL;
1450 	}
1451 
1452 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1453 	if (IS_ERR(scm->bus_clk)) {
1454 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1455 			return PTR_ERR(scm->bus_clk);
1456 
1457 		if (clks & SCM_HAS_BUS_CLK) {
1458 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1459 			return PTR_ERR(scm->bus_clk);
1460 		}
1461 
1462 		scm->bus_clk = NULL;
1463 	}
1464 
1465 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1466 	scm->reset.nr_resets = 1;
1467 	scm->reset.of_node = pdev->dev.of_node;
1468 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1469 	if (ret)
1470 		return ret;
1471 
1472 	/* vote for max clk rate for highest performance */
1473 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1474 	if (ret)
1475 		return ret;
1476 
1477 	__scm = scm;
1478 	__scm->dev = &pdev->dev;
1479 
1480 	init_completion(&__scm->waitq_comp);
1481 
1482 	irq = platform_get_irq_optional(pdev, 0);
1483 	if (irq < 0) {
1484 		if (irq != -ENXIO)
1485 			return irq;
1486 	} else {
1487 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1488 						IRQF_ONESHOT, "qcom-scm", __scm);
1489 		if (ret < 0)
1490 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1491 	}
1492 
1493 	__get_convention();
1494 
1495 	/*
1496 	 * If requested enable "download mode", from this point on warmboot
1497 	 * will cause the boot stages to enter download mode, unless
1498 	 * disabled below by a clean shutdown/reboot.
1499 	 */
1500 	if (download_mode)
1501 		qcom_scm_set_download_mode(true);
1502 
1503 	return 0;
1504 }
1505 
1506 static void qcom_scm_shutdown(struct platform_device *pdev)
1507 {
1508 	/* Clean shutdown, disable download mode to allow normal restart */
1509 	if (download_mode)
1510 		qcom_scm_set_download_mode(false);
1511 }
1512 
1513 static const struct of_device_id qcom_scm_dt_match[] = {
1514 	{ .compatible = "qcom,scm-apq8064",
1515 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1516 	},
1517 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1518 							     SCM_HAS_IFACE_CLK |
1519 							     SCM_HAS_BUS_CLK)
1520 	},
1521 	{ .compatible = "qcom,scm-ipq4019" },
1522 	{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1523 							     SCM_HAS_IFACE_CLK |
1524 							     SCM_HAS_BUS_CLK) },
1525 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1526 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1527 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1528 							     SCM_HAS_IFACE_CLK |
1529 							     SCM_HAS_BUS_CLK)
1530 	},
1531 	{ .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1532 							     SCM_HAS_IFACE_CLK |
1533 							     SCM_HAS_BUS_CLK)
1534 	},
1535 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1536 							     SCM_HAS_IFACE_CLK |
1537 							     SCM_HAS_BUS_CLK)
1538 	},
1539 	{ .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1540 							     SCM_HAS_IFACE_CLK |
1541 							     SCM_HAS_BUS_CLK)
1542 	},
1543 	{ .compatible = "qcom,scm-msm8994" },
1544 	{ .compatible = "qcom,scm-msm8996" },
1545 	{ .compatible = "qcom,scm" },
1546 	{}
1547 };
1548 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1549 
1550 static struct platform_driver qcom_scm_driver = {
1551 	.driver = {
1552 		.name	= "qcom_scm",
1553 		.of_match_table = qcom_scm_dt_match,
1554 		.suppress_bind_attrs = true,
1555 	},
1556 	.probe = qcom_scm_probe,
1557 	.shutdown = qcom_scm_shutdown,
1558 };
1559 
1560 static int __init qcom_scm_init(void)
1561 {
1562 	return platform_driver_register(&qcom_scm_driver);
1563 }
1564 subsys_initcall(qcom_scm_init);
1565 
1566 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1567 MODULE_LICENSE("GPL v2");
1568