xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19 
20 #include "qcom_scm.h"
21 
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24 
25 #define SCM_HAS_CORE_CLK	BIT(0)
26 #define SCM_HAS_IFACE_CLK	BIT(1)
27 #define SCM_HAS_BUS_CLK		BIT(2)
28 
29 struct qcom_scm {
30 	struct device *dev;
31 	struct clk *core_clk;
32 	struct clk *iface_clk;
33 	struct clk *bus_clk;
34 	struct reset_controller_dev reset;
35 
36 	u64 dload_mode_addr;
37 };
38 
39 struct qcom_scm_current_perm_info {
40 	__le32 vmid;
41 	__le32 perm;
42 	__le64 ctx;
43 	__le32 ctx_size;
44 	__le32 unused;
45 };
46 
47 struct qcom_scm_mem_map_info {
48 	__le64 mem_addr;
49 	__le64 mem_size;
50 };
51 
52 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
53 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
54 	0, BIT(0), BIT(3), BIT(5)
55 };
56 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
57 	BIT(2), BIT(1), BIT(4), BIT(6)
58 };
59 
60 static const char * const qcom_scm_convention_names[] = {
61 	[SMC_CONVENTION_UNKNOWN] = "unknown",
62 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
63 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
64 	[SMC_CONVENTION_LEGACY] = "smc legacy",
65 };
66 
67 static struct qcom_scm *__scm;
68 
69 static int qcom_scm_clk_enable(void)
70 {
71 	int ret;
72 
73 	ret = clk_prepare_enable(__scm->core_clk);
74 	if (ret)
75 		goto bail;
76 
77 	ret = clk_prepare_enable(__scm->iface_clk);
78 	if (ret)
79 		goto disable_core;
80 
81 	ret = clk_prepare_enable(__scm->bus_clk);
82 	if (ret)
83 		goto disable_iface;
84 
85 	return 0;
86 
87 disable_iface:
88 	clk_disable_unprepare(__scm->iface_clk);
89 disable_core:
90 	clk_disable_unprepare(__scm->core_clk);
91 bail:
92 	return ret;
93 }
94 
95 static void qcom_scm_clk_disable(void)
96 {
97 	clk_disable_unprepare(__scm->core_clk);
98 	clk_disable_unprepare(__scm->iface_clk);
99 	clk_disable_unprepare(__scm->bus_clk);
100 }
101 
102 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
103 static DEFINE_SPINLOCK(scm_query_lock);
104 
105 static enum qcom_scm_convention __get_convention(void)
106 {
107 	unsigned long flags;
108 	struct qcom_scm_desc desc = {
109 		.svc = QCOM_SCM_SVC_INFO,
110 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
111 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
112 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
113 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
114 		.arginfo = QCOM_SCM_ARGS(1),
115 		.owner = ARM_SMCCC_OWNER_SIP,
116 	};
117 	struct qcom_scm_res res;
118 	enum qcom_scm_convention probed_convention;
119 	int ret;
120 	bool forced = false;
121 
122 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
123 		return qcom_scm_convention;
124 
125 	/*
126 	 * Device isn't required as there is only one argument - no device
127 	 * needed to dma_map_single to secure world
128 	 */
129 	probed_convention = SMC_CONVENTION_ARM_64;
130 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
131 	if (!ret && res.result[0] == 1)
132 		goto found;
133 
134 	/*
135 	 * Some SC7180 firmwares didn't implement the
136 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
137 	 * calling conventions on these firmwares. Luckily we don't make any
138 	 * early calls into the firmware on these SoCs so the device pointer
139 	 * will be valid here to check if the compatible matches.
140 	 */
141 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
142 		forced = true;
143 		goto found;
144 	}
145 
146 	probed_convention = SMC_CONVENTION_ARM_32;
147 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
148 	if (!ret && res.result[0] == 1)
149 		goto found;
150 
151 	probed_convention = SMC_CONVENTION_LEGACY;
152 found:
153 	spin_lock_irqsave(&scm_query_lock, flags);
154 	if (probed_convention != qcom_scm_convention) {
155 		qcom_scm_convention = probed_convention;
156 		pr_info("qcom_scm: convention: %s%s\n",
157 			qcom_scm_convention_names[qcom_scm_convention],
158 			forced ? " (forced)" : "");
159 	}
160 	spin_unlock_irqrestore(&scm_query_lock, flags);
161 
162 	return qcom_scm_convention;
163 }
164 
165 /**
166  * qcom_scm_call() - Invoke a syscall in the secure world
167  * @dev:	device
168  * @desc:	Descriptor structure containing arguments and return values
169  * @res:        Structure containing results from SMC/HVC call
170  *
171  * Sends a command to the SCM and waits for the command to finish processing.
172  * This should *only* be called in pre-emptible context.
173  */
174 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
175 			 struct qcom_scm_res *res)
176 {
177 	might_sleep();
178 	switch (__get_convention()) {
179 	case SMC_CONVENTION_ARM_32:
180 	case SMC_CONVENTION_ARM_64:
181 		return scm_smc_call(dev, desc, res, false);
182 	case SMC_CONVENTION_LEGACY:
183 		return scm_legacy_call(dev, desc, res);
184 	default:
185 		pr_err("Unknown current SCM calling convention.\n");
186 		return -EINVAL;
187 	}
188 }
189 
190 /**
191  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
192  * @dev:	device
193  * @desc:	Descriptor structure containing arguments and return values
194  * @res:	Structure containing results from SMC/HVC call
195  *
196  * Sends a command to the SCM and waits for the command to finish processing.
197  * This can be called in atomic context.
198  */
199 static int qcom_scm_call_atomic(struct device *dev,
200 				const struct qcom_scm_desc *desc,
201 				struct qcom_scm_res *res)
202 {
203 	switch (__get_convention()) {
204 	case SMC_CONVENTION_ARM_32:
205 	case SMC_CONVENTION_ARM_64:
206 		return scm_smc_call(dev, desc, res, true);
207 	case SMC_CONVENTION_LEGACY:
208 		return scm_legacy_call_atomic(dev, desc, res);
209 	default:
210 		pr_err("Unknown current SCM calling convention.\n");
211 		return -EINVAL;
212 	}
213 }
214 
215 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
216 					 u32 cmd_id)
217 {
218 	int ret;
219 	struct qcom_scm_desc desc = {
220 		.svc = QCOM_SCM_SVC_INFO,
221 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
222 		.owner = ARM_SMCCC_OWNER_SIP,
223 	};
224 	struct qcom_scm_res res;
225 
226 	desc.arginfo = QCOM_SCM_ARGS(1);
227 	switch (__get_convention()) {
228 	case SMC_CONVENTION_ARM_32:
229 	case SMC_CONVENTION_ARM_64:
230 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
231 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
232 		break;
233 	case SMC_CONVENTION_LEGACY:
234 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
235 		break;
236 	default:
237 		pr_err("Unknown SMC convention being used\n");
238 		return false;
239 	}
240 
241 	ret = qcom_scm_call(dev, &desc, &res);
242 
243 	return ret ? false : !!res.result[0];
244 }
245 
246 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
247 {
248 	int cpu;
249 	unsigned int flags = 0;
250 	struct qcom_scm_desc desc = {
251 		.svc = QCOM_SCM_SVC_BOOT,
252 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
253 		.arginfo = QCOM_SCM_ARGS(2),
254 		.owner = ARM_SMCCC_OWNER_SIP,
255 	};
256 
257 	for_each_present_cpu(cpu) {
258 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
259 			return -EINVAL;
260 		flags |= cpu_bits[cpu];
261 	}
262 
263 	desc.args[0] = flags;
264 	desc.args[1] = virt_to_phys(entry);
265 
266 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
267 }
268 
269 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
270 {
271 	struct qcom_scm_desc desc = {
272 		.svc = QCOM_SCM_SVC_BOOT,
273 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
274 		.owner = ARM_SMCCC_OWNER_SIP,
275 		.arginfo = QCOM_SCM_ARGS(6),
276 		.args = {
277 			virt_to_phys(entry),
278 			/* Apply to all CPUs in all affinity levels */
279 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
280 			flags,
281 		},
282 	};
283 
284 	/* Need a device for DMA of the additional arguments */
285 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
286 		return -EOPNOTSUPP;
287 
288 	return qcom_scm_call(__scm->dev, &desc, NULL);
289 }
290 
291 /**
292  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
293  * @entry: Entry point function for the cpus
294  *
295  * Set the Linux entry point for the SCM to transfer control to when coming
296  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
297  */
298 int qcom_scm_set_warm_boot_addr(void *entry)
299 {
300 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
301 		/* Fallback to old SCM call */
302 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
303 	return 0;
304 }
305 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
306 
307 /**
308  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
309  * @entry: Entry point function for the cpus
310  */
311 int qcom_scm_set_cold_boot_addr(void *entry)
312 {
313 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
314 		/* Fallback to old SCM call */
315 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
316 	return 0;
317 }
318 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
319 
320 /**
321  * qcom_scm_cpu_power_down() - Power down the cpu
322  * @flags:	Flags to flush cache
323  *
324  * This is an end point to power down cpu. If there was a pending interrupt,
325  * the control would return from this function, otherwise, the cpu jumps to the
326  * warm boot entry point set for this cpu upon reset.
327  */
328 void qcom_scm_cpu_power_down(u32 flags)
329 {
330 	struct qcom_scm_desc desc = {
331 		.svc = QCOM_SCM_SVC_BOOT,
332 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
333 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
334 		.arginfo = QCOM_SCM_ARGS(1),
335 		.owner = ARM_SMCCC_OWNER_SIP,
336 	};
337 
338 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
339 }
340 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
341 
342 int qcom_scm_set_remote_state(u32 state, u32 id)
343 {
344 	struct qcom_scm_desc desc = {
345 		.svc = QCOM_SCM_SVC_BOOT,
346 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
347 		.arginfo = QCOM_SCM_ARGS(2),
348 		.args[0] = state,
349 		.args[1] = id,
350 		.owner = ARM_SMCCC_OWNER_SIP,
351 	};
352 	struct qcom_scm_res res;
353 	int ret;
354 
355 	ret = qcom_scm_call(__scm->dev, &desc, &res);
356 
357 	return ret ? : res.result[0];
358 }
359 EXPORT_SYMBOL(qcom_scm_set_remote_state);
360 
361 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
362 {
363 	struct qcom_scm_desc desc = {
364 		.svc = QCOM_SCM_SVC_BOOT,
365 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
366 		.arginfo = QCOM_SCM_ARGS(2),
367 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
368 		.owner = ARM_SMCCC_OWNER_SIP,
369 	};
370 
371 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
372 
373 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
374 }
375 
376 static void qcom_scm_set_download_mode(bool enable)
377 {
378 	bool avail;
379 	int ret = 0;
380 
381 	avail = __qcom_scm_is_call_available(__scm->dev,
382 					     QCOM_SCM_SVC_BOOT,
383 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
384 	if (avail) {
385 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
386 	} else if (__scm->dload_mode_addr) {
387 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
388 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
389 	} else {
390 		dev_err(__scm->dev,
391 			"No available mechanism for setting download mode\n");
392 	}
393 
394 	if (ret)
395 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
396 }
397 
398 /**
399  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
400  *			       state machine for a given peripheral, using the
401  *			       metadata
402  * @peripheral: peripheral id
403  * @metadata:	pointer to memory containing ELF header, program header table
404  *		and optional blob of data used for authenticating the metadata
405  *		and the rest of the firmware
406  * @size:	size of the metadata
407  * @ctx:	optional metadata context
408  *
409  * Return: 0 on success.
410  *
411  * Upon successful return, the PAS metadata context (@ctx) will be used to
412  * track the metadata allocation, this needs to be released by invoking
413  * qcom_scm_pas_metadata_release() by the caller.
414  */
415 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
416 			    struct qcom_scm_pas_metadata *ctx)
417 {
418 	dma_addr_t mdata_phys;
419 	void *mdata_buf;
420 	int ret;
421 	struct qcom_scm_desc desc = {
422 		.svc = QCOM_SCM_SVC_PIL,
423 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
424 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
425 		.args[0] = peripheral,
426 		.owner = ARM_SMCCC_OWNER_SIP,
427 	};
428 	struct qcom_scm_res res;
429 
430 	/*
431 	 * During the scm call memory protection will be enabled for the meta
432 	 * data blob, so make sure it's physically contiguous, 4K aligned and
433 	 * non-cachable to avoid XPU violations.
434 	 */
435 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
436 				       GFP_KERNEL);
437 	if (!mdata_buf) {
438 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
439 		return -ENOMEM;
440 	}
441 	memcpy(mdata_buf, metadata, size);
442 
443 	ret = qcom_scm_clk_enable();
444 	if (ret)
445 		goto out;
446 
447 	desc.args[1] = mdata_phys;
448 
449 	ret = qcom_scm_call(__scm->dev, &desc, &res);
450 
451 	qcom_scm_clk_disable();
452 
453 out:
454 	if (ret < 0 || !ctx) {
455 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
456 	} else if (ctx) {
457 		ctx->ptr = mdata_buf;
458 		ctx->phys = mdata_phys;
459 		ctx->size = size;
460 	}
461 
462 	return ret ? : res.result[0];
463 }
464 EXPORT_SYMBOL(qcom_scm_pas_init_image);
465 
466 /**
467  * qcom_scm_pas_metadata_release() - release metadata context
468  * @ctx:	metadata context
469  */
470 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
471 {
472 	if (!ctx->ptr)
473 		return;
474 
475 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
476 
477 	ctx->ptr = NULL;
478 	ctx->phys = 0;
479 	ctx->size = 0;
480 }
481 EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
482 
483 /**
484  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
485  *			      for firmware loading
486  * @peripheral:	peripheral id
487  * @addr:	start address of memory area to prepare
488  * @size:	size of the memory area to prepare
489  *
490  * Returns 0 on success.
491  */
492 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
493 {
494 	int ret;
495 	struct qcom_scm_desc desc = {
496 		.svc = QCOM_SCM_SVC_PIL,
497 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
498 		.arginfo = QCOM_SCM_ARGS(3),
499 		.args[0] = peripheral,
500 		.args[1] = addr,
501 		.args[2] = size,
502 		.owner = ARM_SMCCC_OWNER_SIP,
503 	};
504 	struct qcom_scm_res res;
505 
506 	ret = qcom_scm_clk_enable();
507 	if (ret)
508 		return ret;
509 
510 	ret = qcom_scm_call(__scm->dev, &desc, &res);
511 	qcom_scm_clk_disable();
512 
513 	return ret ? : res.result[0];
514 }
515 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
516 
517 /**
518  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
519  *				   and reset the remote processor
520  * @peripheral:	peripheral id
521  *
522  * Return 0 on success.
523  */
524 int qcom_scm_pas_auth_and_reset(u32 peripheral)
525 {
526 	int ret;
527 	struct qcom_scm_desc desc = {
528 		.svc = QCOM_SCM_SVC_PIL,
529 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
530 		.arginfo = QCOM_SCM_ARGS(1),
531 		.args[0] = peripheral,
532 		.owner = ARM_SMCCC_OWNER_SIP,
533 	};
534 	struct qcom_scm_res res;
535 
536 	ret = qcom_scm_clk_enable();
537 	if (ret)
538 		return ret;
539 
540 	ret = qcom_scm_call(__scm->dev, &desc, &res);
541 	qcom_scm_clk_disable();
542 
543 	return ret ? : res.result[0];
544 }
545 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
546 
547 /**
548  * qcom_scm_pas_shutdown() - Shut down the remote processor
549  * @peripheral: peripheral id
550  *
551  * Returns 0 on success.
552  */
553 int qcom_scm_pas_shutdown(u32 peripheral)
554 {
555 	int ret;
556 	struct qcom_scm_desc desc = {
557 		.svc = QCOM_SCM_SVC_PIL,
558 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
559 		.arginfo = QCOM_SCM_ARGS(1),
560 		.args[0] = peripheral,
561 		.owner = ARM_SMCCC_OWNER_SIP,
562 	};
563 	struct qcom_scm_res res;
564 
565 	ret = qcom_scm_clk_enable();
566 	if (ret)
567 		return ret;
568 
569 	ret = qcom_scm_call(__scm->dev, &desc, &res);
570 
571 	qcom_scm_clk_disable();
572 
573 	return ret ? : res.result[0];
574 }
575 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
576 
577 /**
578  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
579  *			      available for the given peripherial
580  * @peripheral:	peripheral id
581  *
582  * Returns true if PAS is supported for this peripheral, otherwise false.
583  */
584 bool qcom_scm_pas_supported(u32 peripheral)
585 {
586 	int ret;
587 	struct qcom_scm_desc desc = {
588 		.svc = QCOM_SCM_SVC_PIL,
589 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
590 		.arginfo = QCOM_SCM_ARGS(1),
591 		.args[0] = peripheral,
592 		.owner = ARM_SMCCC_OWNER_SIP,
593 	};
594 	struct qcom_scm_res res;
595 
596 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
597 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
598 		return false;
599 
600 	ret = qcom_scm_call(__scm->dev, &desc, &res);
601 
602 	return ret ? false : !!res.result[0];
603 }
604 EXPORT_SYMBOL(qcom_scm_pas_supported);
605 
606 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
607 {
608 	struct qcom_scm_desc desc = {
609 		.svc = QCOM_SCM_SVC_PIL,
610 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
611 		.arginfo = QCOM_SCM_ARGS(2),
612 		.args[0] = reset,
613 		.args[1] = 0,
614 		.owner = ARM_SMCCC_OWNER_SIP,
615 	};
616 	struct qcom_scm_res res;
617 	int ret;
618 
619 	ret = qcom_scm_call(__scm->dev, &desc, &res);
620 
621 	return ret ? : res.result[0];
622 }
623 
624 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
625 				     unsigned long idx)
626 {
627 	if (idx != 0)
628 		return -EINVAL;
629 
630 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
631 }
632 
633 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
634 				       unsigned long idx)
635 {
636 	if (idx != 0)
637 		return -EINVAL;
638 
639 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
640 }
641 
642 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
643 	.assert = qcom_scm_pas_reset_assert,
644 	.deassert = qcom_scm_pas_reset_deassert,
645 };
646 
647 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
648 {
649 	struct qcom_scm_desc desc = {
650 		.svc = QCOM_SCM_SVC_IO,
651 		.cmd = QCOM_SCM_IO_READ,
652 		.arginfo = QCOM_SCM_ARGS(1),
653 		.args[0] = addr,
654 		.owner = ARM_SMCCC_OWNER_SIP,
655 	};
656 	struct qcom_scm_res res;
657 	int ret;
658 
659 
660 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
661 	if (ret >= 0)
662 		*val = res.result[0];
663 
664 	return ret < 0 ? ret : 0;
665 }
666 EXPORT_SYMBOL(qcom_scm_io_readl);
667 
668 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
669 {
670 	struct qcom_scm_desc desc = {
671 		.svc = QCOM_SCM_SVC_IO,
672 		.cmd = QCOM_SCM_IO_WRITE,
673 		.arginfo = QCOM_SCM_ARGS(2),
674 		.args[0] = addr,
675 		.args[1] = val,
676 		.owner = ARM_SMCCC_OWNER_SIP,
677 	};
678 
679 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
680 }
681 EXPORT_SYMBOL(qcom_scm_io_writel);
682 
683 /**
684  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
685  * supports restore security config interface.
686  *
687  * Return true if restore-cfg interface is supported, false if not.
688  */
689 bool qcom_scm_restore_sec_cfg_available(void)
690 {
691 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
692 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
693 }
694 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
695 
696 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
697 {
698 	struct qcom_scm_desc desc = {
699 		.svc = QCOM_SCM_SVC_MP,
700 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
701 		.arginfo = QCOM_SCM_ARGS(2),
702 		.args[0] = device_id,
703 		.args[1] = spare,
704 		.owner = ARM_SMCCC_OWNER_SIP,
705 	};
706 	struct qcom_scm_res res;
707 	int ret;
708 
709 	ret = qcom_scm_call(__scm->dev, &desc, &res);
710 
711 	return ret ? : res.result[0];
712 }
713 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
714 
715 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
716 {
717 	struct qcom_scm_desc desc = {
718 		.svc = QCOM_SCM_SVC_MP,
719 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
720 		.arginfo = QCOM_SCM_ARGS(1),
721 		.args[0] = spare,
722 		.owner = ARM_SMCCC_OWNER_SIP,
723 	};
724 	struct qcom_scm_res res;
725 	int ret;
726 
727 	ret = qcom_scm_call(__scm->dev, &desc, &res);
728 
729 	if (size)
730 		*size = res.result[0];
731 
732 	return ret ? : res.result[1];
733 }
734 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
735 
736 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
737 {
738 	struct qcom_scm_desc desc = {
739 		.svc = QCOM_SCM_SVC_MP,
740 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
741 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
742 					 QCOM_SCM_VAL),
743 		.args[0] = addr,
744 		.args[1] = size,
745 		.args[2] = spare,
746 		.owner = ARM_SMCCC_OWNER_SIP,
747 	};
748 	int ret;
749 
750 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
751 
752 	/* the pg table has been initialized already, ignore the error */
753 	if (ret == -EPERM)
754 		ret = 0;
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
759 
760 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
761 {
762 	struct qcom_scm_desc desc = {
763 		.svc = QCOM_SCM_SVC_MP,
764 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
765 		.arginfo = QCOM_SCM_ARGS(2),
766 		.args[0] = size,
767 		.args[1] = spare,
768 		.owner = ARM_SMCCC_OWNER_SIP,
769 	};
770 
771 	return qcom_scm_call(__scm->dev, &desc, NULL);
772 }
773 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
774 
775 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
776 				   u32 cp_nonpixel_start,
777 				   u32 cp_nonpixel_size)
778 {
779 	int ret;
780 	struct qcom_scm_desc desc = {
781 		.svc = QCOM_SCM_SVC_MP,
782 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
783 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
784 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
785 		.args[0] = cp_start,
786 		.args[1] = cp_size,
787 		.args[2] = cp_nonpixel_start,
788 		.args[3] = cp_nonpixel_size,
789 		.owner = ARM_SMCCC_OWNER_SIP,
790 	};
791 	struct qcom_scm_res res;
792 
793 	ret = qcom_scm_call(__scm->dev, &desc, &res);
794 
795 	return ret ? : res.result[0];
796 }
797 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
798 
799 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
800 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
801 				 phys_addr_t dest, size_t dest_sz)
802 {
803 	int ret;
804 	struct qcom_scm_desc desc = {
805 		.svc = QCOM_SCM_SVC_MP,
806 		.cmd = QCOM_SCM_MP_ASSIGN,
807 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
808 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
809 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
810 		.args[0] = mem_region,
811 		.args[1] = mem_sz,
812 		.args[2] = src,
813 		.args[3] = src_sz,
814 		.args[4] = dest,
815 		.args[5] = dest_sz,
816 		.args[6] = 0,
817 		.owner = ARM_SMCCC_OWNER_SIP,
818 	};
819 	struct qcom_scm_res res;
820 
821 	ret = qcom_scm_call(dev, &desc, &res);
822 
823 	return ret ? : res.result[0];
824 }
825 
826 /**
827  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
828  * @mem_addr: mem region whose ownership need to be reassigned
829  * @mem_sz:   size of the region.
830  * @srcvm:    vmid for current set of owners, each set bit in
831  *            flag indicate a unique owner
832  * @newvm:    array having new owners and corresponding permission
833  *            flags
834  * @dest_cnt: number of owners in next set.
835  *
836  * Return negative errno on failure or 0 on success with @srcvm updated.
837  */
838 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
839 			unsigned int *srcvm,
840 			const struct qcom_scm_vmperm *newvm,
841 			unsigned int dest_cnt)
842 {
843 	struct qcom_scm_current_perm_info *destvm;
844 	struct qcom_scm_mem_map_info *mem_to_map;
845 	phys_addr_t mem_to_map_phys;
846 	phys_addr_t dest_phys;
847 	dma_addr_t ptr_phys;
848 	size_t mem_to_map_sz;
849 	size_t dest_sz;
850 	size_t src_sz;
851 	size_t ptr_sz;
852 	int next_vm;
853 	__le32 *src;
854 	void *ptr;
855 	int ret, i, b;
856 	unsigned long srcvm_bits = *srcvm;
857 
858 	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
859 	mem_to_map_sz = sizeof(*mem_to_map);
860 	dest_sz = dest_cnt * sizeof(*destvm);
861 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
862 			ALIGN(dest_sz, SZ_64);
863 
864 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
865 	if (!ptr)
866 		return -ENOMEM;
867 
868 	/* Fill source vmid detail */
869 	src = ptr;
870 	i = 0;
871 	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
872 		src[i++] = cpu_to_le32(b);
873 
874 	/* Fill details of mem buff to map */
875 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
876 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
877 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
878 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
879 
880 	next_vm = 0;
881 	/* Fill details of next vmid detail */
882 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
883 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
884 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
885 		destvm->vmid = cpu_to_le32(newvm->vmid);
886 		destvm->perm = cpu_to_le32(newvm->perm);
887 		destvm->ctx = 0;
888 		destvm->ctx_size = 0;
889 		next_vm |= BIT(newvm->vmid);
890 	}
891 
892 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
893 				    ptr_phys, src_sz, dest_phys, dest_sz);
894 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
895 	if (ret) {
896 		dev_err(__scm->dev,
897 			"Assign memory protection call failed %d\n", ret);
898 		return -EINVAL;
899 	}
900 
901 	*srcvm = next_vm;
902 	return 0;
903 }
904 EXPORT_SYMBOL(qcom_scm_assign_mem);
905 
906 /**
907  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
908  */
909 bool qcom_scm_ocmem_lock_available(void)
910 {
911 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
912 					    QCOM_SCM_OCMEM_LOCK_CMD);
913 }
914 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
915 
916 /**
917  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
918  * region to the specified initiator
919  *
920  * @id:     tz initiator id
921  * @offset: OCMEM offset
922  * @size:   OCMEM size
923  * @mode:   access mode (WIDE/NARROW)
924  */
925 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
926 			u32 mode)
927 {
928 	struct qcom_scm_desc desc = {
929 		.svc = QCOM_SCM_SVC_OCMEM,
930 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
931 		.args[0] = id,
932 		.args[1] = offset,
933 		.args[2] = size,
934 		.args[3] = mode,
935 		.arginfo = QCOM_SCM_ARGS(4),
936 	};
937 
938 	return qcom_scm_call(__scm->dev, &desc, NULL);
939 }
940 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
941 
942 /**
943  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
944  * region from the specified initiator
945  *
946  * @id:     tz initiator id
947  * @offset: OCMEM offset
948  * @size:   OCMEM size
949  */
950 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
951 {
952 	struct qcom_scm_desc desc = {
953 		.svc = QCOM_SCM_SVC_OCMEM,
954 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
955 		.args[0] = id,
956 		.args[1] = offset,
957 		.args[2] = size,
958 		.arginfo = QCOM_SCM_ARGS(3),
959 	};
960 
961 	return qcom_scm_call(__scm->dev, &desc, NULL);
962 }
963 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
964 
965 /**
966  * qcom_scm_ice_available() - Is the ICE key programming interface available?
967  *
968  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
969  *	   qcom_scm_ice_set_key() are available.
970  */
971 bool qcom_scm_ice_available(void)
972 {
973 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
974 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
975 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
976 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
977 }
978 EXPORT_SYMBOL(qcom_scm_ice_available);
979 
980 /**
981  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
982  * @index: the keyslot to invalidate
983  *
984  * The UFSHCI and eMMC standards define a standard way to do this, but it
985  * doesn't work on these SoCs; only this SCM call does.
986  *
987  * It is assumed that the SoC has only one ICE instance being used, as this SCM
988  * call doesn't specify which ICE instance the keyslot belongs to.
989  *
990  * Return: 0 on success; -errno on failure.
991  */
992 int qcom_scm_ice_invalidate_key(u32 index)
993 {
994 	struct qcom_scm_desc desc = {
995 		.svc = QCOM_SCM_SVC_ES,
996 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
997 		.arginfo = QCOM_SCM_ARGS(1),
998 		.args[0] = index,
999 		.owner = ARM_SMCCC_OWNER_SIP,
1000 	};
1001 
1002 	return qcom_scm_call(__scm->dev, &desc, NULL);
1003 }
1004 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1005 
1006 /**
1007  * qcom_scm_ice_set_key() - Set an inline encryption key
1008  * @index: the keyslot into which to set the key
1009  * @key: the key to program
1010  * @key_size: the size of the key in bytes
1011  * @cipher: the encryption algorithm the key is for
1012  * @data_unit_size: the encryption data unit size, i.e. the size of each
1013  *		    individual plaintext and ciphertext.  Given in 512-byte
1014  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1015  *
1016  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1017  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1018  *
1019  * The UFSHCI and eMMC standards define a standard way to do this, but it
1020  * doesn't work on these SoCs; only this SCM call does.
1021  *
1022  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1023  * call doesn't specify which ICE instance the keyslot belongs to.
1024  *
1025  * Return: 0 on success; -errno on failure.
1026  */
1027 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1028 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1029 {
1030 	struct qcom_scm_desc desc = {
1031 		.svc = QCOM_SCM_SVC_ES,
1032 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1033 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1034 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1035 					 QCOM_SCM_VAL),
1036 		.args[0] = index,
1037 		.args[2] = key_size,
1038 		.args[3] = cipher,
1039 		.args[4] = data_unit_size,
1040 		.owner = ARM_SMCCC_OWNER_SIP,
1041 	};
1042 	void *keybuf;
1043 	dma_addr_t key_phys;
1044 	int ret;
1045 
1046 	/*
1047 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1048 	 * physical address that's been properly flushed.  The sanctioned way to
1049 	 * do this is by using the DMA API.  But as is best practice for crypto
1050 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1051 	 * dma_map_single() not clearly correct, since the DMA API can use
1052 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1053 	 * keys is normally rare and thus not performance-critical.
1054 	 */
1055 
1056 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1057 				    GFP_KERNEL);
1058 	if (!keybuf)
1059 		return -ENOMEM;
1060 	memcpy(keybuf, key, key_size);
1061 	desc.args[1] = key_phys;
1062 
1063 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1064 
1065 	memzero_explicit(keybuf, key_size);
1066 
1067 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1071 
1072 /**
1073  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1074  *
1075  * Return true if HDCP is supported, false if not.
1076  */
1077 bool qcom_scm_hdcp_available(void)
1078 {
1079 	bool avail;
1080 	int ret = qcom_scm_clk_enable();
1081 
1082 	if (ret)
1083 		return ret;
1084 
1085 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1086 						QCOM_SCM_HDCP_INVOKE);
1087 
1088 	qcom_scm_clk_disable();
1089 
1090 	return avail;
1091 }
1092 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1093 
1094 /**
1095  * qcom_scm_hdcp_req() - Send HDCP request.
1096  * @req: HDCP request array
1097  * @req_cnt: HDCP request array count
1098  * @resp: response buffer passed to SCM
1099  *
1100  * Write HDCP register(s) through SCM.
1101  */
1102 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1103 {
1104 	int ret;
1105 	struct qcom_scm_desc desc = {
1106 		.svc = QCOM_SCM_SVC_HDCP,
1107 		.cmd = QCOM_SCM_HDCP_INVOKE,
1108 		.arginfo = QCOM_SCM_ARGS(10),
1109 		.args = {
1110 			req[0].addr,
1111 			req[0].val,
1112 			req[1].addr,
1113 			req[1].val,
1114 			req[2].addr,
1115 			req[2].val,
1116 			req[3].addr,
1117 			req[3].val,
1118 			req[4].addr,
1119 			req[4].val
1120 		},
1121 		.owner = ARM_SMCCC_OWNER_SIP,
1122 	};
1123 	struct qcom_scm_res res;
1124 
1125 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1126 		return -ERANGE;
1127 
1128 	ret = qcom_scm_clk_enable();
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1133 	*resp = res.result[0];
1134 
1135 	qcom_scm_clk_disable();
1136 
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1140 
1141 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1142 {
1143 	struct qcom_scm_desc desc = {
1144 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1145 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1146 		.arginfo = QCOM_SCM_ARGS(3),
1147 		.args[0] = sec_id,
1148 		.args[1] = ctx_num,
1149 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1150 		.owner = ARM_SMCCC_OWNER_SIP,
1151 	};
1152 
1153 	return qcom_scm_call(__scm->dev, &desc, NULL);
1154 }
1155 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1156 
1157 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1158 {
1159 	struct qcom_scm_desc desc = {
1160 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1161 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1162 		.arginfo = QCOM_SCM_ARGS(2),
1163 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1164 		.args[1] = en,
1165 		.owner = ARM_SMCCC_OWNER_SIP,
1166 	};
1167 
1168 
1169 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1170 }
1171 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1172 
1173 bool qcom_scm_lmh_dcvsh_available(void)
1174 {
1175 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1176 }
1177 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1178 
1179 int qcom_scm_lmh_profile_change(u32 profile_id)
1180 {
1181 	struct qcom_scm_desc desc = {
1182 		.svc = QCOM_SCM_SVC_LMH,
1183 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1184 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1185 		.args[0] = profile_id,
1186 		.owner = ARM_SMCCC_OWNER_SIP,
1187 	};
1188 
1189 	return qcom_scm_call(__scm->dev, &desc, NULL);
1190 }
1191 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1192 
1193 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1194 		       u64 limit_node, u32 node_id, u64 version)
1195 {
1196 	dma_addr_t payload_phys;
1197 	u32 *payload_buf;
1198 	int ret, payload_size = 5 * sizeof(u32);
1199 
1200 	struct qcom_scm_desc desc = {
1201 		.svc = QCOM_SCM_SVC_LMH,
1202 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1203 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1204 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1205 		.args[1] = payload_size,
1206 		.args[2] = limit_node,
1207 		.args[3] = node_id,
1208 		.args[4] = version,
1209 		.owner = ARM_SMCCC_OWNER_SIP,
1210 	};
1211 
1212 	payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1213 	if (!payload_buf)
1214 		return -ENOMEM;
1215 
1216 	payload_buf[0] = payload_fn;
1217 	payload_buf[1] = 0;
1218 	payload_buf[2] = payload_reg;
1219 	payload_buf[3] = 1;
1220 	payload_buf[4] = payload_val;
1221 
1222 	desc.args[0] = payload_phys;
1223 
1224 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1225 
1226 	dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1227 	return ret;
1228 }
1229 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1230 
1231 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1232 {
1233 	struct device_node *tcsr;
1234 	struct device_node *np = dev->of_node;
1235 	struct resource res;
1236 	u32 offset;
1237 	int ret;
1238 
1239 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1240 	if (!tcsr)
1241 		return 0;
1242 
1243 	ret = of_address_to_resource(tcsr, 0, &res);
1244 	of_node_put(tcsr);
1245 	if (ret)
1246 		return ret;
1247 
1248 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1249 	if (ret < 0)
1250 		return ret;
1251 
1252 	*addr = res.start + offset;
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  * qcom_scm_is_available() - Checks if SCM is available
1259  */
1260 bool qcom_scm_is_available(void)
1261 {
1262 	return !!__scm;
1263 }
1264 EXPORT_SYMBOL(qcom_scm_is_available);
1265 
1266 static int qcom_scm_probe(struct platform_device *pdev)
1267 {
1268 	struct qcom_scm *scm;
1269 	unsigned long clks;
1270 	int ret;
1271 
1272 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1273 	if (!scm)
1274 		return -ENOMEM;
1275 
1276 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1277 	if (ret < 0)
1278 		return ret;
1279 
1280 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1281 
1282 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1283 	if (IS_ERR(scm->core_clk)) {
1284 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1285 			return PTR_ERR(scm->core_clk);
1286 
1287 		if (clks & SCM_HAS_CORE_CLK) {
1288 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1289 			return PTR_ERR(scm->core_clk);
1290 		}
1291 
1292 		scm->core_clk = NULL;
1293 	}
1294 
1295 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1296 	if (IS_ERR(scm->iface_clk)) {
1297 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1298 			return PTR_ERR(scm->iface_clk);
1299 
1300 		if (clks & SCM_HAS_IFACE_CLK) {
1301 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1302 			return PTR_ERR(scm->iface_clk);
1303 		}
1304 
1305 		scm->iface_clk = NULL;
1306 	}
1307 
1308 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1309 	if (IS_ERR(scm->bus_clk)) {
1310 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1311 			return PTR_ERR(scm->bus_clk);
1312 
1313 		if (clks & SCM_HAS_BUS_CLK) {
1314 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1315 			return PTR_ERR(scm->bus_clk);
1316 		}
1317 
1318 		scm->bus_clk = NULL;
1319 	}
1320 
1321 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1322 	scm->reset.nr_resets = 1;
1323 	scm->reset.of_node = pdev->dev.of_node;
1324 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1325 	if (ret)
1326 		return ret;
1327 
1328 	/* vote for max clk rate for highest performance */
1329 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1330 	if (ret)
1331 		return ret;
1332 
1333 	__scm = scm;
1334 	__scm->dev = &pdev->dev;
1335 
1336 	__get_convention();
1337 
1338 	/*
1339 	 * If requested enable "download mode", from this point on warmboot
1340 	 * will cause the the boot stages to enter download mode, unless
1341 	 * disabled below by a clean shutdown/reboot.
1342 	 */
1343 	if (download_mode)
1344 		qcom_scm_set_download_mode(true);
1345 
1346 	return 0;
1347 }
1348 
1349 static void qcom_scm_shutdown(struct platform_device *pdev)
1350 {
1351 	/* Clean shutdown, disable download mode to allow normal restart */
1352 	if (download_mode)
1353 		qcom_scm_set_download_mode(false);
1354 }
1355 
1356 static const struct of_device_id qcom_scm_dt_match[] = {
1357 	{ .compatible = "qcom,scm-apq8064",
1358 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1359 	},
1360 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1361 							     SCM_HAS_IFACE_CLK |
1362 							     SCM_HAS_BUS_CLK)
1363 	},
1364 	{ .compatible = "qcom,scm-ipq4019" },
1365 	{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1366 							     SCM_HAS_IFACE_CLK |
1367 							     SCM_HAS_BUS_CLK) },
1368 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1369 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1370 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1371 							     SCM_HAS_IFACE_CLK |
1372 							     SCM_HAS_BUS_CLK)
1373 	},
1374 	{ .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1375 							     SCM_HAS_IFACE_CLK |
1376 							     SCM_HAS_BUS_CLK)
1377 	},
1378 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1379 							     SCM_HAS_IFACE_CLK |
1380 							     SCM_HAS_BUS_CLK)
1381 	},
1382 	{ .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1383 							     SCM_HAS_IFACE_CLK |
1384 							     SCM_HAS_BUS_CLK)
1385 	},
1386 	{ .compatible = "qcom,scm-msm8994" },
1387 	{ .compatible = "qcom,scm-msm8996" },
1388 	{ .compatible = "qcom,scm" },
1389 	{}
1390 };
1391 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1392 
1393 static struct platform_driver qcom_scm_driver = {
1394 	.driver = {
1395 		.name	= "qcom_scm",
1396 		.of_match_table = qcom_scm_dt_match,
1397 		.suppress_bind_attrs = true,
1398 	},
1399 	.probe = qcom_scm_probe,
1400 	.shutdown = qcom_scm_shutdown,
1401 };
1402 
1403 static int __init qcom_scm_init(void)
1404 {
1405 	return platform_driver_register(&qcom_scm_driver);
1406 }
1407 subsys_initcall(qcom_scm_init);
1408 
1409 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1410 MODULE_LICENSE("GPL v2");
1411