xref: /openbmc/linux/drivers/firmware/efi/vars.c (revision 7587eb18)
1 /*
2  * Originally from efivars.c
3  *
4  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
5  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/capability.h>
23 #include <linux/types.h>
24 #include <linux/errno.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/smp.h>
30 #include <linux/efi.h>
31 #include <linux/sysfs.h>
32 #include <linux/device.h>
33 #include <linux/slab.h>
34 #include <linux/ctype.h>
35 #include <linux/ucs2_string.h>
36 
37 /* Private pointer to registered efivars */
38 static struct efivars *__efivars;
39 
40 static bool efivar_wq_enabled = true;
41 DECLARE_WORK(efivar_work, NULL);
42 EXPORT_SYMBOL_GPL(efivar_work);
43 
44 static bool
45 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer,
46 		     unsigned long len)
47 {
48 	struct efi_generic_dev_path *node;
49 	int offset = 0;
50 
51 	node = (struct efi_generic_dev_path *)buffer;
52 
53 	if (len < sizeof(*node))
54 		return false;
55 
56 	while (offset <= len - sizeof(*node) &&
57 	       node->length >= sizeof(*node) &&
58 		node->length <= len - offset) {
59 		offset += node->length;
60 
61 		if ((node->type == EFI_DEV_END_PATH ||
62 		     node->type == EFI_DEV_END_PATH2) &&
63 		    node->sub_type == EFI_DEV_END_ENTIRE)
64 			return true;
65 
66 		node = (struct efi_generic_dev_path *)(buffer + offset);
67 	}
68 
69 	/*
70 	 * If we're here then either node->length pointed past the end
71 	 * of the buffer or we reached the end of the buffer without
72 	 * finding a device path end node.
73 	 */
74 	return false;
75 }
76 
77 static bool
78 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer,
79 		    unsigned long len)
80 {
81 	/* An array of 16-bit integers */
82 	if ((len % 2) != 0)
83 		return false;
84 
85 	return true;
86 }
87 
88 static bool
89 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer,
90 		     unsigned long len)
91 {
92 	u16 filepathlength;
93 	int i, desclength = 0, namelen;
94 
95 	namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN);
96 
97 	/* Either "Boot" or "Driver" followed by four digits of hex */
98 	for (i = match; i < match+4; i++) {
99 		if (var_name[i] > 127 ||
100 		    hex_to_bin(var_name[i] & 0xff) < 0)
101 			return true;
102 	}
103 
104 	/* Reject it if there's 4 digits of hex and then further content */
105 	if (namelen > match + 4)
106 		return false;
107 
108 	/* A valid entry must be at least 8 bytes */
109 	if (len < 8)
110 		return false;
111 
112 	filepathlength = buffer[4] | buffer[5] << 8;
113 
114 	/*
115 	 * There's no stored length for the description, so it has to be
116 	 * found by hand
117 	 */
118 	desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2;
119 
120 	/* Each boot entry must have a descriptor */
121 	if (!desclength)
122 		return false;
123 
124 	/*
125 	 * If the sum of the length of the description, the claimed filepath
126 	 * length and the original header are greater than the length of the
127 	 * variable, it's malformed
128 	 */
129 	if ((desclength + filepathlength + 6) > len)
130 		return false;
131 
132 	/*
133 	 * And, finally, check the filepath
134 	 */
135 	return validate_device_path(var_name, match, buffer + desclength + 6,
136 				    filepathlength);
137 }
138 
139 static bool
140 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer,
141 		unsigned long len)
142 {
143 	/* A single 16-bit integer */
144 	if (len != 2)
145 		return false;
146 
147 	return true;
148 }
149 
150 static bool
151 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer,
152 		      unsigned long len)
153 {
154 	int i;
155 
156 	for (i = 0; i < len; i++) {
157 		if (buffer[i] > 127)
158 			return false;
159 
160 		if (buffer[i] == 0)
161 			return true;
162 	}
163 
164 	return false;
165 }
166 
167 struct variable_validate {
168 	efi_guid_t vendor;
169 	char *name;
170 	bool (*validate)(efi_char16_t *var_name, int match, u8 *data,
171 			 unsigned long len);
172 };
173 
174 /*
175  * This is the list of variables we need to validate, as well as the
176  * whitelist for what we think is safe not to default to immutable.
177  *
178  * If it has a validate() method that's not NULL, it'll go into the
179  * validation routine.  If not, it is assumed valid, but still used for
180  * whitelisting.
181  *
182  * Note that it's sorted by {vendor,name}, but globbed names must come after
183  * any other name with the same prefix.
184  */
185 static const struct variable_validate variable_validate[] = {
186 	{ EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 },
187 	{ EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order },
188 	{ EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option },
189 	{ EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order },
190 	{ EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option },
191 	{ EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path },
192 	{ EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path },
193 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path },
194 	{ EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path },
195 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path },
196 	{ EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path },
197 	{ EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string },
198 	{ EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL },
199 	{ EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string },
200 	{ EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 },
201 	{ LINUX_EFI_CRASH_GUID, "*", NULL },
202 	{ NULL_GUID, "", NULL },
203 };
204 
205 /*
206  * Check if @var_name matches the pattern given in @match_name.
207  *
208  * @var_name: an array of @len non-NUL characters.
209  * @match_name: a NUL-terminated pattern string, optionally ending in "*". A
210  *              final "*" character matches any trailing characters @var_name,
211  *              including the case when there are none left in @var_name.
212  * @match: on output, the number of non-wildcard characters in @match_name
213  *         that @var_name matches, regardless of the return value.
214  * @return: whether @var_name fully matches @match_name.
215  */
216 static bool
217 variable_matches(const char *var_name, size_t len, const char *match_name,
218 		 int *match)
219 {
220 	for (*match = 0; ; (*match)++) {
221 		char c = match_name[*match];
222 
223 		switch (c) {
224 		case '*':
225 			/* Wildcard in @match_name means we've matched. */
226 			return true;
227 
228 		case '\0':
229 			/* @match_name has ended. Has @var_name too? */
230 			return (*match == len);
231 
232 		default:
233 			/*
234 			 * We've reached a non-wildcard char in @match_name.
235 			 * Continue only if there's an identical character in
236 			 * @var_name.
237 			 */
238 			if (*match < len && c == var_name[*match])
239 				continue;
240 			return false;
241 		}
242 	}
243 }
244 
245 bool
246 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data,
247 		unsigned long data_size)
248 {
249 	int i;
250 	unsigned long utf8_size;
251 	u8 *utf8_name;
252 
253 	utf8_size = ucs2_utf8size(var_name);
254 	utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL);
255 	if (!utf8_name)
256 		return false;
257 
258 	ucs2_as_utf8(utf8_name, var_name, utf8_size);
259 	utf8_name[utf8_size] = '\0';
260 
261 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
262 		const char *name = variable_validate[i].name;
263 		int match = 0;
264 
265 		if (efi_guidcmp(vendor, variable_validate[i].vendor))
266 			continue;
267 
268 		if (variable_matches(utf8_name, utf8_size+1, name, &match)) {
269 			if (variable_validate[i].validate == NULL)
270 				break;
271 			kfree(utf8_name);
272 			return variable_validate[i].validate(var_name, match,
273 							     data, data_size);
274 		}
275 	}
276 	kfree(utf8_name);
277 	return true;
278 }
279 EXPORT_SYMBOL_GPL(efivar_validate);
280 
281 bool
282 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name,
283 			     size_t len)
284 {
285 	int i;
286 	bool found = false;
287 	int match = 0;
288 
289 	/*
290 	 * Check if our variable is in the validated variables list
291 	 */
292 	for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
293 		if (efi_guidcmp(variable_validate[i].vendor, vendor))
294 			continue;
295 
296 		if (variable_matches(var_name, len,
297 				     variable_validate[i].name, &match)) {
298 			found = true;
299 			break;
300 		}
301 	}
302 
303 	/*
304 	 * If it's in our list, it is removable.
305 	 */
306 	return found;
307 }
308 EXPORT_SYMBOL_GPL(efivar_variable_is_removable);
309 
310 static efi_status_t
311 check_var_size(u32 attributes, unsigned long size)
312 {
313 	const struct efivar_operations *fops = __efivars->ops;
314 
315 	if (!fops->query_variable_store)
316 		return EFI_UNSUPPORTED;
317 
318 	return fops->query_variable_store(attributes, size, false);
319 }
320 
321 static efi_status_t
322 check_var_size_nonblocking(u32 attributes, unsigned long size)
323 {
324 	const struct efivar_operations *fops = __efivars->ops;
325 
326 	if (!fops->query_variable_store)
327 		return EFI_UNSUPPORTED;
328 
329 	return fops->query_variable_store(attributes, size, true);
330 }
331 
332 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor,
333 				struct list_head *head)
334 {
335 	struct efivar_entry *entry, *n;
336 	unsigned long strsize1, strsize2;
337 	bool found = false;
338 
339 	strsize1 = ucs2_strsize(variable_name, 1024);
340 	list_for_each_entry_safe(entry, n, head, list) {
341 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
342 		if (strsize1 == strsize2 &&
343 			!memcmp(variable_name, &(entry->var.VariableName),
344 				strsize2) &&
345 			!efi_guidcmp(entry->var.VendorGuid,
346 				*vendor)) {
347 			found = true;
348 			break;
349 		}
350 	}
351 	return found;
352 }
353 
354 /*
355  * Returns the size of variable_name, in bytes, including the
356  * terminating NULL character, or variable_name_size if no NULL
357  * character is found among the first variable_name_size bytes.
358  */
359 static unsigned long var_name_strnsize(efi_char16_t *variable_name,
360 				       unsigned long variable_name_size)
361 {
362 	unsigned long len;
363 	efi_char16_t c;
364 
365 	/*
366 	 * The variable name is, by definition, a NULL-terminated
367 	 * string, so make absolutely sure that variable_name_size is
368 	 * the value we expect it to be. If not, return the real size.
369 	 */
370 	for (len = 2; len <= variable_name_size; len += sizeof(c)) {
371 		c = variable_name[(len / sizeof(c)) - 1];
372 		if (!c)
373 			break;
374 	}
375 
376 	return min(len, variable_name_size);
377 }
378 
379 /*
380  * Print a warning when duplicate EFI variables are encountered and
381  * disable the sysfs workqueue since the firmware is buggy.
382  */
383 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
384 			     unsigned long len16)
385 {
386 	size_t i, len8 = len16 / sizeof(efi_char16_t);
387 	char *str8;
388 
389 	/*
390 	 * Disable the workqueue since the algorithm it uses for
391 	 * detecting new variables won't work with this buggy
392 	 * implementation of GetNextVariableName().
393 	 */
394 	efivar_wq_enabled = false;
395 
396 	str8 = kzalloc(len8, GFP_KERNEL);
397 	if (!str8)
398 		return;
399 
400 	for (i = 0; i < len8; i++)
401 		str8[i] = str16[i];
402 
403 	printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
404 	       str8, vendor_guid);
405 	kfree(str8);
406 }
407 
408 /**
409  * efivar_init - build the initial list of EFI variables
410  * @func: callback function to invoke for every variable
411  * @data: function-specific data to pass to @func
412  * @atomic: do we need to execute the @func-loop atomically?
413  * @duplicates: error if we encounter duplicates on @head?
414  * @head: initialised head of variable list
415  *
416  * Get every EFI variable from the firmware and invoke @func. @func
417  * should call efivar_entry_add() to build the list of variables.
418  *
419  * Returns 0 on success, or a kernel error code on failure.
420  */
421 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *),
422 		void *data, bool duplicates, struct list_head *head)
423 {
424 	const struct efivar_operations *ops = __efivars->ops;
425 	unsigned long variable_name_size = 1024;
426 	efi_char16_t *variable_name;
427 	efi_status_t status;
428 	efi_guid_t vendor_guid;
429 	int err = 0;
430 
431 	variable_name = kzalloc(variable_name_size, GFP_KERNEL);
432 	if (!variable_name) {
433 		printk(KERN_ERR "efivars: Memory allocation failed.\n");
434 		return -ENOMEM;
435 	}
436 
437 	spin_lock_irq(&__efivars->lock);
438 
439 	/*
440 	 * Per EFI spec, the maximum storage allocated for both
441 	 * the variable name and variable data is 1024 bytes.
442 	 */
443 
444 	do {
445 		variable_name_size = 1024;
446 
447 		status = ops->get_next_variable(&variable_name_size,
448 						variable_name,
449 						&vendor_guid);
450 		switch (status) {
451 		case EFI_SUCCESS:
452 			if (duplicates)
453 				spin_unlock_irq(&__efivars->lock);
454 
455 			variable_name_size = var_name_strnsize(variable_name,
456 							       variable_name_size);
457 
458 			/*
459 			 * Some firmware implementations return the
460 			 * same variable name on multiple calls to
461 			 * get_next_variable(). Terminate the loop
462 			 * immediately as there is no guarantee that
463 			 * we'll ever see a different variable name,
464 			 * and may end up looping here forever.
465 			 */
466 			if (duplicates &&
467 			    variable_is_present(variable_name, &vendor_guid,
468 						head)) {
469 				dup_variable_bug(variable_name, &vendor_guid,
470 						 variable_name_size);
471 				status = EFI_NOT_FOUND;
472 			} else {
473 				err = func(variable_name, vendor_guid,
474 					   variable_name_size, data);
475 				if (err)
476 					status = EFI_NOT_FOUND;
477 			}
478 
479 			if (duplicates)
480 				spin_lock_irq(&__efivars->lock);
481 
482 			break;
483 		case EFI_NOT_FOUND:
484 			break;
485 		default:
486 			printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n",
487 				status);
488 			status = EFI_NOT_FOUND;
489 			break;
490 		}
491 
492 	} while (status != EFI_NOT_FOUND);
493 
494 	spin_unlock_irq(&__efivars->lock);
495 
496 	kfree(variable_name);
497 
498 	return err;
499 }
500 EXPORT_SYMBOL_GPL(efivar_init);
501 
502 /**
503  * efivar_entry_add - add entry to variable list
504  * @entry: entry to add to list
505  * @head: list head
506  */
507 void efivar_entry_add(struct efivar_entry *entry, struct list_head *head)
508 {
509 	spin_lock_irq(&__efivars->lock);
510 	list_add(&entry->list, head);
511 	spin_unlock_irq(&__efivars->lock);
512 }
513 EXPORT_SYMBOL_GPL(efivar_entry_add);
514 
515 /**
516  * efivar_entry_remove - remove entry from variable list
517  * @entry: entry to remove from list
518  */
519 void efivar_entry_remove(struct efivar_entry *entry)
520 {
521 	spin_lock_irq(&__efivars->lock);
522 	list_del(&entry->list);
523 	spin_unlock_irq(&__efivars->lock);
524 }
525 EXPORT_SYMBOL_GPL(efivar_entry_remove);
526 
527 /*
528  * efivar_entry_list_del_unlock - remove entry from variable list
529  * @entry: entry to remove
530  *
531  * Remove @entry from the variable list and release the list lock.
532  *
533  * NOTE: slightly weird locking semantics here - we expect to be
534  * called with the efivars lock already held, and we release it before
535  * returning. This is because this function is usually called after
536  * set_variable() while the lock is still held.
537  */
538 static void efivar_entry_list_del_unlock(struct efivar_entry *entry)
539 {
540 	lockdep_assert_held(&__efivars->lock);
541 
542 	list_del(&entry->list);
543 	spin_unlock_irq(&__efivars->lock);
544 }
545 
546 /**
547  * __efivar_entry_delete - delete an EFI variable
548  * @entry: entry containing EFI variable to delete
549  *
550  * Delete the variable from the firmware but leave @entry on the
551  * variable list.
552  *
553  * This function differs from efivar_entry_delete() because it does
554  * not remove @entry from the variable list. Also, it is safe to be
555  * called from within a efivar_entry_iter_begin() and
556  * efivar_entry_iter_end() region, unlike efivar_entry_delete().
557  *
558  * Returns 0 on success, or a converted EFI status code if
559  * set_variable() fails.
560  */
561 int __efivar_entry_delete(struct efivar_entry *entry)
562 {
563 	const struct efivar_operations *ops = __efivars->ops;
564 	efi_status_t status;
565 
566 	lockdep_assert_held(&__efivars->lock);
567 
568 	status = ops->set_variable(entry->var.VariableName,
569 				   &entry->var.VendorGuid,
570 				   0, 0, NULL);
571 
572 	return efi_status_to_err(status);
573 }
574 EXPORT_SYMBOL_GPL(__efivar_entry_delete);
575 
576 /**
577  * efivar_entry_delete - delete variable and remove entry from list
578  * @entry: entry containing variable to delete
579  *
580  * Delete the variable from the firmware and remove @entry from the
581  * variable list. It is the caller's responsibility to free @entry
582  * once we return.
583  *
584  * Returns 0 on success, or a converted EFI status code if
585  * set_variable() fails.
586  */
587 int efivar_entry_delete(struct efivar_entry *entry)
588 {
589 	const struct efivar_operations *ops = __efivars->ops;
590 	efi_status_t status;
591 
592 	spin_lock_irq(&__efivars->lock);
593 	status = ops->set_variable(entry->var.VariableName,
594 				   &entry->var.VendorGuid,
595 				   0, 0, NULL);
596 	if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) {
597 		spin_unlock_irq(&__efivars->lock);
598 		return efi_status_to_err(status);
599 	}
600 
601 	efivar_entry_list_del_unlock(entry);
602 	return 0;
603 }
604 EXPORT_SYMBOL_GPL(efivar_entry_delete);
605 
606 /**
607  * efivar_entry_set - call set_variable()
608  * @entry: entry containing the EFI variable to write
609  * @attributes: variable attributes
610  * @size: size of @data buffer
611  * @data: buffer containing variable data
612  * @head: head of variable list
613  *
614  * Calls set_variable() for an EFI variable. If creating a new EFI
615  * variable, this function is usually followed by efivar_entry_add().
616  *
617  * Before writing the variable, the remaining EFI variable storage
618  * space is checked to ensure there is enough room available.
619  *
620  * If @head is not NULL a lookup is performed to determine whether
621  * the entry is already on the list.
622  *
623  * Returns 0 on success, -EEXIST if a lookup is performed and the entry
624  * already exists on the list, or a converted EFI status code if
625  * set_variable() fails.
626  */
627 int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
628 		     unsigned long size, void *data, struct list_head *head)
629 {
630 	const struct efivar_operations *ops = __efivars->ops;
631 	efi_status_t status;
632 	efi_char16_t *name = entry->var.VariableName;
633 	efi_guid_t vendor = entry->var.VendorGuid;
634 
635 	spin_lock_irq(&__efivars->lock);
636 
637 	if (head && efivar_entry_find(name, vendor, head, false)) {
638 		spin_unlock_irq(&__efivars->lock);
639 		return -EEXIST;
640 	}
641 
642 	status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
643 	if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED)
644 		status = ops->set_variable(name, &vendor,
645 					   attributes, size, data);
646 
647 	spin_unlock_irq(&__efivars->lock);
648 
649 	return efi_status_to_err(status);
650 
651 }
652 EXPORT_SYMBOL_GPL(efivar_entry_set);
653 
654 /*
655  * efivar_entry_set_nonblocking - call set_variable_nonblocking()
656  *
657  * This function is guaranteed to not block and is suitable for calling
658  * from crash/panic handlers.
659  *
660  * Crucially, this function will not block if it cannot acquire
661  * __efivars->lock. Instead, it returns -EBUSY.
662  */
663 static int
664 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
665 			     u32 attributes, unsigned long size, void *data)
666 {
667 	const struct efivar_operations *ops = __efivars->ops;
668 	unsigned long flags;
669 	efi_status_t status;
670 
671 	if (!spin_trylock_irqsave(&__efivars->lock, flags))
672 		return -EBUSY;
673 
674 	status = check_var_size_nonblocking(attributes,
675 					    size + ucs2_strsize(name, 1024));
676 	if (status != EFI_SUCCESS) {
677 		spin_unlock_irqrestore(&__efivars->lock, flags);
678 		return -ENOSPC;
679 	}
680 
681 	status = ops->set_variable_nonblocking(name, &vendor, attributes,
682 					       size, data);
683 
684 	spin_unlock_irqrestore(&__efivars->lock, flags);
685 	return efi_status_to_err(status);
686 }
687 
688 /**
689  * efivar_entry_set_safe - call set_variable() if enough space in firmware
690  * @name: buffer containing the variable name
691  * @vendor: variable vendor guid
692  * @attributes: variable attributes
693  * @block: can we block in this context?
694  * @size: size of @data buffer
695  * @data: buffer containing variable data
696  *
697  * Ensures there is enough free storage in the firmware for this variable, and
698  * if so, calls set_variable(). If creating a new EFI variable, this function
699  * is usually followed by efivar_entry_add().
700  *
701  * Returns 0 on success, -ENOSPC if the firmware does not have enough
702  * space for set_variable() to succeed, or a converted EFI status code
703  * if set_variable() fails.
704  */
705 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
706 			  bool block, unsigned long size, void *data)
707 {
708 	const struct efivar_operations *ops = __efivars->ops;
709 	unsigned long flags;
710 	efi_status_t status;
711 
712 	if (!ops->query_variable_store)
713 		return -ENOSYS;
714 
715 	/*
716 	 * If the EFI variable backend provides a non-blocking
717 	 * ->set_variable() operation and we're in a context where we
718 	 * cannot block, then we need to use it to avoid live-locks,
719 	 * since the implication is that the regular ->set_variable()
720 	 * will block.
721 	 *
722 	 * If no ->set_variable_nonblocking() is provided then
723 	 * ->set_variable() is assumed to be non-blocking.
724 	 */
725 	if (!block && ops->set_variable_nonblocking)
726 		return efivar_entry_set_nonblocking(name, vendor, attributes,
727 						    size, data);
728 
729 	if (!block) {
730 		if (!spin_trylock_irqsave(&__efivars->lock, flags))
731 			return -EBUSY;
732 	} else {
733 		spin_lock_irqsave(&__efivars->lock, flags);
734 	}
735 
736 	status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
737 	if (status != EFI_SUCCESS) {
738 		spin_unlock_irqrestore(&__efivars->lock, flags);
739 		return -ENOSPC;
740 	}
741 
742 	status = ops->set_variable(name, &vendor, attributes, size, data);
743 
744 	spin_unlock_irqrestore(&__efivars->lock, flags);
745 
746 	return efi_status_to_err(status);
747 }
748 EXPORT_SYMBOL_GPL(efivar_entry_set_safe);
749 
750 /**
751  * efivar_entry_find - search for an entry
752  * @name: the EFI variable name
753  * @guid: the EFI variable vendor's guid
754  * @head: head of the variable list
755  * @remove: should we remove the entry from the list?
756  *
757  * Search for an entry on the variable list that has the EFI variable
758  * name @name and vendor guid @guid. If an entry is found on the list
759  * and @remove is true, the entry is removed from the list.
760  *
761  * The caller MUST call efivar_entry_iter_begin() and
762  * efivar_entry_iter_end() before and after the invocation of this
763  * function, respectively.
764  *
765  * Returns the entry if found on the list, %NULL otherwise.
766  */
767 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid,
768 				       struct list_head *head, bool remove)
769 {
770 	struct efivar_entry *entry, *n;
771 	int strsize1, strsize2;
772 	bool found = false;
773 
774 	lockdep_assert_held(&__efivars->lock);
775 
776 	list_for_each_entry_safe(entry, n, head, list) {
777 		strsize1 = ucs2_strsize(name, 1024);
778 		strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
779 		if (strsize1 == strsize2 &&
780 		    !memcmp(name, &(entry->var.VariableName), strsize1) &&
781 		    !efi_guidcmp(guid, entry->var.VendorGuid)) {
782 			found = true;
783 			break;
784 		}
785 	}
786 
787 	if (!found)
788 		return NULL;
789 
790 	if (remove) {
791 		if (entry->scanning) {
792 			/*
793 			 * The entry will be deleted
794 			 * after scanning is completed.
795 			 */
796 			entry->deleting = true;
797 		} else
798 			list_del(&entry->list);
799 	}
800 
801 	return entry;
802 }
803 EXPORT_SYMBOL_GPL(efivar_entry_find);
804 
805 /**
806  * efivar_entry_size - obtain the size of a variable
807  * @entry: entry for this variable
808  * @size: location to store the variable's size
809  */
810 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size)
811 {
812 	const struct efivar_operations *ops = __efivars->ops;
813 	efi_status_t status;
814 
815 	*size = 0;
816 
817 	spin_lock_irq(&__efivars->lock);
818 	status = ops->get_variable(entry->var.VariableName,
819 				   &entry->var.VendorGuid, NULL, size, NULL);
820 	spin_unlock_irq(&__efivars->lock);
821 
822 	if (status != EFI_BUFFER_TOO_SMALL)
823 		return efi_status_to_err(status);
824 
825 	return 0;
826 }
827 EXPORT_SYMBOL_GPL(efivar_entry_size);
828 
829 /**
830  * __efivar_entry_get - call get_variable()
831  * @entry: read data for this variable
832  * @attributes: variable attributes
833  * @size: size of @data buffer
834  * @data: buffer to store variable data
835  *
836  * The caller MUST call efivar_entry_iter_begin() and
837  * efivar_entry_iter_end() before and after the invocation of this
838  * function, respectively.
839  */
840 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
841 		       unsigned long *size, void *data)
842 {
843 	const struct efivar_operations *ops = __efivars->ops;
844 	efi_status_t status;
845 
846 	lockdep_assert_held(&__efivars->lock);
847 
848 	status = ops->get_variable(entry->var.VariableName,
849 				   &entry->var.VendorGuid,
850 				   attributes, size, data);
851 
852 	return efi_status_to_err(status);
853 }
854 EXPORT_SYMBOL_GPL(__efivar_entry_get);
855 
856 /**
857  * efivar_entry_get - call get_variable()
858  * @entry: read data for this variable
859  * @attributes: variable attributes
860  * @size: size of @data buffer
861  * @data: buffer to store variable data
862  */
863 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
864 		     unsigned long *size, void *data)
865 {
866 	const struct efivar_operations *ops = __efivars->ops;
867 	efi_status_t status;
868 
869 	spin_lock_irq(&__efivars->lock);
870 	status = ops->get_variable(entry->var.VariableName,
871 				   &entry->var.VendorGuid,
872 				   attributes, size, data);
873 	spin_unlock_irq(&__efivars->lock);
874 
875 	return efi_status_to_err(status);
876 }
877 EXPORT_SYMBOL_GPL(efivar_entry_get);
878 
879 /**
880  * efivar_entry_set_get_size - call set_variable() and get new size (atomic)
881  * @entry: entry containing variable to set and get
882  * @attributes: attributes of variable to be written
883  * @size: size of data buffer
884  * @data: buffer containing data to write
885  * @set: did the set_variable() call succeed?
886  *
887  * This is a pretty special (complex) function. See efivarfs_file_write().
888  *
889  * Atomically call set_variable() for @entry and if the call is
890  * successful, return the new size of the variable from get_variable()
891  * in @size. The success of set_variable() is indicated by @set.
892  *
893  * Returns 0 on success, -EINVAL if the variable data is invalid,
894  * -ENOSPC if the firmware does not have enough available space, or a
895  * converted EFI status code if either of set_variable() or
896  * get_variable() fail.
897  *
898  * If the EFI variable does not exist when calling set_variable()
899  * (EFI_NOT_FOUND), @entry is removed from the variable list.
900  */
901 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes,
902 			      unsigned long *size, void *data, bool *set)
903 {
904 	const struct efivar_operations *ops = __efivars->ops;
905 	efi_char16_t *name = entry->var.VariableName;
906 	efi_guid_t *vendor = &entry->var.VendorGuid;
907 	efi_status_t status;
908 	int err;
909 
910 	*set = false;
911 
912 	if (efivar_validate(*vendor, name, data, *size) == false)
913 		return -EINVAL;
914 
915 	/*
916 	 * The lock here protects the get_variable call, the conditional
917 	 * set_variable call, and removal of the variable from the efivars
918 	 * list (in the case of an authenticated delete).
919 	 */
920 	spin_lock_irq(&__efivars->lock);
921 
922 	/*
923 	 * Ensure that the available space hasn't shrunk below the safe level
924 	 */
925 	status = check_var_size(attributes, *size + ucs2_strsize(name, 1024));
926 	if (status != EFI_SUCCESS) {
927 		if (status != EFI_UNSUPPORTED) {
928 			err = efi_status_to_err(status);
929 			goto out;
930 		}
931 
932 		if (*size > 65536) {
933 			err = -ENOSPC;
934 			goto out;
935 		}
936 	}
937 
938 	status = ops->set_variable(name, vendor, attributes, *size, data);
939 	if (status != EFI_SUCCESS) {
940 		err = efi_status_to_err(status);
941 		goto out;
942 	}
943 
944 	*set = true;
945 
946 	/*
947 	 * Writing to the variable may have caused a change in size (which
948 	 * could either be an append or an overwrite), or the variable to be
949 	 * deleted. Perform a GetVariable() so we can tell what actually
950 	 * happened.
951 	 */
952 	*size = 0;
953 	status = ops->get_variable(entry->var.VariableName,
954 				   &entry->var.VendorGuid,
955 				   NULL, size, NULL);
956 
957 	if (status == EFI_NOT_FOUND)
958 		efivar_entry_list_del_unlock(entry);
959 	else
960 		spin_unlock_irq(&__efivars->lock);
961 
962 	if (status && status != EFI_BUFFER_TOO_SMALL)
963 		return efi_status_to_err(status);
964 
965 	return 0;
966 
967 out:
968 	spin_unlock_irq(&__efivars->lock);
969 	return err;
970 
971 }
972 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size);
973 
974 /**
975  * efivar_entry_iter_begin - begin iterating the variable list
976  *
977  * Lock the variable list to prevent entry insertion and removal until
978  * efivar_entry_iter_end() is called. This function is usually used in
979  * conjunction with __efivar_entry_iter() or efivar_entry_iter().
980  */
981 void efivar_entry_iter_begin(void)
982 {
983 	spin_lock_irq(&__efivars->lock);
984 }
985 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin);
986 
987 /**
988  * efivar_entry_iter_end - finish iterating the variable list
989  *
990  * Unlock the variable list and allow modifications to the list again.
991  */
992 void efivar_entry_iter_end(void)
993 {
994 	spin_unlock_irq(&__efivars->lock);
995 }
996 EXPORT_SYMBOL_GPL(efivar_entry_iter_end);
997 
998 /**
999  * __efivar_entry_iter - iterate over variable list
1000  * @func: callback function
1001  * @head: head of the variable list
1002  * @data: function-specific data to pass to callback
1003  * @prev: entry to begin iterating from
1004  *
1005  * Iterate over the list of EFI variables and call @func with every
1006  * entry on the list. It is safe for @func to remove entries in the
1007  * list via efivar_entry_delete().
1008  *
1009  * You MUST call efivar_enter_iter_begin() before this function, and
1010  * efivar_entry_iter_end() afterwards.
1011  *
1012  * It is possible to begin iteration from an arbitrary entry within
1013  * the list by passing @prev. @prev is updated on return to point to
1014  * the last entry passed to @func. To begin iterating from the
1015  * beginning of the list @prev must be %NULL.
1016  *
1017  * The restrictions for @func are the same as documented for
1018  * efivar_entry_iter().
1019  */
1020 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1021 			struct list_head *head, void *data,
1022 			struct efivar_entry **prev)
1023 {
1024 	struct efivar_entry *entry, *n;
1025 	int err = 0;
1026 
1027 	if (!prev || !*prev) {
1028 		list_for_each_entry_safe(entry, n, head, list) {
1029 			err = func(entry, data);
1030 			if (err)
1031 				break;
1032 		}
1033 
1034 		if (prev)
1035 			*prev = entry;
1036 
1037 		return err;
1038 	}
1039 
1040 
1041 	list_for_each_entry_safe_continue((*prev), n, head, list) {
1042 		err = func(*prev, data);
1043 		if (err)
1044 			break;
1045 	}
1046 
1047 	return err;
1048 }
1049 EXPORT_SYMBOL_GPL(__efivar_entry_iter);
1050 
1051 /**
1052  * efivar_entry_iter - iterate over variable list
1053  * @func: callback function
1054  * @head: head of variable list
1055  * @data: function-specific data to pass to callback
1056  *
1057  * Iterate over the list of EFI variables and call @func with every
1058  * entry on the list. It is safe for @func to remove entries in the
1059  * list via efivar_entry_delete() while iterating.
1060  *
1061  * Some notes for the callback function:
1062  *  - a non-zero return value indicates an error and terminates the loop
1063  *  - @func is called from atomic context
1064  */
1065 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1066 		      struct list_head *head, void *data)
1067 {
1068 	int err = 0;
1069 
1070 	efivar_entry_iter_begin();
1071 	err = __efivar_entry_iter(func, head, data, NULL);
1072 	efivar_entry_iter_end();
1073 
1074 	return err;
1075 }
1076 EXPORT_SYMBOL_GPL(efivar_entry_iter);
1077 
1078 /**
1079  * efivars_kobject - get the kobject for the registered efivars
1080  *
1081  * If efivars_register() has not been called we return NULL,
1082  * otherwise return the kobject used at registration time.
1083  */
1084 struct kobject *efivars_kobject(void)
1085 {
1086 	if (!__efivars)
1087 		return NULL;
1088 
1089 	return __efivars->kobject;
1090 }
1091 EXPORT_SYMBOL_GPL(efivars_kobject);
1092 
1093 /**
1094  * efivar_run_worker - schedule the efivar worker thread
1095  */
1096 void efivar_run_worker(void)
1097 {
1098 	if (efivar_wq_enabled)
1099 		schedule_work(&efivar_work);
1100 }
1101 EXPORT_SYMBOL_GPL(efivar_run_worker);
1102 
1103 /**
1104  * efivars_register - register an efivars
1105  * @efivars: efivars to register
1106  * @ops: efivars operations
1107  * @kobject: @efivars-specific kobject
1108  *
1109  * Only a single efivars can be registered at any time.
1110  */
1111 int efivars_register(struct efivars *efivars,
1112 		     const struct efivar_operations *ops,
1113 		     struct kobject *kobject)
1114 {
1115 	spin_lock_init(&efivars->lock);
1116 	efivars->ops = ops;
1117 	efivars->kobject = kobject;
1118 
1119 	__efivars = efivars;
1120 
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL_GPL(efivars_register);
1124 
1125 /**
1126  * efivars_unregister - unregister an efivars
1127  * @efivars: efivars to unregister
1128  *
1129  * The caller must have already removed every entry from the list,
1130  * failure to do so is an error.
1131  */
1132 int efivars_unregister(struct efivars *efivars)
1133 {
1134 	int rv;
1135 
1136 	if (!__efivars) {
1137 		printk(KERN_ERR "efivars not registered\n");
1138 		rv = -EINVAL;
1139 		goto out;
1140 	}
1141 
1142 	if (__efivars != efivars) {
1143 		rv = -EINVAL;
1144 		goto out;
1145 	}
1146 
1147 	__efivars = NULL;
1148 
1149 	rv = 0;
1150 out:
1151 	return rv;
1152 }
1153 EXPORT_SYMBOL_GPL(efivars_unregister);
1154