1 /* 2 * linux/drivers/firmware/memmap.c 3 * Copyright (C) 2008 SUSE LINUX Products GmbH 4 * by Bernhard Walle <bernhard.walle@gmx.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License v2.0 as published by 8 * the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 #include <linux/string.h> 18 #include <linux/firmware-map.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/types.h> 22 #include <linux/bootmem.h> 23 #include <linux/slab.h> 24 #include <linux/mm.h> 25 26 /* 27 * Data types ------------------------------------------------------------------ 28 */ 29 30 /* 31 * Firmware map entry. Because firmware memory maps are flat and not 32 * hierarchical, it's ok to organise them in a linked list. No parent 33 * information is necessary as for the resource tree. 34 */ 35 struct firmware_map_entry { 36 /* 37 * start and end must be u64 rather than resource_size_t, because e820 38 * resources can lie at addresses above 4G. 39 */ 40 u64 start; /* start of the memory range */ 41 u64 end; /* end of the memory range (incl.) */ 42 const char *type; /* type of the memory range */ 43 struct list_head list; /* entry for the linked list */ 44 struct kobject kobj; /* kobject for each entry */ 45 }; 46 47 /* 48 * Forward declarations -------------------------------------------------------- 49 */ 50 static ssize_t memmap_attr_show(struct kobject *kobj, 51 struct attribute *attr, char *buf); 52 static ssize_t start_show(struct firmware_map_entry *entry, char *buf); 53 static ssize_t end_show(struct firmware_map_entry *entry, char *buf); 54 static ssize_t type_show(struct firmware_map_entry *entry, char *buf); 55 56 static struct firmware_map_entry * __meminit 57 firmware_map_find_entry(u64 start, u64 end, const char *type); 58 59 /* 60 * Static data ----------------------------------------------------------------- 61 */ 62 63 struct memmap_attribute { 64 struct attribute attr; 65 ssize_t (*show)(struct firmware_map_entry *entry, char *buf); 66 }; 67 68 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start); 69 static struct memmap_attribute memmap_end_attr = __ATTR_RO(end); 70 static struct memmap_attribute memmap_type_attr = __ATTR_RO(type); 71 72 /* 73 * These are default attributes that are added for every memmap entry. 74 */ 75 static struct attribute *def_attrs[] = { 76 &memmap_start_attr.attr, 77 &memmap_end_attr.attr, 78 &memmap_type_attr.attr, 79 NULL 80 }; 81 82 static const struct sysfs_ops memmap_attr_ops = { 83 .show = memmap_attr_show, 84 }; 85 86 /* Firmware memory map entries. */ 87 static LIST_HEAD(map_entries); 88 static DEFINE_SPINLOCK(map_entries_lock); 89 90 /* 91 * For memory hotplug, there is no way to free memory map entries allocated 92 * by boot mem after the system is up. So when we hot-remove memory whose 93 * map entry is allocated by bootmem, we need to remember the storage and 94 * reuse it when the memory is hot-added again. 95 */ 96 static LIST_HEAD(map_entries_bootmem); 97 static DEFINE_SPINLOCK(map_entries_bootmem_lock); 98 99 100 static inline struct firmware_map_entry * 101 to_memmap_entry(struct kobject *kobj) 102 { 103 return container_of(kobj, struct firmware_map_entry, kobj); 104 } 105 106 static void __meminit release_firmware_map_entry(struct kobject *kobj) 107 { 108 struct firmware_map_entry *entry = to_memmap_entry(kobj); 109 110 if (PageReserved(virt_to_page(entry))) { 111 /* 112 * Remember the storage allocated by bootmem, and reuse it when 113 * the memory is hot-added again. The entry will be added to 114 * map_entries_bootmem here, and deleted from &map_entries in 115 * firmware_map_remove_entry(). 116 */ 117 if (firmware_map_find_entry(entry->start, entry->end, 118 entry->type)) { 119 spin_lock(&map_entries_bootmem_lock); 120 list_add(&entry->list, &map_entries_bootmem); 121 spin_unlock(&map_entries_bootmem_lock); 122 } 123 124 return; 125 } 126 127 kfree(entry); 128 } 129 130 static struct kobj_type __refdata memmap_ktype = { 131 .release = release_firmware_map_entry, 132 .sysfs_ops = &memmap_attr_ops, 133 .default_attrs = def_attrs, 134 }; 135 136 /* 137 * Registration functions ------------------------------------------------------ 138 */ 139 140 /** 141 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry. 142 * @start: Start of the memory range. 143 * @end: End of the memory range (exclusive). 144 * @type: Type of the memory range. 145 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised 146 * entry. 147 * 148 * Common implementation of firmware_map_add() and firmware_map_add_early() 149 * which expects a pre-allocated struct firmware_map_entry. 150 **/ 151 static int firmware_map_add_entry(u64 start, u64 end, 152 const char *type, 153 struct firmware_map_entry *entry) 154 { 155 BUG_ON(start > end); 156 157 entry->start = start; 158 entry->end = end - 1; 159 entry->type = type; 160 INIT_LIST_HEAD(&entry->list); 161 kobject_init(&entry->kobj, &memmap_ktype); 162 163 spin_lock(&map_entries_lock); 164 list_add_tail(&entry->list, &map_entries); 165 spin_unlock(&map_entries_lock); 166 167 return 0; 168 } 169 170 /** 171 * firmware_map_remove_entry() - Does the real work to remove a firmware 172 * memmap entry. 173 * @entry: removed entry. 174 * 175 * The caller must hold map_entries_lock, and release it properly. 176 **/ 177 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry) 178 { 179 list_del(&entry->list); 180 } 181 182 /* 183 * Add memmap entry on sysfs 184 */ 185 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry) 186 { 187 static int map_entries_nr; 188 static struct kset *mmap_kset; 189 190 if (!mmap_kset) { 191 mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj); 192 if (!mmap_kset) 193 return -ENOMEM; 194 } 195 196 entry->kobj.kset = mmap_kset; 197 if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++)) 198 kobject_put(&entry->kobj); 199 200 return 0; 201 } 202 203 /* 204 * Remove memmap entry on sysfs 205 */ 206 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry) 207 { 208 kobject_put(&entry->kobj); 209 } 210 211 /* 212 * firmware_map_find_entry_in_list() - Search memmap entry in a given list. 213 * @start: Start of the memory range. 214 * @end: End of the memory range (exclusive). 215 * @type: Type of the memory range. 216 * @list: In which to find the entry. 217 * 218 * This function is to find the memmap entey of a given memory range in a 219 * given list. The caller must hold map_entries_lock, and must not release 220 * the lock until the processing of the returned entry has completed. 221 * 222 * Return: Pointer to the entry to be found on success, or NULL on failure. 223 */ 224 static struct firmware_map_entry * __meminit 225 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type, 226 struct list_head *list) 227 { 228 struct firmware_map_entry *entry; 229 230 list_for_each_entry(entry, list, list) 231 if ((entry->start == start) && (entry->end == end) && 232 (!strcmp(entry->type, type))) { 233 return entry; 234 } 235 236 return NULL; 237 } 238 239 /* 240 * firmware_map_find_entry() - Search memmap entry in map_entries. 241 * @start: Start of the memory range. 242 * @end: End of the memory range (exclusive). 243 * @type: Type of the memory range. 244 * 245 * This function is to find the memmap entey of a given memory range. 246 * The caller must hold map_entries_lock, and must not release the lock 247 * until the processing of the returned entry has completed. 248 * 249 * Return: Pointer to the entry to be found on success, or NULL on failure. 250 */ 251 static struct firmware_map_entry * __meminit 252 firmware_map_find_entry(u64 start, u64 end, const char *type) 253 { 254 return firmware_map_find_entry_in_list(start, end, type, &map_entries); 255 } 256 257 /* 258 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem. 259 * @start: Start of the memory range. 260 * @end: End of the memory range (exclusive). 261 * @type: Type of the memory range. 262 * 263 * This function is similar to firmware_map_find_entry except that it find the 264 * given entry in map_entries_bootmem. 265 * 266 * Return: Pointer to the entry to be found on success, or NULL on failure. 267 */ 268 static struct firmware_map_entry * __meminit 269 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type) 270 { 271 return firmware_map_find_entry_in_list(start, end, type, 272 &map_entries_bootmem); 273 } 274 275 /** 276 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do 277 * memory hotplug. 278 * @start: Start of the memory range. 279 * @end: End of the memory range (exclusive) 280 * @type: Type of the memory range. 281 * 282 * Adds a firmware mapping entry. This function is for memory hotplug, it is 283 * similar to function firmware_map_add_early(). The only difference is that 284 * it will create the syfs entry dynamically. 285 * 286 * Returns 0 on success, or -ENOMEM if no memory could be allocated. 287 **/ 288 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type) 289 { 290 struct firmware_map_entry *entry; 291 292 entry = firmware_map_find_entry_bootmem(start, end, type); 293 if (!entry) { 294 entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC); 295 if (!entry) 296 return -ENOMEM; 297 } else { 298 /* Reuse storage allocated by bootmem. */ 299 spin_lock(&map_entries_bootmem_lock); 300 list_del(&entry->list); 301 spin_unlock(&map_entries_bootmem_lock); 302 303 memset(entry, 0, sizeof(*entry)); 304 } 305 306 firmware_map_add_entry(start, end, type, entry); 307 /* create the memmap entry */ 308 add_sysfs_fw_map_entry(entry); 309 310 return 0; 311 } 312 313 /** 314 * firmware_map_add_early() - Adds a firmware mapping entry. 315 * @start: Start of the memory range. 316 * @end: End of the memory range. 317 * @type: Type of the memory range. 318 * 319 * Adds a firmware mapping entry. This function uses the bootmem allocator 320 * for memory allocation. 321 * 322 * That function must be called before late_initcall. 323 * 324 * Returns 0 on success, or -ENOMEM if no memory could be allocated. 325 **/ 326 int __init firmware_map_add_early(u64 start, u64 end, const char *type) 327 { 328 struct firmware_map_entry *entry; 329 330 entry = alloc_bootmem(sizeof(struct firmware_map_entry)); 331 if (WARN_ON(!entry)) 332 return -ENOMEM; 333 334 return firmware_map_add_entry(start, end, type, entry); 335 } 336 337 /** 338 * firmware_map_remove() - remove a firmware mapping entry 339 * @start: Start of the memory range. 340 * @end: End of the memory range. 341 * @type: Type of the memory range. 342 * 343 * removes a firmware mapping entry. 344 * 345 * Returns 0 on success, or -EINVAL if no entry. 346 **/ 347 int __meminit firmware_map_remove(u64 start, u64 end, const char *type) 348 { 349 struct firmware_map_entry *entry; 350 351 spin_lock(&map_entries_lock); 352 entry = firmware_map_find_entry(start, end - 1, type); 353 if (!entry) { 354 spin_unlock(&map_entries_lock); 355 return -EINVAL; 356 } 357 358 firmware_map_remove_entry(entry); 359 spin_unlock(&map_entries_lock); 360 361 /* remove the memmap entry */ 362 remove_sysfs_fw_map_entry(entry); 363 364 return 0; 365 } 366 367 /* 368 * Sysfs functions ------------------------------------------------------------- 369 */ 370 371 static ssize_t start_show(struct firmware_map_entry *entry, char *buf) 372 { 373 return snprintf(buf, PAGE_SIZE, "0x%llx\n", 374 (unsigned long long)entry->start); 375 } 376 377 static ssize_t end_show(struct firmware_map_entry *entry, char *buf) 378 { 379 return snprintf(buf, PAGE_SIZE, "0x%llx\n", 380 (unsigned long long)entry->end); 381 } 382 383 static ssize_t type_show(struct firmware_map_entry *entry, char *buf) 384 { 385 return snprintf(buf, PAGE_SIZE, "%s\n", entry->type); 386 } 387 388 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr) 389 { 390 return container_of(attr, struct memmap_attribute, attr); 391 } 392 393 static ssize_t memmap_attr_show(struct kobject *kobj, 394 struct attribute *attr, char *buf) 395 { 396 struct firmware_map_entry *entry = to_memmap_entry(kobj); 397 struct memmap_attribute *memmap_attr = to_memmap_attr(attr); 398 399 return memmap_attr->show(entry, buf); 400 } 401 402 /* 403 * Initialises stuff and adds the entries in the map_entries list to 404 * sysfs. Important is that firmware_map_add() and firmware_map_add_early() 405 * must be called before late_initcall. That's just because that function 406 * is called as late_initcall() function, which means that if you call 407 * firmware_map_add() or firmware_map_add_early() afterwards, the entries 408 * are not added to sysfs. 409 */ 410 static int __init firmware_memmap_init(void) 411 { 412 struct firmware_map_entry *entry; 413 414 list_for_each_entry(entry, &map_entries, list) 415 add_sysfs_fw_map_entry(entry); 416 417 return 0; 418 } 419 late_initcall(firmware_memmap_init); 420 421