1 /* 2 * linux/drivers/firmware/memmap.c 3 * Copyright (C) 2008 SUSE LINUX Products GmbH 4 * by Bernhard Walle <bernhard.walle@gmx.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License v2.0 as published by 8 * the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 #include <linux/string.h> 18 #include <linux/firmware-map.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/types.h> 22 #include <linux/bootmem.h> 23 #include <linux/slab.h> 24 #include <linux/mm.h> 25 26 /* 27 * Data types ------------------------------------------------------------------ 28 */ 29 30 /* 31 * Firmware map entry. Because firmware memory maps are flat and not 32 * hierarchical, it's ok to organise them in a linked list. No parent 33 * information is necessary as for the resource tree. 34 */ 35 struct firmware_map_entry { 36 /* 37 * start and end must be u64 rather than resource_size_t, because e820 38 * resources can lie at addresses above 4G. 39 */ 40 u64 start; /* start of the memory range */ 41 u64 end; /* end of the memory range (incl.) */ 42 const char *type; /* type of the memory range */ 43 struct list_head list; /* entry for the linked list */ 44 struct kobject kobj; /* kobject for each entry */ 45 }; 46 47 /* 48 * Forward declarations -------------------------------------------------------- 49 */ 50 static ssize_t memmap_attr_show(struct kobject *kobj, 51 struct attribute *attr, char *buf); 52 static ssize_t start_show(struct firmware_map_entry *entry, char *buf); 53 static ssize_t end_show(struct firmware_map_entry *entry, char *buf); 54 static ssize_t type_show(struct firmware_map_entry *entry, char *buf); 55 56 static struct firmware_map_entry * __meminit 57 firmware_map_find_entry(u64 start, u64 end, const char *type); 58 59 /* 60 * Static data ----------------------------------------------------------------- 61 */ 62 63 struct memmap_attribute { 64 struct attribute attr; 65 ssize_t (*show)(struct firmware_map_entry *entry, char *buf); 66 }; 67 68 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start); 69 static struct memmap_attribute memmap_end_attr = __ATTR_RO(end); 70 static struct memmap_attribute memmap_type_attr = __ATTR_RO(type); 71 72 /* 73 * These are default attributes that are added for every memmap entry. 74 */ 75 static struct attribute *def_attrs[] = { 76 &memmap_start_attr.attr, 77 &memmap_end_attr.attr, 78 &memmap_type_attr.attr, 79 NULL 80 }; 81 82 static const struct sysfs_ops memmap_attr_ops = { 83 .show = memmap_attr_show, 84 }; 85 86 /* Firmware memory map entries. */ 87 static LIST_HEAD(map_entries); 88 static DEFINE_SPINLOCK(map_entries_lock); 89 90 /* 91 * For memory hotplug, there is no way to free memory map entries allocated 92 * by boot mem after the system is up. So when we hot-remove memory whose 93 * map entry is allocated by bootmem, we need to remember the storage and 94 * reuse it when the memory is hot-added again. 95 */ 96 static LIST_HEAD(map_entries_bootmem); 97 static DEFINE_SPINLOCK(map_entries_bootmem_lock); 98 99 100 static inline struct firmware_map_entry * 101 to_memmap_entry(struct kobject *kobj) 102 { 103 return container_of(kobj, struct firmware_map_entry, kobj); 104 } 105 106 static void __meminit release_firmware_map_entry(struct kobject *kobj) 107 { 108 struct firmware_map_entry *entry = to_memmap_entry(kobj); 109 110 if (PageReserved(virt_to_page(entry))) { 111 /* 112 * Remember the storage allocated by bootmem, and reuse it when 113 * the memory is hot-added again. The entry will be added to 114 * map_entries_bootmem here, and deleted from &map_entries in 115 * firmware_map_remove_entry(). 116 */ 117 spin_lock(&map_entries_bootmem_lock); 118 list_add(&entry->list, &map_entries_bootmem); 119 spin_unlock(&map_entries_bootmem_lock); 120 121 return; 122 } 123 124 kfree(entry); 125 } 126 127 static struct kobj_type __refdata memmap_ktype = { 128 .release = release_firmware_map_entry, 129 .sysfs_ops = &memmap_attr_ops, 130 .default_attrs = def_attrs, 131 }; 132 133 /* 134 * Registration functions ------------------------------------------------------ 135 */ 136 137 /** 138 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry. 139 * @start: Start of the memory range. 140 * @end: End of the memory range (exclusive). 141 * @type: Type of the memory range. 142 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised 143 * entry. 144 * 145 * Common implementation of firmware_map_add() and firmware_map_add_early() 146 * which expects a pre-allocated struct firmware_map_entry. 147 **/ 148 static int firmware_map_add_entry(u64 start, u64 end, 149 const char *type, 150 struct firmware_map_entry *entry) 151 { 152 BUG_ON(start > end); 153 154 entry->start = start; 155 entry->end = end - 1; 156 entry->type = type; 157 INIT_LIST_HEAD(&entry->list); 158 kobject_init(&entry->kobj, &memmap_ktype); 159 160 spin_lock(&map_entries_lock); 161 list_add_tail(&entry->list, &map_entries); 162 spin_unlock(&map_entries_lock); 163 164 return 0; 165 } 166 167 /** 168 * firmware_map_remove_entry() - Does the real work to remove a firmware 169 * memmap entry. 170 * @entry: removed entry. 171 * 172 * The caller must hold map_entries_lock, and release it properly. 173 **/ 174 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry) 175 { 176 list_del(&entry->list); 177 } 178 179 /* 180 * Add memmap entry on sysfs 181 */ 182 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry) 183 { 184 static int map_entries_nr; 185 static struct kset *mmap_kset; 186 187 if (entry->kobj.state_in_sysfs) 188 return -EEXIST; 189 190 if (!mmap_kset) { 191 mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj); 192 if (!mmap_kset) 193 return -ENOMEM; 194 } 195 196 entry->kobj.kset = mmap_kset; 197 if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++)) 198 kobject_put(&entry->kobj); 199 200 return 0; 201 } 202 203 /* 204 * Remove memmap entry on sysfs 205 */ 206 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry) 207 { 208 kobject_put(&entry->kobj); 209 } 210 211 /* 212 * firmware_map_find_entry_in_list() - Search memmap entry in a given list. 213 * @start: Start of the memory range. 214 * @end: End of the memory range (exclusive). 215 * @type: Type of the memory range. 216 * @list: In which to find the entry. 217 * 218 * This function is to find the memmap entey of a given memory range in a 219 * given list. The caller must hold map_entries_lock, and must not release 220 * the lock until the processing of the returned entry has completed. 221 * 222 * Return: Pointer to the entry to be found on success, or NULL on failure. 223 */ 224 static struct firmware_map_entry * __meminit 225 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type, 226 struct list_head *list) 227 { 228 struct firmware_map_entry *entry; 229 230 list_for_each_entry(entry, list, list) 231 if ((entry->start == start) && (entry->end == end) && 232 (!strcmp(entry->type, type))) { 233 return entry; 234 } 235 236 return NULL; 237 } 238 239 /* 240 * firmware_map_find_entry() - Search memmap entry in map_entries. 241 * @start: Start of the memory range. 242 * @end: End of the memory range (exclusive). 243 * @type: Type of the memory range. 244 * 245 * This function is to find the memmap entey of a given memory range. 246 * The caller must hold map_entries_lock, and must not release the lock 247 * until the processing of the returned entry has completed. 248 * 249 * Return: Pointer to the entry to be found on success, or NULL on failure. 250 */ 251 static struct firmware_map_entry * __meminit 252 firmware_map_find_entry(u64 start, u64 end, const char *type) 253 { 254 return firmware_map_find_entry_in_list(start, end, type, &map_entries); 255 } 256 257 /* 258 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem. 259 * @start: Start of the memory range. 260 * @end: End of the memory range (exclusive). 261 * @type: Type of the memory range. 262 * 263 * This function is similar to firmware_map_find_entry except that it find the 264 * given entry in map_entries_bootmem. 265 * 266 * Return: Pointer to the entry to be found on success, or NULL on failure. 267 */ 268 static struct firmware_map_entry * __meminit 269 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type) 270 { 271 return firmware_map_find_entry_in_list(start, end, type, 272 &map_entries_bootmem); 273 } 274 275 /** 276 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do 277 * memory hotplug. 278 * @start: Start of the memory range. 279 * @end: End of the memory range (exclusive) 280 * @type: Type of the memory range. 281 * 282 * Adds a firmware mapping entry. This function is for memory hotplug, it is 283 * similar to function firmware_map_add_early(). The only difference is that 284 * it will create the syfs entry dynamically. 285 * 286 * Returns 0 on success, or -ENOMEM if no memory could be allocated. 287 **/ 288 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type) 289 { 290 struct firmware_map_entry *entry; 291 292 entry = firmware_map_find_entry(start, end - 1, type); 293 if (entry) 294 return 0; 295 296 entry = firmware_map_find_entry_bootmem(start, end - 1, type); 297 if (!entry) { 298 entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC); 299 if (!entry) 300 return -ENOMEM; 301 } else { 302 /* Reuse storage allocated by bootmem. */ 303 spin_lock(&map_entries_bootmem_lock); 304 list_del(&entry->list); 305 spin_unlock(&map_entries_bootmem_lock); 306 307 memset(entry, 0, sizeof(*entry)); 308 } 309 310 firmware_map_add_entry(start, end, type, entry); 311 /* create the memmap entry */ 312 add_sysfs_fw_map_entry(entry); 313 314 return 0; 315 } 316 317 /** 318 * firmware_map_add_early() - Adds a firmware mapping entry. 319 * @start: Start of the memory range. 320 * @end: End of the memory range. 321 * @type: Type of the memory range. 322 * 323 * Adds a firmware mapping entry. This function uses the bootmem allocator 324 * for memory allocation. 325 * 326 * That function must be called before late_initcall. 327 * 328 * Returns 0 on success, or -ENOMEM if no memory could be allocated. 329 **/ 330 int __init firmware_map_add_early(u64 start, u64 end, const char *type) 331 { 332 struct firmware_map_entry *entry; 333 334 entry = memblock_virt_alloc(sizeof(struct firmware_map_entry), 0); 335 if (WARN_ON(!entry)) 336 return -ENOMEM; 337 338 return firmware_map_add_entry(start, end, type, entry); 339 } 340 341 /** 342 * firmware_map_remove() - remove a firmware mapping entry 343 * @start: Start of the memory range. 344 * @end: End of the memory range. 345 * @type: Type of the memory range. 346 * 347 * removes a firmware mapping entry. 348 * 349 * Returns 0 on success, or -EINVAL if no entry. 350 **/ 351 int __meminit firmware_map_remove(u64 start, u64 end, const char *type) 352 { 353 struct firmware_map_entry *entry; 354 355 spin_lock(&map_entries_lock); 356 entry = firmware_map_find_entry(start, end - 1, type); 357 if (!entry) { 358 spin_unlock(&map_entries_lock); 359 return -EINVAL; 360 } 361 362 firmware_map_remove_entry(entry); 363 spin_unlock(&map_entries_lock); 364 365 /* remove the memmap entry */ 366 remove_sysfs_fw_map_entry(entry); 367 368 return 0; 369 } 370 371 /* 372 * Sysfs functions ------------------------------------------------------------- 373 */ 374 375 static ssize_t start_show(struct firmware_map_entry *entry, char *buf) 376 { 377 return snprintf(buf, PAGE_SIZE, "0x%llx\n", 378 (unsigned long long)entry->start); 379 } 380 381 static ssize_t end_show(struct firmware_map_entry *entry, char *buf) 382 { 383 return snprintf(buf, PAGE_SIZE, "0x%llx\n", 384 (unsigned long long)entry->end); 385 } 386 387 static ssize_t type_show(struct firmware_map_entry *entry, char *buf) 388 { 389 return snprintf(buf, PAGE_SIZE, "%s\n", entry->type); 390 } 391 392 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr) 393 { 394 return container_of(attr, struct memmap_attribute, attr); 395 } 396 397 static ssize_t memmap_attr_show(struct kobject *kobj, 398 struct attribute *attr, char *buf) 399 { 400 struct firmware_map_entry *entry = to_memmap_entry(kobj); 401 struct memmap_attribute *memmap_attr = to_memmap_attr(attr); 402 403 return memmap_attr->show(entry, buf); 404 } 405 406 /* 407 * Initialises stuff and adds the entries in the map_entries list to 408 * sysfs. Important is that firmware_map_add() and firmware_map_add_early() 409 * must be called before late_initcall. That's just because that function 410 * is called as late_initcall() function, which means that if you call 411 * firmware_map_add() or firmware_map_add_early() afterwards, the entries 412 * are not added to sysfs. 413 */ 414 static int __init firmware_memmap_init(void) 415 { 416 struct firmware_map_entry *entry; 417 418 list_for_each_entry(entry, &map_entries, list) 419 add_sysfs_fw_map_entry(entry); 420 421 return 0; 422 } 423 late_initcall(firmware_memmap_init); 424 425