xref: /openbmc/linux/drivers/firmware/efi/vars.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Originally from efivars.c
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/string.h>
16 #include <linux/smp.h>
17 #include <linux/efi.h>
18 #include <linux/sysfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/ctype.h>
22 #include <linux/ucs2_string.h>
23 
24 /* Private pointer to registered efivars */
25 static struct efivars *__efivars;
26 
27 /*
28  * efivars_lock protects three things:
29  * 1) efivarfs_list and efivars_sysfs_list
30  * 2) ->ops calls
31  * 3) (un)registration of __efivars
32  */
33 static DEFINE_SEMAPHORE(efivars_lock);
34 
35 static bool
36 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer,
37 		     unsigned long len)
38 {
39 	struct efi_generic_dev_path *node;
40 	int offset = 0;
41 
42 	node = (struct efi_generic_dev_path *)buffer;
43 
44 	if (len < sizeof(*node))
45 		return false;
46 
47 	while (offset <= len - sizeof(*node) &&
48 	       node->length >= sizeof(*node) &&
49 		node->length <= len - offset) {
50 		offset += node->length;
51 
52 		if ((node->type == EFI_DEV_END_PATH ||
53 		     node->type == EFI_DEV_END_PATH2) &&
54 		    node->sub_type == EFI_DEV_END_ENTIRE)
55 			return true;
56 
57 		node = (struct efi_generic_dev_path *)(buffer + offset);
58 	}
59 
60 	/*
61 	 * If we're here then either node->length pointed past the end
62 	 * of the buffer or we reached the end of the buffer without
63 	 * finding a device path end node.
64 	 */
65 	return false;
66 }
67 
68 static bool
69 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer,
70 		    unsigned long len)
71 {
72 	/* An array of 16-bit integers */
73 	if ((len % 2) != 0)
74 		return false;
75 
76 	return true;
77 }
78 
79 static bool
80 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer,
81 		     unsigned long len)
82 {
83 	u16 filepathlength;
84 	int i, desclength = 0, namelen;
85 
86 	namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN);
87 
88 	/* Either "Boot" or "Driver" followed by four digits of hex */
89 	for (i = match; i < match+4; i++) {
90 		if (var_name[i] > 127 ||
91 		    hex_to_bin(var_name[i] & 0xff) < 0)
92 			return true;
93 	}
94 
95 	/* Reject it if there's 4 digits of hex and then further content */
96 	if (namelen > match + 4)
97 		return false;
98 
99 	/* A valid entry must be at least 8 bytes */
100 	if (len < 8)
101 		return false;
102 
103 	filepathlength = buffer[4] | buffer[5] << 8;
104 
105 	/*
106 	 * There's no stored length for the description, so it has to be
107 	 * found by hand
108 	 */
109 	desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2;
110 
111 	/* Each boot entry must have a descriptor */
112 	if (!desclength)
113 		return false;
114 
115 	/*
116 	 * If the sum of the length of the description, the claimed filepath
117 	 * length and the original header are greater than the length of the
118 	 * variable, it's malformed
119 	 */
120 	if ((desclength + filepathlength + 6) > len)
121 		return false;
122 
123 	/*
124 	 * And, finally, check the filepath
125 	 */
126 	return validate_device_path(var_name, match, buffer + desclength + 6,
127 				    filepathlength);
128 }
129 
130 static bool
131 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer,
132 		unsigned long len)
133 {
134 	/* A single 16-bit integer */
135 	if (len != 2)
136 		return false;
137 
138 	return true;
139 }
140 
141 static bool
142 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer,
143 		      unsigned long len)
144 {
145 	int i;
146 
147 	for (i = 0; i < len; i++) {
148 		if (buffer[i] > 127)
149 			return false;
150 
151 		if (buffer[i] == 0)
152 			return true;
153 	}
154 
155 	return false;
156 }
157 
158 struct variable_validate {
159 	efi_guid_t vendor;
160 	char *name;
161 	bool (*validate)(efi_char16_t *var_name, int match, u8 *data,
162 			 unsigned long len);
163 };
164 
165 /*
166  * This is the list of variables we need to validate, as well as the
167  * whitelist for what we think is safe not to default to immutable.
168  *
169  * If it has a validate() method that's not NULL, it'll go into the
170  * validation routine.  If not, it is assumed valid, but still used for
171  * whitelisting.
172  *
173  * Note that it's sorted by {vendor,name}, but globbed names must come after
174  * any other name with the same prefix.
175  */
176 static const struct variable_validate variable_validate[] = {
177 	{ EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 },
178 	{ EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order },
179 	{ EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option },
180 	{ EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order },
181 	{ EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option },
182 	{ EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path },
183 	{ EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path },
184 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path },
185 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path },
186 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path },
187 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path },
188 	{ EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string },
189 	{ EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL },
190 	{ EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string },
191 	{ EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 },
192 	{ LINUX_EFI_CRASH_GUID, "*", NULL },
193 	{ NULL_GUID, "", NULL },
194 };
195 
196 /*
197  * Check if @var_name matches the pattern given in @match_name.
198  *
199  * @var_name: an array of @len non-NUL characters.
200  * @match_name: a NUL-terminated pattern string, optionally ending in "*". A
201  *              final "*" character matches any trailing characters @var_name,
202  *              including the case when there are none left in @var_name.
203  * @match: on output, the number of non-wildcard characters in @match_name
204  *         that @var_name matches, regardless of the return value.
205  * @return: whether @var_name fully matches @match_name.
206  */
207 static bool
208 variable_matches(const char *var_name, size_t len, const char *match_name,
209 		 int *match)
210 {
211 	for (*match = 0; ; (*match)++) {
212 		char c = match_name[*match];
213 
214 		switch (c) {
215 		case '*':
216 			/* Wildcard in @match_name means we've matched. */
217 			return true;
218 
219 		case '\0':
220 			/* @match_name has ended. Has @var_name too? */
221 			return (*match == len);
222 
223 		default:
224 			/*
225 			 * We've reached a non-wildcard char in @match_name.
226 			 * Continue only if there's an identical character in
227 			 * @var_name.
228 			 */
229 			if (*match < len && c == var_name[*match])
230 				continue;
231 			return false;
232 		}
233 	}
234 }
235 
236 bool
237 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data,
238 		unsigned long data_size)
239 {
240 	int i;
241 	unsigned long utf8_size;
242 	u8 *utf8_name;
243 
244 	utf8_size = ucs2_utf8size(var_name);
245 	utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL);
246 	if (!utf8_name)
247 		return false;
248 
249 	ucs2_as_utf8(utf8_name, var_name, utf8_size);
250 	utf8_name[utf8_size] = '\0';
251 
252 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
253 		const char *name = variable_validate[i].name;
254 		int match = 0;
255 
256 		if (efi_guidcmp(vendor, variable_validate[i].vendor))
257 			continue;
258 
259 		if (variable_matches(utf8_name, utf8_size+1, name, &match)) {
260 			if (variable_validate[i].validate == NULL)
261 				break;
262 			kfree(utf8_name);
263 			return variable_validate[i].validate(var_name, match,
264 							     data, data_size);
265 		}
266 	}
267 	kfree(utf8_name);
268 	return true;
269 }
270 EXPORT_SYMBOL_GPL(efivar_validate);
271 
272 bool
273 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name,
274 			     size_t len)
275 {
276 	int i;
277 	bool found = false;
278 	int match = 0;
279 
280 	/*
281 	 * Check if our variable is in the validated variables list
282 	 */
283 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
284 		if (efi_guidcmp(variable_validate[i].vendor, vendor))
285 			continue;
286 
287 		if (variable_matches(var_name, len,
288 				     variable_validate[i].name, &match)) {
289 			found = true;
290 			break;
291 		}
292 	}
293 
294 	/*
295 	 * If it's in our list, it is removable.
296 	 */
297 	return found;
298 }
299 EXPORT_SYMBOL_GPL(efivar_variable_is_removable);
300 
301 static efi_status_t
302 check_var_size(u32 attributes, unsigned long size)
303 {
304 	const struct efivar_operations *fops;
305 
306 	if (!__efivars)
307 		return EFI_UNSUPPORTED;
308 
309 	fops = __efivars->ops;
310 
311 	if (!fops->query_variable_store)
312 		return EFI_UNSUPPORTED;
313 
314 	return fops->query_variable_store(attributes, size, false);
315 }
316 
317 static efi_status_t
318 check_var_size_nonblocking(u32 attributes, unsigned long size)
319 {
320 	const struct efivar_operations *fops;
321 
322 	if (!__efivars)
323 		return EFI_UNSUPPORTED;
324 
325 	fops = __efivars->ops;
326 
327 	if (!fops->query_variable_store)
328 		return EFI_UNSUPPORTED;
329 
330 	return fops->query_variable_store(attributes, size, true);
331 }
332 
333 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor,
334 				struct list_head *head)
335 {
336 	struct efivar_entry *entry, *n;
337 	unsigned long strsize1, strsize2;
338 	bool found = false;
339 
340 	strsize1 = ucs2_strsize(variable_name, 1024);
341 	list_for_each_entry_safe(entry, n, head, list) {
342 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
343 		if (strsize1 == strsize2 &&
344 			!memcmp(variable_name, &(entry->var.VariableName),
345 				strsize2) &&
346 			!efi_guidcmp(entry->var.VendorGuid,
347 				*vendor)) {
348 			found = true;
349 			break;
350 		}
351 	}
352 	return found;
353 }
354 
355 /*
356  * Returns the size of variable_name, in bytes, including the
357  * terminating NULL character, or variable_name_size if no NULL
358  * character is found among the first variable_name_size bytes.
359  */
360 static unsigned long var_name_strnsize(efi_char16_t *variable_name,
361 				       unsigned long variable_name_size)
362 {
363 	unsigned long len;
364 	efi_char16_t c;
365 
366 	/*
367 	 * The variable name is, by definition, a NULL-terminated
368 	 * string, so make absolutely sure that variable_name_size is
369 	 * the value we expect it to be. If not, return the real size.
370 	 */
371 	for (len = 2; len <= variable_name_size; len += sizeof(c)) {
372 		c = variable_name[(len / sizeof(c)) - 1];
373 		if (!c)
374 			break;
375 	}
376 
377 	return min(len, variable_name_size);
378 }
379 
380 /*
381  * Print a warning when duplicate EFI variables are encountered and
382  * disable the sysfs workqueue since the firmware is buggy.
383  */
384 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
385 			     unsigned long len16)
386 {
387 	size_t i, len8 = len16 / sizeof(efi_char16_t);
388 	char *str8;
389 
390 	str8 = kzalloc(len8, GFP_KERNEL);
391 	if (!str8)
392 		return;
393 
394 	for (i = 0; i < len8; i++)
395 		str8[i] = str16[i];
396 
397 	printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
398 	       str8, vendor_guid);
399 	kfree(str8);
400 }
401 
402 /**
403  * efivar_init - build the initial list of EFI variables
404  * @func: callback function to invoke for every variable
405  * @data: function-specific data to pass to @func
406  * @duplicates: error if we encounter duplicates on @head?
407  * @head: initialised head of variable list
408  *
409  * Get every EFI variable from the firmware and invoke @func. @func
410  * should call efivar_entry_add() to build the list of variables.
411  *
412  * Returns 0 on success, or a kernel error code on failure.
413  */
414 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *),
415 		void *data, bool duplicates, struct list_head *head)
416 {
417 	const struct efivar_operations *ops;
418 	unsigned long variable_name_size = 1024;
419 	efi_char16_t *variable_name;
420 	efi_status_t status;
421 	efi_guid_t vendor_guid;
422 	int err = 0;
423 
424 	if (!__efivars)
425 		return -EFAULT;
426 
427 	ops = __efivars->ops;
428 
429 	variable_name = kzalloc(variable_name_size, GFP_KERNEL);
430 	if (!variable_name) {
431 		printk(KERN_ERR "efivars: Memory allocation failed.\n");
432 		return -ENOMEM;
433 	}
434 
435 	if (down_interruptible(&efivars_lock)) {
436 		err = -EINTR;
437 		goto free;
438 	}
439 
440 	/*
441 	 * Per EFI spec, the maximum storage allocated for both
442 	 * the variable name and variable data is 1024 bytes.
443 	 */
444 
445 	do {
446 		variable_name_size = 1024;
447 
448 		status = ops->get_next_variable(&variable_name_size,
449 						variable_name,
450 						&vendor_guid);
451 		switch (status) {
452 		case EFI_SUCCESS:
453 			if (duplicates)
454 				up(&efivars_lock);
455 
456 			variable_name_size = var_name_strnsize(variable_name,
457 							       variable_name_size);
458 
459 			/*
460 			 * Some firmware implementations return the
461 			 * same variable name on multiple calls to
462 			 * get_next_variable(). Terminate the loop
463 			 * immediately as there is no guarantee that
464 			 * we'll ever see a different variable name,
465 			 * and may end up looping here forever.
466 			 */
467 			if (duplicates &&
468 			    variable_is_present(variable_name, &vendor_guid,
469 						head)) {
470 				dup_variable_bug(variable_name, &vendor_guid,
471 						 variable_name_size);
472 				status = EFI_NOT_FOUND;
473 			} else {
474 				err = func(variable_name, vendor_guid,
475 					   variable_name_size, data);
476 				if (err)
477 					status = EFI_NOT_FOUND;
478 			}
479 
480 			if (duplicates) {
481 				if (down_interruptible(&efivars_lock)) {
482 					err = -EINTR;
483 					goto free;
484 				}
485 			}
486 
487 			break;
488 		case EFI_NOT_FOUND:
489 			break;
490 		default:
491 			printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n",
492 				status);
493 			status = EFI_NOT_FOUND;
494 			break;
495 		}
496 
497 	} while (status != EFI_NOT_FOUND);
498 
499 	up(&efivars_lock);
500 free:
501 	kfree(variable_name);
502 
503 	return err;
504 }
505 EXPORT_SYMBOL_GPL(efivar_init);
506 
507 /**
508  * efivar_entry_add - add entry to variable list
509  * @entry: entry to add to list
510  * @head: list head
511  *
512  * Returns 0 on success, or a kernel error code on failure.
513  */
514 int efivar_entry_add(struct efivar_entry *entry, struct list_head *head)
515 {
516 	if (down_interruptible(&efivars_lock))
517 		return -EINTR;
518 	list_add(&entry->list, head);
519 	up(&efivars_lock);
520 
521 	return 0;
522 }
523 EXPORT_SYMBOL_GPL(efivar_entry_add);
524 
525 /**
526  * efivar_entry_remove - remove entry from variable list
527  * @entry: entry to remove from list
528  *
529  * Returns 0 on success, or a kernel error code on failure.
530  */
531 int efivar_entry_remove(struct efivar_entry *entry)
532 {
533 	if (down_interruptible(&efivars_lock))
534 		return -EINTR;
535 	list_del(&entry->list);
536 	up(&efivars_lock);
537 
538 	return 0;
539 }
540 EXPORT_SYMBOL_GPL(efivar_entry_remove);
541 
542 /*
543  * efivar_entry_list_del_unlock - remove entry from variable list
544  * @entry: entry to remove
545  *
546  * Remove @entry from the variable list and release the list lock.
547  *
548  * NOTE: slightly weird locking semantics here - we expect to be
549  * called with the efivars lock already held, and we release it before
550  * returning. This is because this function is usually called after
551  * set_variable() while the lock is still held.
552  */
553 static void efivar_entry_list_del_unlock(struct efivar_entry *entry)
554 {
555 	list_del(&entry->list);
556 	up(&efivars_lock);
557 }
558 
559 /**
560  * __efivar_entry_delete - delete an EFI variable
561  * @entry: entry containing EFI variable to delete
562  *
563  * Delete the variable from the firmware but leave @entry on the
564  * variable list.
565  *
566  * This function differs from efivar_entry_delete() because it does
567  * not remove @entry from the variable list. Also, it is safe to be
568  * called from within a efivar_entry_iter_begin() and
569  * efivar_entry_iter_end() region, unlike efivar_entry_delete().
570  *
571  * Returns 0 on success, or a converted EFI status code if
572  * set_variable() fails.
573  */
574 int __efivar_entry_delete(struct efivar_entry *entry)
575 {
576 	efi_status_t status;
577 
578 	if (!__efivars)
579 		return -EINVAL;
580 
581 	status = __efivars->ops->set_variable(entry->var.VariableName,
582 					      &entry->var.VendorGuid,
583 					      0, 0, NULL);
584 
585 	return efi_status_to_err(status);
586 }
587 EXPORT_SYMBOL_GPL(__efivar_entry_delete);
588 
589 /**
590  * efivar_entry_delete - delete variable and remove entry from list
591  * @entry: entry containing variable to delete
592  *
593  * Delete the variable from the firmware and remove @entry from the
594  * variable list. It is the caller's responsibility to free @entry
595  * once we return.
596  *
597  * Returns 0 on success, -EINTR if we can't grab the semaphore,
598  * converted EFI status code if set_variable() fails.
599  */
600 int efivar_entry_delete(struct efivar_entry *entry)
601 {
602 	const struct efivar_operations *ops;
603 	efi_status_t status;
604 
605 	if (down_interruptible(&efivars_lock))
606 		return -EINTR;
607 
608 	if (!__efivars) {
609 		up(&efivars_lock);
610 		return -EINVAL;
611 	}
612 	ops = __efivars->ops;
613 	status = ops->set_variable(entry->var.VariableName,
614 				   &entry->var.VendorGuid,
615 				   0, 0, NULL);
616 	if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) {
617 		up(&efivars_lock);
618 		return efi_status_to_err(status);
619 	}
620 
621 	efivar_entry_list_del_unlock(entry);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(efivar_entry_delete);
625 
626 /**
627  * efivar_entry_set - call set_variable()
628  * @entry: entry containing the EFI variable to write
629  * @attributes: variable attributes
630  * @size: size of @data buffer
631  * @data: buffer containing variable data
632  * @head: head of variable list
633  *
634  * Calls set_variable() for an EFI variable. If creating a new EFI
635  * variable, this function is usually followed by efivar_entry_add().
636  *
637  * Before writing the variable, the remaining EFI variable storage
638  * space is checked to ensure there is enough room available.
639  *
640  * If @head is not NULL a lookup is performed to determine whether
641  * the entry is already on the list.
642  *
643  * Returns 0 on success, -EINTR if we can't grab the semaphore,
644  * -EEXIST if a lookup is performed and the entry already exists on
645  * the list, or a converted EFI status code if set_variable() fails.
646  */
647 int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
648 		     unsigned long size, void *data, struct list_head *head)
649 {
650 	const struct efivar_operations *ops;
651 	efi_status_t status;
652 	efi_char16_t *name = entry->var.VariableName;
653 	efi_guid_t vendor = entry->var.VendorGuid;
654 
655 	if (down_interruptible(&efivars_lock))
656 		return -EINTR;
657 
658 	if (!__efivars) {
659 		up(&efivars_lock);
660 		return -EINVAL;
661 	}
662 	ops = __efivars->ops;
663 	if (head && efivar_entry_find(name, vendor, head, false)) {
664 		up(&efivars_lock);
665 		return -EEXIST;
666 	}
667 
668 	status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
669 	if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED)
670 		status = ops->set_variable(name, &vendor,
671 					   attributes, size, data);
672 
673 	up(&efivars_lock);
674 
675 	return efi_status_to_err(status);
676 
677 }
678 EXPORT_SYMBOL_GPL(efivar_entry_set);
679 
680 /*
681  * efivar_entry_set_nonblocking - call set_variable_nonblocking()
682  *
683  * This function is guaranteed to not block and is suitable for calling
684  * from crash/panic handlers.
685  *
686  * Crucially, this function will not block if it cannot acquire
687  * efivars_lock. Instead, it returns -EBUSY.
688  */
689 static int
690 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
691 			     u32 attributes, unsigned long size, void *data)
692 {
693 	const struct efivar_operations *ops;
694 	efi_status_t status;
695 
696 	if (down_trylock(&efivars_lock))
697 		return -EBUSY;
698 
699 	if (!__efivars) {
700 		up(&efivars_lock);
701 		return -EINVAL;
702 	}
703 
704 	status = check_var_size_nonblocking(attributes,
705 					    size + ucs2_strsize(name, 1024));
706 	if (status != EFI_SUCCESS) {
707 		up(&efivars_lock);
708 		return -ENOSPC;
709 	}
710 
711 	ops = __efivars->ops;
712 	status = ops->set_variable_nonblocking(name, &vendor, attributes,
713 					       size, data);
714 
715 	up(&efivars_lock);
716 	return efi_status_to_err(status);
717 }
718 
719 /**
720  * efivar_entry_set_safe - call set_variable() if enough space in firmware
721  * @name: buffer containing the variable name
722  * @vendor: variable vendor guid
723  * @attributes: variable attributes
724  * @block: can we block in this context?
725  * @size: size of @data buffer
726  * @data: buffer containing variable data
727  *
728  * Ensures there is enough free storage in the firmware for this variable, and
729  * if so, calls set_variable(). If creating a new EFI variable, this function
730  * is usually followed by efivar_entry_add().
731  *
732  * Returns 0 on success, -ENOSPC if the firmware does not have enough
733  * space for set_variable() to succeed, or a converted EFI status code
734  * if set_variable() fails.
735  */
736 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
737 			  bool block, unsigned long size, void *data)
738 {
739 	const struct efivar_operations *ops;
740 	efi_status_t status;
741 
742 	if (!__efivars)
743 		return -EINVAL;
744 
745 	ops = __efivars->ops;
746 	if (!ops->query_variable_store)
747 		return -ENOSYS;
748 
749 	/*
750 	 * If the EFI variable backend provides a non-blocking
751 	 * ->set_variable() operation and we're in a context where we
752 	 * cannot block, then we need to use it to avoid live-locks,
753 	 * since the implication is that the regular ->set_variable()
754 	 * will block.
755 	 *
756 	 * If no ->set_variable_nonblocking() is provided then
757 	 * ->set_variable() is assumed to be non-blocking.
758 	 */
759 	if (!block && ops->set_variable_nonblocking)
760 		return efivar_entry_set_nonblocking(name, vendor, attributes,
761 						    size, data);
762 
763 	if (!block) {
764 		if (down_trylock(&efivars_lock))
765 			return -EBUSY;
766 	} else {
767 		if (down_interruptible(&efivars_lock))
768 			return -EINTR;
769 	}
770 
771 	status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
772 	if (status != EFI_SUCCESS) {
773 		up(&efivars_lock);
774 		return -ENOSPC;
775 	}
776 
777 	status = ops->set_variable(name, &vendor, attributes, size, data);
778 
779 	up(&efivars_lock);
780 
781 	return efi_status_to_err(status);
782 }
783 EXPORT_SYMBOL_GPL(efivar_entry_set_safe);
784 
785 /**
786  * efivar_entry_find - search for an entry
787  * @name: the EFI variable name
788  * @guid: the EFI variable vendor's guid
789  * @head: head of the variable list
790  * @remove: should we remove the entry from the list?
791  *
792  * Search for an entry on the variable list that has the EFI variable
793  * name @name and vendor guid @guid. If an entry is found on the list
794  * and @remove is true, the entry is removed from the list.
795  *
796  * The caller MUST call efivar_entry_iter_begin() and
797  * efivar_entry_iter_end() before and after the invocation of this
798  * function, respectively.
799  *
800  * Returns the entry if found on the list, %NULL otherwise.
801  */
802 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid,
803 				       struct list_head *head, bool remove)
804 {
805 	struct efivar_entry *entry, *n;
806 	int strsize1, strsize2;
807 	bool found = false;
808 
809 	list_for_each_entry_safe(entry, n, head, list) {
810 		strsize1 = ucs2_strsize(name, 1024);
811 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
812 		if (strsize1 == strsize2 &&
813 		    !memcmp(name, &(entry->var.VariableName), strsize1) &&
814 		    !efi_guidcmp(guid, entry->var.VendorGuid)) {
815 			found = true;
816 			break;
817 		}
818 	}
819 
820 	if (!found)
821 		return NULL;
822 
823 	if (remove) {
824 		if (entry->scanning) {
825 			/*
826 			 * The entry will be deleted
827 			 * after scanning is completed.
828 			 */
829 			entry->deleting = true;
830 		} else
831 			list_del(&entry->list);
832 	}
833 
834 	return entry;
835 }
836 EXPORT_SYMBOL_GPL(efivar_entry_find);
837 
838 /**
839  * efivar_entry_size - obtain the size of a variable
840  * @entry: entry for this variable
841  * @size: location to store the variable's size
842  */
843 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size)
844 {
845 	const struct efivar_operations *ops;
846 	efi_status_t status;
847 
848 	*size = 0;
849 
850 	if (down_interruptible(&efivars_lock))
851 		return -EINTR;
852 	if (!__efivars) {
853 		up(&efivars_lock);
854 		return -EINVAL;
855 	}
856 	ops = __efivars->ops;
857 	status = ops->get_variable(entry->var.VariableName,
858 				   &entry->var.VendorGuid, NULL, size, NULL);
859 	up(&efivars_lock);
860 
861 	if (status != EFI_BUFFER_TOO_SMALL)
862 		return efi_status_to_err(status);
863 
864 	return 0;
865 }
866 EXPORT_SYMBOL_GPL(efivar_entry_size);
867 
868 /**
869  * __efivar_entry_get - call get_variable()
870  * @entry: read data for this variable
871  * @attributes: variable attributes
872  * @size: size of @data buffer
873  * @data: buffer to store variable data
874  *
875  * The caller MUST call efivar_entry_iter_begin() and
876  * efivar_entry_iter_end() before and after the invocation of this
877  * function, respectively.
878  */
879 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
880 		       unsigned long *size, void *data)
881 {
882 	efi_status_t status;
883 
884 	if (!__efivars)
885 		return -EINVAL;
886 
887 	status = __efivars->ops->get_variable(entry->var.VariableName,
888 					      &entry->var.VendorGuid,
889 					      attributes, size, data);
890 
891 	return efi_status_to_err(status);
892 }
893 EXPORT_SYMBOL_GPL(__efivar_entry_get);
894 
895 /**
896  * efivar_entry_get - call get_variable()
897  * @entry: read data for this variable
898  * @attributes: variable attributes
899  * @size: size of @data buffer
900  * @data: buffer to store variable data
901  */
902 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
903 		     unsigned long *size, void *data)
904 {
905 	efi_status_t status;
906 
907 	if (down_interruptible(&efivars_lock))
908 		return -EINTR;
909 
910 	if (!__efivars) {
911 		up(&efivars_lock);
912 		return -EINVAL;
913 	}
914 
915 	status = __efivars->ops->get_variable(entry->var.VariableName,
916 					      &entry->var.VendorGuid,
917 					      attributes, size, data);
918 	up(&efivars_lock);
919 
920 	return efi_status_to_err(status);
921 }
922 EXPORT_SYMBOL_GPL(efivar_entry_get);
923 
924 /**
925  * efivar_entry_set_get_size - call set_variable() and get new size (atomic)
926  * @entry: entry containing variable to set and get
927  * @attributes: attributes of variable to be written
928  * @size: size of data buffer
929  * @data: buffer containing data to write
930  * @set: did the set_variable() call succeed?
931  *
932  * This is a pretty special (complex) function. See efivarfs_file_write().
933  *
934  * Atomically call set_variable() for @entry and if the call is
935  * successful, return the new size of the variable from get_variable()
936  * in @size. The success of set_variable() is indicated by @set.
937  *
938  * Returns 0 on success, -EINVAL if the variable data is invalid,
939  * -ENOSPC if the firmware does not have enough available space, or a
940  * converted EFI status code if either of set_variable() or
941  * get_variable() fail.
942  *
943  * If the EFI variable does not exist when calling set_variable()
944  * (EFI_NOT_FOUND), @entry is removed from the variable list.
945  */
946 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes,
947 			      unsigned long *size, void *data, bool *set)
948 {
949 	const struct efivar_operations *ops;
950 	efi_char16_t *name = entry->var.VariableName;
951 	efi_guid_t *vendor = &entry->var.VendorGuid;
952 	efi_status_t status;
953 	int err;
954 
955 	*set = false;
956 
957 	if (efivar_validate(*vendor, name, data, *size) == false)
958 		return -EINVAL;
959 
960 	/*
961 	 * The lock here protects the get_variable call, the conditional
962 	 * set_variable call, and removal of the variable from the efivars
963 	 * list (in the case of an authenticated delete).
964 	 */
965 	if (down_interruptible(&efivars_lock))
966 		return -EINTR;
967 
968 	if (!__efivars) {
969 		err = -EINVAL;
970 		goto out;
971 	}
972 
973 	/*
974 	 * Ensure that the available space hasn't shrunk below the safe level
975 	 */
976 	status = check_var_size(attributes, *size + ucs2_strsize(name, 1024));
977 	if (status != EFI_SUCCESS) {
978 		if (status != EFI_UNSUPPORTED) {
979 			err = efi_status_to_err(status);
980 			goto out;
981 		}
982 
983 		if (*size > 65536) {
984 			err = -ENOSPC;
985 			goto out;
986 		}
987 	}
988 
989 	ops = __efivars->ops;
990 
991 	status = ops->set_variable(name, vendor, attributes, *size, data);
992 	if (status != EFI_SUCCESS) {
993 		err = efi_status_to_err(status);
994 		goto out;
995 	}
996 
997 	*set = true;
998 
999 	/*
1000 	 * Writing to the variable may have caused a change in size (which
1001 	 * could either be an append or an overwrite), or the variable to be
1002 	 * deleted. Perform a GetVariable() so we can tell what actually
1003 	 * happened.
1004 	 */
1005 	*size = 0;
1006 	status = ops->get_variable(entry->var.VariableName,
1007 				   &entry->var.VendorGuid,
1008 				   NULL, size, NULL);
1009 
1010 	if (status == EFI_NOT_FOUND)
1011 		efivar_entry_list_del_unlock(entry);
1012 	else
1013 		up(&efivars_lock);
1014 
1015 	if (status && status != EFI_BUFFER_TOO_SMALL)
1016 		return efi_status_to_err(status);
1017 
1018 	return 0;
1019 
1020 out:
1021 	up(&efivars_lock);
1022 	return err;
1023 
1024 }
1025 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size);
1026 
1027 /**
1028  * efivar_entry_iter_begin - begin iterating the variable list
1029  *
1030  * Lock the variable list to prevent entry insertion and removal until
1031  * efivar_entry_iter_end() is called. This function is usually used in
1032  * conjunction with __efivar_entry_iter() or efivar_entry_iter().
1033  */
1034 int efivar_entry_iter_begin(void)
1035 {
1036 	return down_interruptible(&efivars_lock);
1037 }
1038 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin);
1039 
1040 /**
1041  * efivar_entry_iter_end - finish iterating the variable list
1042  *
1043  * Unlock the variable list and allow modifications to the list again.
1044  */
1045 void efivar_entry_iter_end(void)
1046 {
1047 	up(&efivars_lock);
1048 }
1049 EXPORT_SYMBOL_GPL(efivar_entry_iter_end);
1050 
1051 /**
1052  * __efivar_entry_iter - iterate over variable list
1053  * @func: callback function
1054  * @head: head of the variable list
1055  * @data: function-specific data to pass to callback
1056  * @prev: entry to begin iterating from
1057  *
1058  * Iterate over the list of EFI variables and call @func with every
1059  * entry on the list. It is safe for @func to remove entries in the
1060  * list via efivar_entry_delete().
1061  *
1062  * You MUST call efivar_entry_iter_begin() before this function, and
1063  * efivar_entry_iter_end() afterwards.
1064  *
1065  * It is possible to begin iteration from an arbitrary entry within
1066  * the list by passing @prev. @prev is updated on return to point to
1067  * the last entry passed to @func. To begin iterating from the
1068  * beginning of the list @prev must be %NULL.
1069  *
1070  * The restrictions for @func are the same as documented for
1071  * efivar_entry_iter().
1072  */
1073 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1074 			struct list_head *head, void *data,
1075 			struct efivar_entry **prev)
1076 {
1077 	struct efivar_entry *entry, *n;
1078 	int err = 0;
1079 
1080 	if (!prev || !*prev) {
1081 		list_for_each_entry_safe(entry, n, head, list) {
1082 			err = func(entry, data);
1083 			if (err)
1084 				break;
1085 		}
1086 
1087 		if (prev)
1088 			*prev = entry;
1089 
1090 		return err;
1091 	}
1092 
1093 
1094 	list_for_each_entry_safe_continue((*prev), n, head, list) {
1095 		err = func(*prev, data);
1096 		if (err)
1097 			break;
1098 	}
1099 
1100 	return err;
1101 }
1102 EXPORT_SYMBOL_GPL(__efivar_entry_iter);
1103 
1104 /**
1105  * efivar_entry_iter - iterate over variable list
1106  * @func: callback function
1107  * @head: head of variable list
1108  * @data: function-specific data to pass to callback
1109  *
1110  * Iterate over the list of EFI variables and call @func with every
1111  * entry on the list. It is safe for @func to remove entries in the
1112  * list via efivar_entry_delete() while iterating.
1113  *
1114  * Some notes for the callback function:
1115  *  - a non-zero return value indicates an error and terminates the loop
1116  *  - @func is called from atomic context
1117  */
1118 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1119 		      struct list_head *head, void *data)
1120 {
1121 	int err = 0;
1122 
1123 	err = efivar_entry_iter_begin();
1124 	if (err)
1125 		return err;
1126 	err = __efivar_entry_iter(func, head, data, NULL);
1127 	efivar_entry_iter_end();
1128 
1129 	return err;
1130 }
1131 EXPORT_SYMBOL_GPL(efivar_entry_iter);
1132 
1133 /**
1134  * efivars_kobject - get the kobject for the registered efivars
1135  *
1136  * If efivars_register() has not been called we return NULL,
1137  * otherwise return the kobject used at registration time.
1138  */
1139 struct kobject *efivars_kobject(void)
1140 {
1141 	if (!__efivars)
1142 		return NULL;
1143 
1144 	return __efivars->kobject;
1145 }
1146 EXPORT_SYMBOL_GPL(efivars_kobject);
1147 
1148 /**
1149  * efivars_register - register an efivars
1150  * @efivars: efivars to register
1151  * @ops: efivars operations
1152  * @kobject: @efivars-specific kobject
1153  *
1154  * Only a single efivars can be registered at any time.
1155  */
1156 int efivars_register(struct efivars *efivars,
1157 		     const struct efivar_operations *ops,
1158 		     struct kobject *kobject)
1159 {
1160 	if (down_interruptible(&efivars_lock))
1161 		return -EINTR;
1162 
1163 	efivars->ops = ops;
1164 	efivars->kobject = kobject;
1165 
1166 	__efivars = efivars;
1167 
1168 	pr_info("Registered efivars operations\n");
1169 
1170 	up(&efivars_lock);
1171 
1172 	return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(efivars_register);
1175 
1176 /**
1177  * efivars_unregister - unregister an efivars
1178  * @efivars: efivars to unregister
1179  *
1180  * The caller must have already removed every entry from the list,
1181  * failure to do so is an error.
1182  */
1183 int efivars_unregister(struct efivars *efivars)
1184 {
1185 	int rv;
1186 
1187 	if (down_interruptible(&efivars_lock))
1188 		return -EINTR;
1189 
1190 	if (!__efivars) {
1191 		printk(KERN_ERR "efivars not registered\n");
1192 		rv = -EINVAL;
1193 		goto out;
1194 	}
1195 
1196 	if (__efivars != efivars) {
1197 		rv = -EINVAL;
1198 		goto out;
1199 	}
1200 
1201 	pr_info("Unregistered efivars operations\n");
1202 	__efivars = NULL;
1203 
1204 	rv = 0;
1205 out:
1206 	up(&efivars_lock);
1207 	return rv;
1208 }
1209 EXPORT_SYMBOL_GPL(efivars_unregister);
1210 
1211 int efivar_supports_writes(void)
1212 {
1213 	return __efivars && __efivars->ops->set_variable;
1214 }
1215 EXPORT_SYMBOL_GPL(efivar_supports_writes);
1216