1 /* 2 * Originally from efivars.c 3 * 4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> 5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/capability.h> 23 #include <linux/types.h> 24 #include <linux/errno.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/smp.h> 30 #include <linux/efi.h> 31 #include <linux/sysfs.h> 32 #include <linux/device.h> 33 #include <linux/slab.h> 34 #include <linux/ctype.h> 35 #include <linux/ucs2_string.h> 36 37 /* Private pointer to registered efivars */ 38 static struct efivars *__efivars; 39 40 static bool efivar_wq_enabled = true; 41 DECLARE_WORK(efivar_work, NULL); 42 EXPORT_SYMBOL_GPL(efivar_work); 43 44 static bool 45 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer, 46 unsigned long len) 47 { 48 struct efi_generic_dev_path *node; 49 int offset = 0; 50 51 node = (struct efi_generic_dev_path *)buffer; 52 53 if (len < sizeof(*node)) 54 return false; 55 56 while (offset <= len - sizeof(*node) && 57 node->length >= sizeof(*node) && 58 node->length <= len - offset) { 59 offset += node->length; 60 61 if ((node->type == EFI_DEV_END_PATH || 62 node->type == EFI_DEV_END_PATH2) && 63 node->sub_type == EFI_DEV_END_ENTIRE) 64 return true; 65 66 node = (struct efi_generic_dev_path *)(buffer + offset); 67 } 68 69 /* 70 * If we're here then either node->length pointed past the end 71 * of the buffer or we reached the end of the buffer without 72 * finding a device path end node. 73 */ 74 return false; 75 } 76 77 static bool 78 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer, 79 unsigned long len) 80 { 81 /* An array of 16-bit integers */ 82 if ((len % 2) != 0) 83 return false; 84 85 return true; 86 } 87 88 static bool 89 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer, 90 unsigned long len) 91 { 92 u16 filepathlength; 93 int i, desclength = 0, namelen; 94 95 namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN); 96 97 /* Either "Boot" or "Driver" followed by four digits of hex */ 98 for (i = match; i < match+4; i++) { 99 if (var_name[i] > 127 || 100 hex_to_bin(var_name[i] & 0xff) < 0) 101 return true; 102 } 103 104 /* Reject it if there's 4 digits of hex and then further content */ 105 if (namelen > match + 4) 106 return false; 107 108 /* A valid entry must be at least 8 bytes */ 109 if (len < 8) 110 return false; 111 112 filepathlength = buffer[4] | buffer[5] << 8; 113 114 /* 115 * There's no stored length for the description, so it has to be 116 * found by hand 117 */ 118 desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2; 119 120 /* Each boot entry must have a descriptor */ 121 if (!desclength) 122 return false; 123 124 /* 125 * If the sum of the length of the description, the claimed filepath 126 * length and the original header are greater than the length of the 127 * variable, it's malformed 128 */ 129 if ((desclength + filepathlength + 6) > len) 130 return false; 131 132 /* 133 * And, finally, check the filepath 134 */ 135 return validate_device_path(var_name, match, buffer + desclength + 6, 136 filepathlength); 137 } 138 139 static bool 140 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer, 141 unsigned long len) 142 { 143 /* A single 16-bit integer */ 144 if (len != 2) 145 return false; 146 147 return true; 148 } 149 150 static bool 151 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer, 152 unsigned long len) 153 { 154 int i; 155 156 for (i = 0; i < len; i++) { 157 if (buffer[i] > 127) 158 return false; 159 160 if (buffer[i] == 0) 161 return true; 162 } 163 164 return false; 165 } 166 167 struct variable_validate { 168 efi_guid_t vendor; 169 char *name; 170 bool (*validate)(efi_char16_t *var_name, int match, u8 *data, 171 unsigned long len); 172 }; 173 174 /* 175 * This is the list of variables we need to validate, as well as the 176 * whitelist for what we think is safe not to default to immutable. 177 * 178 * If it has a validate() method that's not NULL, it'll go into the 179 * validation routine. If not, it is assumed valid, but still used for 180 * whitelisting. 181 * 182 * Note that it's sorted by {vendor,name}, but globbed names must come after 183 * any other name with the same prefix. 184 */ 185 static const struct variable_validate variable_validate[] = { 186 { EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 }, 187 { EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order }, 188 { EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option }, 189 { EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order }, 190 { EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option }, 191 { EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path }, 192 { EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path }, 193 { EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path }, 194 { EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path }, 195 { EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path }, 196 { EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path }, 197 { EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string }, 198 { EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL }, 199 { EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string }, 200 { EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 }, 201 { LINUX_EFI_CRASH_GUID, "*", NULL }, 202 { NULL_GUID, "", NULL }, 203 }; 204 205 /* 206 * Check if @var_name matches the pattern given in @match_name. 207 * 208 * @var_name: an array of @len non-NUL characters. 209 * @match_name: a NUL-terminated pattern string, optionally ending in "*". A 210 * final "*" character matches any trailing characters @var_name, 211 * including the case when there are none left in @var_name. 212 * @match: on output, the number of non-wildcard characters in @match_name 213 * that @var_name matches, regardless of the return value. 214 * @return: whether @var_name fully matches @match_name. 215 */ 216 static bool 217 variable_matches(const char *var_name, size_t len, const char *match_name, 218 int *match) 219 { 220 for (*match = 0; ; (*match)++) { 221 char c = match_name[*match]; 222 223 switch (c) { 224 case '*': 225 /* Wildcard in @match_name means we've matched. */ 226 return true; 227 228 case '\0': 229 /* @match_name has ended. Has @var_name too? */ 230 return (*match == len); 231 232 default: 233 /* 234 * We've reached a non-wildcard char in @match_name. 235 * Continue only if there's an identical character in 236 * @var_name. 237 */ 238 if (*match < len && c == var_name[*match]) 239 continue; 240 return false; 241 } 242 } 243 } 244 245 bool 246 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data, 247 unsigned long data_size) 248 { 249 int i; 250 unsigned long utf8_size; 251 u8 *utf8_name; 252 253 utf8_size = ucs2_utf8size(var_name); 254 utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL); 255 if (!utf8_name) 256 return false; 257 258 ucs2_as_utf8(utf8_name, var_name, utf8_size); 259 utf8_name[utf8_size] = '\0'; 260 261 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 262 const char *name = variable_validate[i].name; 263 int match = 0; 264 265 if (efi_guidcmp(vendor, variable_validate[i].vendor)) 266 continue; 267 268 if (variable_matches(utf8_name, utf8_size+1, name, &match)) { 269 if (variable_validate[i].validate == NULL) 270 break; 271 kfree(utf8_name); 272 return variable_validate[i].validate(var_name, match, 273 data, data_size); 274 } 275 } 276 kfree(utf8_name); 277 return true; 278 } 279 EXPORT_SYMBOL_GPL(efivar_validate); 280 281 bool 282 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name, 283 size_t len) 284 { 285 int i; 286 bool found = false; 287 int match = 0; 288 289 /* 290 * Check if our variable is in the validated variables list 291 */ 292 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 293 if (efi_guidcmp(variable_validate[i].vendor, vendor)) 294 continue; 295 296 if (variable_matches(var_name, len, 297 variable_validate[i].name, &match)) { 298 found = true; 299 break; 300 } 301 } 302 303 /* 304 * If it's in our list, it is removable. 305 */ 306 return found; 307 } 308 EXPORT_SYMBOL_GPL(efivar_variable_is_removable); 309 310 static efi_status_t 311 check_var_size(u32 attributes, unsigned long size) 312 { 313 const struct efivar_operations *fops = __efivars->ops; 314 315 if (!fops->query_variable_store) 316 return EFI_UNSUPPORTED; 317 318 return fops->query_variable_store(attributes, size, false); 319 } 320 321 static efi_status_t 322 check_var_size_nonblocking(u32 attributes, unsigned long size) 323 { 324 const struct efivar_operations *fops = __efivars->ops; 325 326 if (!fops->query_variable_store) 327 return EFI_UNSUPPORTED; 328 329 return fops->query_variable_store(attributes, size, true); 330 } 331 332 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor, 333 struct list_head *head) 334 { 335 struct efivar_entry *entry, *n; 336 unsigned long strsize1, strsize2; 337 bool found = false; 338 339 strsize1 = ucs2_strsize(variable_name, 1024); 340 list_for_each_entry_safe(entry, n, head, list) { 341 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 342 if (strsize1 == strsize2 && 343 !memcmp(variable_name, &(entry->var.VariableName), 344 strsize2) && 345 !efi_guidcmp(entry->var.VendorGuid, 346 *vendor)) { 347 found = true; 348 break; 349 } 350 } 351 return found; 352 } 353 354 /* 355 * Returns the size of variable_name, in bytes, including the 356 * terminating NULL character, or variable_name_size if no NULL 357 * character is found among the first variable_name_size bytes. 358 */ 359 static unsigned long var_name_strnsize(efi_char16_t *variable_name, 360 unsigned long variable_name_size) 361 { 362 unsigned long len; 363 efi_char16_t c; 364 365 /* 366 * The variable name is, by definition, a NULL-terminated 367 * string, so make absolutely sure that variable_name_size is 368 * the value we expect it to be. If not, return the real size. 369 */ 370 for (len = 2; len <= variable_name_size; len += sizeof(c)) { 371 c = variable_name[(len / sizeof(c)) - 1]; 372 if (!c) 373 break; 374 } 375 376 return min(len, variable_name_size); 377 } 378 379 /* 380 * Print a warning when duplicate EFI variables are encountered and 381 * disable the sysfs workqueue since the firmware is buggy. 382 */ 383 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid, 384 unsigned long len16) 385 { 386 size_t i, len8 = len16 / sizeof(efi_char16_t); 387 char *str8; 388 389 /* 390 * Disable the workqueue since the algorithm it uses for 391 * detecting new variables won't work with this buggy 392 * implementation of GetNextVariableName(). 393 */ 394 efivar_wq_enabled = false; 395 396 str8 = kzalloc(len8, GFP_KERNEL); 397 if (!str8) 398 return; 399 400 for (i = 0; i < len8; i++) 401 str8[i] = str16[i]; 402 403 printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n", 404 str8, vendor_guid); 405 kfree(str8); 406 } 407 408 /** 409 * efivar_init - build the initial list of EFI variables 410 * @func: callback function to invoke for every variable 411 * @data: function-specific data to pass to @func 412 * @atomic: do we need to execute the @func-loop atomically? 413 * @duplicates: error if we encounter duplicates on @head? 414 * @head: initialised head of variable list 415 * 416 * Get every EFI variable from the firmware and invoke @func. @func 417 * should call efivar_entry_add() to build the list of variables. 418 * 419 * Returns 0 on success, or a kernel error code on failure. 420 */ 421 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *), 422 void *data, bool duplicates, struct list_head *head) 423 { 424 const struct efivar_operations *ops = __efivars->ops; 425 unsigned long variable_name_size = 1024; 426 efi_char16_t *variable_name; 427 efi_status_t status; 428 efi_guid_t vendor_guid; 429 int err = 0; 430 431 variable_name = kzalloc(variable_name_size, GFP_KERNEL); 432 if (!variable_name) { 433 printk(KERN_ERR "efivars: Memory allocation failed.\n"); 434 return -ENOMEM; 435 } 436 437 spin_lock_irq(&__efivars->lock); 438 439 /* 440 * Per EFI spec, the maximum storage allocated for both 441 * the variable name and variable data is 1024 bytes. 442 */ 443 444 do { 445 variable_name_size = 1024; 446 447 status = ops->get_next_variable(&variable_name_size, 448 variable_name, 449 &vendor_guid); 450 switch (status) { 451 case EFI_SUCCESS: 452 if (duplicates) 453 spin_unlock_irq(&__efivars->lock); 454 455 variable_name_size = var_name_strnsize(variable_name, 456 variable_name_size); 457 458 /* 459 * Some firmware implementations return the 460 * same variable name on multiple calls to 461 * get_next_variable(). Terminate the loop 462 * immediately as there is no guarantee that 463 * we'll ever see a different variable name, 464 * and may end up looping here forever. 465 */ 466 if (duplicates && 467 variable_is_present(variable_name, &vendor_guid, 468 head)) { 469 dup_variable_bug(variable_name, &vendor_guid, 470 variable_name_size); 471 status = EFI_NOT_FOUND; 472 } else { 473 err = func(variable_name, vendor_guid, 474 variable_name_size, data); 475 if (err) 476 status = EFI_NOT_FOUND; 477 } 478 479 if (duplicates) 480 spin_lock_irq(&__efivars->lock); 481 482 break; 483 case EFI_NOT_FOUND: 484 break; 485 default: 486 printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n", 487 status); 488 status = EFI_NOT_FOUND; 489 break; 490 } 491 492 } while (status != EFI_NOT_FOUND); 493 494 spin_unlock_irq(&__efivars->lock); 495 496 kfree(variable_name); 497 498 return err; 499 } 500 EXPORT_SYMBOL_GPL(efivar_init); 501 502 /** 503 * efivar_entry_add - add entry to variable list 504 * @entry: entry to add to list 505 * @head: list head 506 */ 507 void efivar_entry_add(struct efivar_entry *entry, struct list_head *head) 508 { 509 spin_lock_irq(&__efivars->lock); 510 list_add(&entry->list, head); 511 spin_unlock_irq(&__efivars->lock); 512 } 513 EXPORT_SYMBOL_GPL(efivar_entry_add); 514 515 /** 516 * efivar_entry_remove - remove entry from variable list 517 * @entry: entry to remove from list 518 */ 519 void efivar_entry_remove(struct efivar_entry *entry) 520 { 521 spin_lock_irq(&__efivars->lock); 522 list_del(&entry->list); 523 spin_unlock_irq(&__efivars->lock); 524 } 525 EXPORT_SYMBOL_GPL(efivar_entry_remove); 526 527 /* 528 * efivar_entry_list_del_unlock - remove entry from variable list 529 * @entry: entry to remove 530 * 531 * Remove @entry from the variable list and release the list lock. 532 * 533 * NOTE: slightly weird locking semantics here - we expect to be 534 * called with the efivars lock already held, and we release it before 535 * returning. This is because this function is usually called after 536 * set_variable() while the lock is still held. 537 */ 538 static void efivar_entry_list_del_unlock(struct efivar_entry *entry) 539 { 540 lockdep_assert_held(&__efivars->lock); 541 542 list_del(&entry->list); 543 spin_unlock_irq(&__efivars->lock); 544 } 545 546 /** 547 * __efivar_entry_delete - delete an EFI variable 548 * @entry: entry containing EFI variable to delete 549 * 550 * Delete the variable from the firmware but leave @entry on the 551 * variable list. 552 * 553 * This function differs from efivar_entry_delete() because it does 554 * not remove @entry from the variable list. Also, it is safe to be 555 * called from within a efivar_entry_iter_begin() and 556 * efivar_entry_iter_end() region, unlike efivar_entry_delete(). 557 * 558 * Returns 0 on success, or a converted EFI status code if 559 * set_variable() fails. 560 */ 561 int __efivar_entry_delete(struct efivar_entry *entry) 562 { 563 const struct efivar_operations *ops = __efivars->ops; 564 efi_status_t status; 565 566 lockdep_assert_held(&__efivars->lock); 567 568 status = ops->set_variable(entry->var.VariableName, 569 &entry->var.VendorGuid, 570 0, 0, NULL); 571 572 return efi_status_to_err(status); 573 } 574 EXPORT_SYMBOL_GPL(__efivar_entry_delete); 575 576 /** 577 * efivar_entry_delete - delete variable and remove entry from list 578 * @entry: entry containing variable to delete 579 * 580 * Delete the variable from the firmware and remove @entry from the 581 * variable list. It is the caller's responsibility to free @entry 582 * once we return. 583 * 584 * Returns 0 on success, or a converted EFI status code if 585 * set_variable() fails. 586 */ 587 int efivar_entry_delete(struct efivar_entry *entry) 588 { 589 const struct efivar_operations *ops = __efivars->ops; 590 efi_status_t status; 591 592 spin_lock_irq(&__efivars->lock); 593 status = ops->set_variable(entry->var.VariableName, 594 &entry->var.VendorGuid, 595 0, 0, NULL); 596 if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) { 597 spin_unlock_irq(&__efivars->lock); 598 return efi_status_to_err(status); 599 } 600 601 efivar_entry_list_del_unlock(entry); 602 return 0; 603 } 604 EXPORT_SYMBOL_GPL(efivar_entry_delete); 605 606 /** 607 * efivar_entry_set - call set_variable() 608 * @entry: entry containing the EFI variable to write 609 * @attributes: variable attributes 610 * @size: size of @data buffer 611 * @data: buffer containing variable data 612 * @head: head of variable list 613 * 614 * Calls set_variable() for an EFI variable. If creating a new EFI 615 * variable, this function is usually followed by efivar_entry_add(). 616 * 617 * Before writing the variable, the remaining EFI variable storage 618 * space is checked to ensure there is enough room available. 619 * 620 * If @head is not NULL a lookup is performed to determine whether 621 * the entry is already on the list. 622 * 623 * Returns 0 on success, -EEXIST if a lookup is performed and the entry 624 * already exists on the list, or a converted EFI status code if 625 * set_variable() fails. 626 */ 627 int efivar_entry_set(struct efivar_entry *entry, u32 attributes, 628 unsigned long size, void *data, struct list_head *head) 629 { 630 const struct efivar_operations *ops = __efivars->ops; 631 efi_status_t status; 632 efi_char16_t *name = entry->var.VariableName; 633 efi_guid_t vendor = entry->var.VendorGuid; 634 635 spin_lock_irq(&__efivars->lock); 636 637 if (head && efivar_entry_find(name, vendor, head, false)) { 638 spin_unlock_irq(&__efivars->lock); 639 return -EEXIST; 640 } 641 642 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 643 if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED) 644 status = ops->set_variable(name, &vendor, 645 attributes, size, data); 646 647 spin_unlock_irq(&__efivars->lock); 648 649 return efi_status_to_err(status); 650 651 } 652 EXPORT_SYMBOL_GPL(efivar_entry_set); 653 654 /* 655 * efivar_entry_set_nonblocking - call set_variable_nonblocking() 656 * 657 * This function is guaranteed to not block and is suitable for calling 658 * from crash/panic handlers. 659 * 660 * Crucially, this function will not block if it cannot acquire 661 * __efivars->lock. Instead, it returns -EBUSY. 662 */ 663 static int 664 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor, 665 u32 attributes, unsigned long size, void *data) 666 { 667 const struct efivar_operations *ops = __efivars->ops; 668 unsigned long flags; 669 efi_status_t status; 670 671 if (!spin_trylock_irqsave(&__efivars->lock, flags)) 672 return -EBUSY; 673 674 status = check_var_size_nonblocking(attributes, 675 size + ucs2_strsize(name, 1024)); 676 if (status != EFI_SUCCESS) { 677 spin_unlock_irqrestore(&__efivars->lock, flags); 678 return -ENOSPC; 679 } 680 681 status = ops->set_variable_nonblocking(name, &vendor, attributes, 682 size, data); 683 684 spin_unlock_irqrestore(&__efivars->lock, flags); 685 return efi_status_to_err(status); 686 } 687 688 /** 689 * efivar_entry_set_safe - call set_variable() if enough space in firmware 690 * @name: buffer containing the variable name 691 * @vendor: variable vendor guid 692 * @attributes: variable attributes 693 * @block: can we block in this context? 694 * @size: size of @data buffer 695 * @data: buffer containing variable data 696 * 697 * Ensures there is enough free storage in the firmware for this variable, and 698 * if so, calls set_variable(). If creating a new EFI variable, this function 699 * is usually followed by efivar_entry_add(). 700 * 701 * Returns 0 on success, -ENOSPC if the firmware does not have enough 702 * space for set_variable() to succeed, or a converted EFI status code 703 * if set_variable() fails. 704 */ 705 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes, 706 bool block, unsigned long size, void *data) 707 { 708 const struct efivar_operations *ops = __efivars->ops; 709 unsigned long flags; 710 efi_status_t status; 711 712 if (!ops->query_variable_store) 713 return -ENOSYS; 714 715 /* 716 * If the EFI variable backend provides a non-blocking 717 * ->set_variable() operation and we're in a context where we 718 * cannot block, then we need to use it to avoid live-locks, 719 * since the implication is that the regular ->set_variable() 720 * will block. 721 * 722 * If no ->set_variable_nonblocking() is provided then 723 * ->set_variable() is assumed to be non-blocking. 724 */ 725 if (!block && ops->set_variable_nonblocking) 726 return efivar_entry_set_nonblocking(name, vendor, attributes, 727 size, data); 728 729 if (!block) { 730 if (!spin_trylock_irqsave(&__efivars->lock, flags)) 731 return -EBUSY; 732 } else { 733 spin_lock_irqsave(&__efivars->lock, flags); 734 } 735 736 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 737 if (status != EFI_SUCCESS) { 738 spin_unlock_irqrestore(&__efivars->lock, flags); 739 return -ENOSPC; 740 } 741 742 status = ops->set_variable(name, &vendor, attributes, size, data); 743 744 spin_unlock_irqrestore(&__efivars->lock, flags); 745 746 return efi_status_to_err(status); 747 } 748 EXPORT_SYMBOL_GPL(efivar_entry_set_safe); 749 750 /** 751 * efivar_entry_find - search for an entry 752 * @name: the EFI variable name 753 * @guid: the EFI variable vendor's guid 754 * @head: head of the variable list 755 * @remove: should we remove the entry from the list? 756 * 757 * Search for an entry on the variable list that has the EFI variable 758 * name @name and vendor guid @guid. If an entry is found on the list 759 * and @remove is true, the entry is removed from the list. 760 * 761 * The caller MUST call efivar_entry_iter_begin() and 762 * efivar_entry_iter_end() before and after the invocation of this 763 * function, respectively. 764 * 765 * Returns the entry if found on the list, %NULL otherwise. 766 */ 767 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid, 768 struct list_head *head, bool remove) 769 { 770 struct efivar_entry *entry, *n; 771 int strsize1, strsize2; 772 bool found = false; 773 774 lockdep_assert_held(&__efivars->lock); 775 776 list_for_each_entry_safe(entry, n, head, list) { 777 strsize1 = ucs2_strsize(name, 1024); 778 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 779 if (strsize1 == strsize2 && 780 !memcmp(name, &(entry->var.VariableName), strsize1) && 781 !efi_guidcmp(guid, entry->var.VendorGuid)) { 782 found = true; 783 break; 784 } 785 } 786 787 if (!found) 788 return NULL; 789 790 if (remove) { 791 if (entry->scanning) { 792 /* 793 * The entry will be deleted 794 * after scanning is completed. 795 */ 796 entry->deleting = true; 797 } else 798 list_del(&entry->list); 799 } 800 801 return entry; 802 } 803 EXPORT_SYMBOL_GPL(efivar_entry_find); 804 805 /** 806 * efivar_entry_size - obtain the size of a variable 807 * @entry: entry for this variable 808 * @size: location to store the variable's size 809 */ 810 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size) 811 { 812 const struct efivar_operations *ops = __efivars->ops; 813 efi_status_t status; 814 815 *size = 0; 816 817 spin_lock_irq(&__efivars->lock); 818 status = ops->get_variable(entry->var.VariableName, 819 &entry->var.VendorGuid, NULL, size, NULL); 820 spin_unlock_irq(&__efivars->lock); 821 822 if (status != EFI_BUFFER_TOO_SMALL) 823 return efi_status_to_err(status); 824 825 return 0; 826 } 827 EXPORT_SYMBOL_GPL(efivar_entry_size); 828 829 /** 830 * __efivar_entry_get - call get_variable() 831 * @entry: read data for this variable 832 * @attributes: variable attributes 833 * @size: size of @data buffer 834 * @data: buffer to store variable data 835 * 836 * The caller MUST call efivar_entry_iter_begin() and 837 * efivar_entry_iter_end() before and after the invocation of this 838 * function, respectively. 839 */ 840 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 841 unsigned long *size, void *data) 842 { 843 const struct efivar_operations *ops = __efivars->ops; 844 efi_status_t status; 845 846 lockdep_assert_held(&__efivars->lock); 847 848 status = ops->get_variable(entry->var.VariableName, 849 &entry->var.VendorGuid, 850 attributes, size, data); 851 852 return efi_status_to_err(status); 853 } 854 EXPORT_SYMBOL_GPL(__efivar_entry_get); 855 856 /** 857 * efivar_entry_get - call get_variable() 858 * @entry: read data for this variable 859 * @attributes: variable attributes 860 * @size: size of @data buffer 861 * @data: buffer to store variable data 862 */ 863 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 864 unsigned long *size, void *data) 865 { 866 const struct efivar_operations *ops = __efivars->ops; 867 efi_status_t status; 868 869 spin_lock_irq(&__efivars->lock); 870 status = ops->get_variable(entry->var.VariableName, 871 &entry->var.VendorGuid, 872 attributes, size, data); 873 spin_unlock_irq(&__efivars->lock); 874 875 return efi_status_to_err(status); 876 } 877 EXPORT_SYMBOL_GPL(efivar_entry_get); 878 879 /** 880 * efivar_entry_set_get_size - call set_variable() and get new size (atomic) 881 * @entry: entry containing variable to set and get 882 * @attributes: attributes of variable to be written 883 * @size: size of data buffer 884 * @data: buffer containing data to write 885 * @set: did the set_variable() call succeed? 886 * 887 * This is a pretty special (complex) function. See efivarfs_file_write(). 888 * 889 * Atomically call set_variable() for @entry and if the call is 890 * successful, return the new size of the variable from get_variable() 891 * in @size. The success of set_variable() is indicated by @set. 892 * 893 * Returns 0 on success, -EINVAL if the variable data is invalid, 894 * -ENOSPC if the firmware does not have enough available space, or a 895 * converted EFI status code if either of set_variable() or 896 * get_variable() fail. 897 * 898 * If the EFI variable does not exist when calling set_variable() 899 * (EFI_NOT_FOUND), @entry is removed from the variable list. 900 */ 901 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes, 902 unsigned long *size, void *data, bool *set) 903 { 904 const struct efivar_operations *ops = __efivars->ops; 905 efi_char16_t *name = entry->var.VariableName; 906 efi_guid_t *vendor = &entry->var.VendorGuid; 907 efi_status_t status; 908 int err; 909 910 *set = false; 911 912 if (efivar_validate(*vendor, name, data, *size) == false) 913 return -EINVAL; 914 915 /* 916 * The lock here protects the get_variable call, the conditional 917 * set_variable call, and removal of the variable from the efivars 918 * list (in the case of an authenticated delete). 919 */ 920 spin_lock_irq(&__efivars->lock); 921 922 /* 923 * Ensure that the available space hasn't shrunk below the safe level 924 */ 925 status = check_var_size(attributes, *size + ucs2_strsize(name, 1024)); 926 if (status != EFI_SUCCESS) { 927 if (status != EFI_UNSUPPORTED) { 928 err = efi_status_to_err(status); 929 goto out; 930 } 931 932 if (*size > 65536) { 933 err = -ENOSPC; 934 goto out; 935 } 936 } 937 938 status = ops->set_variable(name, vendor, attributes, *size, data); 939 if (status != EFI_SUCCESS) { 940 err = efi_status_to_err(status); 941 goto out; 942 } 943 944 *set = true; 945 946 /* 947 * Writing to the variable may have caused a change in size (which 948 * could either be an append or an overwrite), or the variable to be 949 * deleted. Perform a GetVariable() so we can tell what actually 950 * happened. 951 */ 952 *size = 0; 953 status = ops->get_variable(entry->var.VariableName, 954 &entry->var.VendorGuid, 955 NULL, size, NULL); 956 957 if (status == EFI_NOT_FOUND) 958 efivar_entry_list_del_unlock(entry); 959 else 960 spin_unlock_irq(&__efivars->lock); 961 962 if (status && status != EFI_BUFFER_TOO_SMALL) 963 return efi_status_to_err(status); 964 965 return 0; 966 967 out: 968 spin_unlock_irq(&__efivars->lock); 969 return err; 970 971 } 972 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size); 973 974 /** 975 * efivar_entry_iter_begin - begin iterating the variable list 976 * 977 * Lock the variable list to prevent entry insertion and removal until 978 * efivar_entry_iter_end() is called. This function is usually used in 979 * conjunction with __efivar_entry_iter() or efivar_entry_iter(). 980 */ 981 void efivar_entry_iter_begin(void) 982 { 983 spin_lock_irq(&__efivars->lock); 984 } 985 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin); 986 987 /** 988 * efivar_entry_iter_end - finish iterating the variable list 989 * 990 * Unlock the variable list and allow modifications to the list again. 991 */ 992 void efivar_entry_iter_end(void) 993 { 994 spin_unlock_irq(&__efivars->lock); 995 } 996 EXPORT_SYMBOL_GPL(efivar_entry_iter_end); 997 998 /** 999 * __efivar_entry_iter - iterate over variable list 1000 * @func: callback function 1001 * @head: head of the variable list 1002 * @data: function-specific data to pass to callback 1003 * @prev: entry to begin iterating from 1004 * 1005 * Iterate over the list of EFI variables and call @func with every 1006 * entry on the list. It is safe for @func to remove entries in the 1007 * list via efivar_entry_delete(). 1008 * 1009 * You MUST call efivar_enter_iter_begin() before this function, and 1010 * efivar_entry_iter_end() afterwards. 1011 * 1012 * It is possible to begin iteration from an arbitrary entry within 1013 * the list by passing @prev. @prev is updated on return to point to 1014 * the last entry passed to @func. To begin iterating from the 1015 * beginning of the list @prev must be %NULL. 1016 * 1017 * The restrictions for @func are the same as documented for 1018 * efivar_entry_iter(). 1019 */ 1020 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1021 struct list_head *head, void *data, 1022 struct efivar_entry **prev) 1023 { 1024 struct efivar_entry *entry, *n; 1025 int err = 0; 1026 1027 if (!prev || !*prev) { 1028 list_for_each_entry_safe(entry, n, head, list) { 1029 err = func(entry, data); 1030 if (err) 1031 break; 1032 } 1033 1034 if (prev) 1035 *prev = entry; 1036 1037 return err; 1038 } 1039 1040 1041 list_for_each_entry_safe_continue((*prev), n, head, list) { 1042 err = func(*prev, data); 1043 if (err) 1044 break; 1045 } 1046 1047 return err; 1048 } 1049 EXPORT_SYMBOL_GPL(__efivar_entry_iter); 1050 1051 /** 1052 * efivar_entry_iter - iterate over variable list 1053 * @func: callback function 1054 * @head: head of variable list 1055 * @data: function-specific data to pass to callback 1056 * 1057 * Iterate over the list of EFI variables and call @func with every 1058 * entry on the list. It is safe for @func to remove entries in the 1059 * list via efivar_entry_delete() while iterating. 1060 * 1061 * Some notes for the callback function: 1062 * - a non-zero return value indicates an error and terminates the loop 1063 * - @func is called from atomic context 1064 */ 1065 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1066 struct list_head *head, void *data) 1067 { 1068 int err = 0; 1069 1070 efivar_entry_iter_begin(); 1071 err = __efivar_entry_iter(func, head, data, NULL); 1072 efivar_entry_iter_end(); 1073 1074 return err; 1075 } 1076 EXPORT_SYMBOL_GPL(efivar_entry_iter); 1077 1078 /** 1079 * efivars_kobject - get the kobject for the registered efivars 1080 * 1081 * If efivars_register() has not been called we return NULL, 1082 * otherwise return the kobject used at registration time. 1083 */ 1084 struct kobject *efivars_kobject(void) 1085 { 1086 if (!__efivars) 1087 return NULL; 1088 1089 return __efivars->kobject; 1090 } 1091 EXPORT_SYMBOL_GPL(efivars_kobject); 1092 1093 /** 1094 * efivar_run_worker - schedule the efivar worker thread 1095 */ 1096 void efivar_run_worker(void) 1097 { 1098 if (efivar_wq_enabled) 1099 schedule_work(&efivar_work); 1100 } 1101 EXPORT_SYMBOL_GPL(efivar_run_worker); 1102 1103 /** 1104 * efivars_register - register an efivars 1105 * @efivars: efivars to register 1106 * @ops: efivars operations 1107 * @kobject: @efivars-specific kobject 1108 * 1109 * Only a single efivars can be registered at any time. 1110 */ 1111 int efivars_register(struct efivars *efivars, 1112 const struct efivar_operations *ops, 1113 struct kobject *kobject) 1114 { 1115 spin_lock_init(&efivars->lock); 1116 efivars->ops = ops; 1117 efivars->kobject = kobject; 1118 1119 __efivars = efivars; 1120 1121 return 0; 1122 } 1123 EXPORT_SYMBOL_GPL(efivars_register); 1124 1125 /** 1126 * efivars_unregister - unregister an efivars 1127 * @efivars: efivars to unregister 1128 * 1129 * The caller must have already removed every entry from the list, 1130 * failure to do so is an error. 1131 */ 1132 int efivars_unregister(struct efivars *efivars) 1133 { 1134 int rv; 1135 1136 if (!__efivars) { 1137 printk(KERN_ERR "efivars not registered\n"); 1138 rv = -EINVAL; 1139 goto out; 1140 } 1141 1142 if (__efivars != efivars) { 1143 rv = -EINVAL; 1144 goto out; 1145 } 1146 1147 __efivars = NULL; 1148 1149 rv = 0; 1150 out: 1151 return rv; 1152 } 1153 EXPORT_SYMBOL_GPL(efivars_unregister); 1154