xref: /openbmc/linux/drivers/firmware/memmap.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * linux/drivers/firmware/memmap.c
3  *  Copyright (C) 2008 SUSE LINUX Products GmbH
4  *  by Bernhard Walle <bernhard.walle@gmx.de>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License v2.0 as published by
8  * the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/string.h>
18 #include <linux/firmware-map.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/bootmem.h>
23 #include <linux/slab.h>
24 #include <linux/mm.h>
25 
26 /*
27  * Data types ------------------------------------------------------------------
28  */
29 
30 /*
31  * Firmware map entry. Because firmware memory maps are flat and not
32  * hierarchical, it's ok to organise them in a linked list. No parent
33  * information is necessary as for the resource tree.
34  */
35 struct firmware_map_entry {
36 	/*
37 	 * start and end must be u64 rather than resource_size_t, because e820
38 	 * resources can lie at addresses above 4G.
39 	 */
40 	u64			start;	/* start of the memory range */
41 	u64			end;	/* end of the memory range (incl.) */
42 	const char		*type;	/* type of the memory range */
43 	struct list_head	list;	/* entry for the linked list */
44 	struct kobject		kobj;   /* kobject for each entry */
45 };
46 
47 /*
48  * Forward declarations --------------------------------------------------------
49  */
50 static ssize_t memmap_attr_show(struct kobject *kobj,
51 				struct attribute *attr, char *buf);
52 static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
53 static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
54 static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
55 
56 static struct firmware_map_entry * __meminit
57 firmware_map_find_entry(u64 start, u64 end, const char *type);
58 
59 /*
60  * Static data -----------------------------------------------------------------
61  */
62 
63 struct memmap_attribute {
64 	struct attribute attr;
65 	ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
66 };
67 
68 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
69 static struct memmap_attribute memmap_end_attr   = __ATTR_RO(end);
70 static struct memmap_attribute memmap_type_attr  = __ATTR_RO(type);
71 
72 /*
73  * These are default attributes that are added for every memmap entry.
74  */
75 static struct attribute *def_attrs[] = {
76 	&memmap_start_attr.attr,
77 	&memmap_end_attr.attr,
78 	&memmap_type_attr.attr,
79 	NULL
80 };
81 
82 static const struct sysfs_ops memmap_attr_ops = {
83 	.show = memmap_attr_show,
84 };
85 
86 /* Firmware memory map entries. */
87 static LIST_HEAD(map_entries);
88 static DEFINE_SPINLOCK(map_entries_lock);
89 
90 /*
91  * For memory hotplug, there is no way to free memory map entries allocated
92  * by boot mem after the system is up. So when we hot-remove memory whose
93  * map entry is allocated by bootmem, we need to remember the storage and
94  * reuse it when the memory is hot-added again.
95  */
96 static LIST_HEAD(map_entries_bootmem);
97 static DEFINE_SPINLOCK(map_entries_bootmem_lock);
98 
99 
100 static inline struct firmware_map_entry *
101 to_memmap_entry(struct kobject *kobj)
102 {
103 	return container_of(kobj, struct firmware_map_entry, kobj);
104 }
105 
106 static void __meminit release_firmware_map_entry(struct kobject *kobj)
107 {
108 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
109 
110 	if (PageReserved(virt_to_page(entry))) {
111 		/*
112 		 * Remember the storage allocated by bootmem, and reuse it when
113 		 * the memory is hot-added again. The entry will be added to
114 		 * map_entries_bootmem here, and deleted from &map_entries in
115 		 * firmware_map_remove_entry().
116 		 */
117 		spin_lock(&map_entries_bootmem_lock);
118 		list_add(&entry->list, &map_entries_bootmem);
119 		spin_unlock(&map_entries_bootmem_lock);
120 
121 		return;
122 	}
123 
124 	kfree(entry);
125 }
126 
127 static struct kobj_type __refdata memmap_ktype = {
128 	.release	= release_firmware_map_entry,
129 	.sysfs_ops	= &memmap_attr_ops,
130 	.default_attrs	= def_attrs,
131 };
132 
133 /*
134  * Registration functions ------------------------------------------------------
135  */
136 
137 /**
138  * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
139  * @start: Start of the memory range.
140  * @end:   End of the memory range (exclusive).
141  * @type:  Type of the memory range.
142  * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
143  *         entry.
144  *
145  * Common implementation of firmware_map_add() and firmware_map_add_early()
146  * which expects a pre-allocated struct firmware_map_entry.
147  *
148  * Return: 0 always
149  */
150 static int firmware_map_add_entry(u64 start, u64 end,
151 				  const char *type,
152 				  struct firmware_map_entry *entry)
153 {
154 	BUG_ON(start > end);
155 
156 	entry->start = start;
157 	entry->end = end - 1;
158 	entry->type = type;
159 	INIT_LIST_HEAD(&entry->list);
160 	kobject_init(&entry->kobj, &memmap_ktype);
161 
162 	spin_lock(&map_entries_lock);
163 	list_add_tail(&entry->list, &map_entries);
164 	spin_unlock(&map_entries_lock);
165 
166 	return 0;
167 }
168 
169 /**
170  * firmware_map_remove_entry() - Does the real work to remove a firmware
171  * memmap entry.
172  * @entry: removed entry.
173  *
174  * The caller must hold map_entries_lock, and release it properly.
175  */
176 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
177 {
178 	list_del(&entry->list);
179 }
180 
181 /*
182  * Add memmap entry on sysfs
183  */
184 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
185 {
186 	static int map_entries_nr;
187 	static struct kset *mmap_kset;
188 
189 	if (entry->kobj.state_in_sysfs)
190 		return -EEXIST;
191 
192 	if (!mmap_kset) {
193 		mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
194 		if (!mmap_kset)
195 			return -ENOMEM;
196 	}
197 
198 	entry->kobj.kset = mmap_kset;
199 	if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
200 		kobject_put(&entry->kobj);
201 
202 	return 0;
203 }
204 
205 /*
206  * Remove memmap entry on sysfs
207  */
208 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
209 {
210 	kobject_put(&entry->kobj);
211 }
212 
213 /**
214  * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
215  * @start: Start of the memory range.
216  * @end:   End of the memory range (exclusive).
217  * @type:  Type of the memory range.
218  * @list:  In which to find the entry.
219  *
220  * This function is to find the memmap entey of a given memory range in a
221  * given list. The caller must hold map_entries_lock, and must not release
222  * the lock until the processing of the returned entry has completed.
223  *
224  * Return: Pointer to the entry to be found on success, or NULL on failure.
225  */
226 static struct firmware_map_entry * __meminit
227 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
228 				struct list_head *list)
229 {
230 	struct firmware_map_entry *entry;
231 
232 	list_for_each_entry(entry, list, list)
233 		if ((entry->start == start) && (entry->end == end) &&
234 		    (!strcmp(entry->type, type))) {
235 			return entry;
236 		}
237 
238 	return NULL;
239 }
240 
241 /**
242  * firmware_map_find_entry() - Search memmap entry in map_entries.
243  * @start: Start of the memory range.
244  * @end:   End of the memory range (exclusive).
245  * @type:  Type of the memory range.
246  *
247  * This function is to find the memmap entey of a given memory range.
248  * The caller must hold map_entries_lock, and must not release the lock
249  * until the processing of the returned entry has completed.
250  *
251  * Return: Pointer to the entry to be found on success, or NULL on failure.
252  */
253 static struct firmware_map_entry * __meminit
254 firmware_map_find_entry(u64 start, u64 end, const char *type)
255 {
256 	return firmware_map_find_entry_in_list(start, end, type, &map_entries);
257 }
258 
259 /**
260  * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
261  * @start: Start of the memory range.
262  * @end:   End of the memory range (exclusive).
263  * @type:  Type of the memory range.
264  *
265  * This function is similar to firmware_map_find_entry except that it find the
266  * given entry in map_entries_bootmem.
267  *
268  * Return: Pointer to the entry to be found on success, or NULL on failure.
269  */
270 static struct firmware_map_entry * __meminit
271 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
272 {
273 	return firmware_map_find_entry_in_list(start, end, type,
274 					       &map_entries_bootmem);
275 }
276 
277 /**
278  * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
279  * memory hotplug.
280  * @start: Start of the memory range.
281  * @end:   End of the memory range (exclusive)
282  * @type:  Type of the memory range.
283  *
284  * Adds a firmware mapping entry. This function is for memory hotplug, it is
285  * similar to function firmware_map_add_early(). The only difference is that
286  * it will create the syfs entry dynamically.
287  *
288  * Return: 0 on success, or -ENOMEM if no memory could be allocated.
289  */
290 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
291 {
292 	struct firmware_map_entry *entry;
293 
294 	entry = firmware_map_find_entry(start, end - 1, type);
295 	if (entry)
296 		return 0;
297 
298 	entry = firmware_map_find_entry_bootmem(start, end - 1, type);
299 	if (!entry) {
300 		entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
301 		if (!entry)
302 			return -ENOMEM;
303 	} else {
304 		/* Reuse storage allocated by bootmem. */
305 		spin_lock(&map_entries_bootmem_lock);
306 		list_del(&entry->list);
307 		spin_unlock(&map_entries_bootmem_lock);
308 
309 		memset(entry, 0, sizeof(*entry));
310 	}
311 
312 	firmware_map_add_entry(start, end, type, entry);
313 	/* create the memmap entry */
314 	add_sysfs_fw_map_entry(entry);
315 
316 	return 0;
317 }
318 
319 /**
320  * firmware_map_add_early() - Adds a firmware mapping entry.
321  * @start: Start of the memory range.
322  * @end:   End of the memory range.
323  * @type:  Type of the memory range.
324  *
325  * Adds a firmware mapping entry. This function uses the bootmem allocator
326  * for memory allocation.
327  *
328  * That function must be called before late_initcall.
329  *
330  * Return: 0 on success, or -ENOMEM if no memory could be allocated.
331  */
332 int __init firmware_map_add_early(u64 start, u64 end, const char *type)
333 {
334 	struct firmware_map_entry *entry;
335 
336 	entry = memblock_virt_alloc(sizeof(struct firmware_map_entry), 0);
337 	if (WARN_ON(!entry))
338 		return -ENOMEM;
339 
340 	return firmware_map_add_entry(start, end, type, entry);
341 }
342 
343 /**
344  * firmware_map_remove() - remove a firmware mapping entry
345  * @start: Start of the memory range.
346  * @end:   End of the memory range.
347  * @type:  Type of the memory range.
348  *
349  * removes a firmware mapping entry.
350  *
351  * Return: 0 on success, or -EINVAL if no entry.
352  */
353 int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
354 {
355 	struct firmware_map_entry *entry;
356 
357 	spin_lock(&map_entries_lock);
358 	entry = firmware_map_find_entry(start, end - 1, type);
359 	if (!entry) {
360 		spin_unlock(&map_entries_lock);
361 		return -EINVAL;
362 	}
363 
364 	firmware_map_remove_entry(entry);
365 	spin_unlock(&map_entries_lock);
366 
367 	/* remove the memmap entry */
368 	remove_sysfs_fw_map_entry(entry);
369 
370 	return 0;
371 }
372 
373 /*
374  * Sysfs functions -------------------------------------------------------------
375  */
376 
377 static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
378 {
379 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
380 		(unsigned long long)entry->start);
381 }
382 
383 static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
384 {
385 	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
386 		(unsigned long long)entry->end);
387 }
388 
389 static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
390 {
391 	return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
392 }
393 
394 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
395 {
396 	return container_of(attr, struct memmap_attribute, attr);
397 }
398 
399 static ssize_t memmap_attr_show(struct kobject *kobj,
400 				struct attribute *attr, char *buf)
401 {
402 	struct firmware_map_entry *entry = to_memmap_entry(kobj);
403 	struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
404 
405 	return memmap_attr->show(entry, buf);
406 }
407 
408 /*
409  * Initialises stuff and adds the entries in the map_entries list to
410  * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
411  * must be called before late_initcall. That's just because that function
412  * is called as late_initcall() function, which means that if you call
413  * firmware_map_add() or firmware_map_add_early() afterwards, the entries
414  * are not added to sysfs.
415  */
416 static int __init firmware_memmap_init(void)
417 {
418 	struct firmware_map_entry *entry;
419 
420 	list_for_each_entry(entry, &map_entries, list)
421 		add_sysfs_fw_map_entry(entry);
422 
423 	return 0;
424 }
425 late_initcall(firmware_memmap_init);
426 
427