1 /* 2 * Originally from efivars.c 3 * 4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> 5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/capability.h> 23 #include <linux/types.h> 24 #include <linux/errno.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/smp.h> 30 #include <linux/efi.h> 31 #include <linux/sysfs.h> 32 #include <linux/device.h> 33 #include <linux/slab.h> 34 #include <linux/ctype.h> 35 #include <linux/ucs2_string.h> 36 37 /* Private pointer to registered efivars */ 38 static struct efivars *__efivars; 39 40 /* 41 * efivars_lock protects three things: 42 * 1) efivarfs_list and efivars_sysfs_list 43 * 2) ->ops calls 44 * 3) (un)registration of __efivars 45 */ 46 static DEFINE_SEMAPHORE(efivars_lock); 47 48 static bool efivar_wq_enabled = true; 49 DECLARE_WORK(efivar_work, NULL); 50 EXPORT_SYMBOL_GPL(efivar_work); 51 52 static bool 53 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer, 54 unsigned long len) 55 { 56 struct efi_generic_dev_path *node; 57 int offset = 0; 58 59 node = (struct efi_generic_dev_path *)buffer; 60 61 if (len < sizeof(*node)) 62 return false; 63 64 while (offset <= len - sizeof(*node) && 65 node->length >= sizeof(*node) && 66 node->length <= len - offset) { 67 offset += node->length; 68 69 if ((node->type == EFI_DEV_END_PATH || 70 node->type == EFI_DEV_END_PATH2) && 71 node->sub_type == EFI_DEV_END_ENTIRE) 72 return true; 73 74 node = (struct efi_generic_dev_path *)(buffer + offset); 75 } 76 77 /* 78 * If we're here then either node->length pointed past the end 79 * of the buffer or we reached the end of the buffer without 80 * finding a device path end node. 81 */ 82 return false; 83 } 84 85 static bool 86 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer, 87 unsigned long len) 88 { 89 /* An array of 16-bit integers */ 90 if ((len % 2) != 0) 91 return false; 92 93 return true; 94 } 95 96 static bool 97 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer, 98 unsigned long len) 99 { 100 u16 filepathlength; 101 int i, desclength = 0, namelen; 102 103 namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN); 104 105 /* Either "Boot" or "Driver" followed by four digits of hex */ 106 for (i = match; i < match+4; i++) { 107 if (var_name[i] > 127 || 108 hex_to_bin(var_name[i] & 0xff) < 0) 109 return true; 110 } 111 112 /* Reject it if there's 4 digits of hex and then further content */ 113 if (namelen > match + 4) 114 return false; 115 116 /* A valid entry must be at least 8 bytes */ 117 if (len < 8) 118 return false; 119 120 filepathlength = buffer[4] | buffer[5] << 8; 121 122 /* 123 * There's no stored length for the description, so it has to be 124 * found by hand 125 */ 126 desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2; 127 128 /* Each boot entry must have a descriptor */ 129 if (!desclength) 130 return false; 131 132 /* 133 * If the sum of the length of the description, the claimed filepath 134 * length and the original header are greater than the length of the 135 * variable, it's malformed 136 */ 137 if ((desclength + filepathlength + 6) > len) 138 return false; 139 140 /* 141 * And, finally, check the filepath 142 */ 143 return validate_device_path(var_name, match, buffer + desclength + 6, 144 filepathlength); 145 } 146 147 static bool 148 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer, 149 unsigned long len) 150 { 151 /* A single 16-bit integer */ 152 if (len != 2) 153 return false; 154 155 return true; 156 } 157 158 static bool 159 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer, 160 unsigned long len) 161 { 162 int i; 163 164 for (i = 0; i < len; i++) { 165 if (buffer[i] > 127) 166 return false; 167 168 if (buffer[i] == 0) 169 return true; 170 } 171 172 return false; 173 } 174 175 struct variable_validate { 176 efi_guid_t vendor; 177 char *name; 178 bool (*validate)(efi_char16_t *var_name, int match, u8 *data, 179 unsigned long len); 180 }; 181 182 /* 183 * This is the list of variables we need to validate, as well as the 184 * whitelist for what we think is safe not to default to immutable. 185 * 186 * If it has a validate() method that's not NULL, it'll go into the 187 * validation routine. If not, it is assumed valid, but still used for 188 * whitelisting. 189 * 190 * Note that it's sorted by {vendor,name}, but globbed names must come after 191 * any other name with the same prefix. 192 */ 193 static const struct variable_validate variable_validate[] = { 194 { EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 }, 195 { EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order }, 196 { EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option }, 197 { EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order }, 198 { EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option }, 199 { EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path }, 200 { EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path }, 201 { EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path }, 202 { EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path }, 203 { EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path }, 204 { EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path }, 205 { EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string }, 206 { EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL }, 207 { EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string }, 208 { EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 }, 209 { LINUX_EFI_CRASH_GUID, "*", NULL }, 210 { NULL_GUID, "", NULL }, 211 }; 212 213 /* 214 * Check if @var_name matches the pattern given in @match_name. 215 * 216 * @var_name: an array of @len non-NUL characters. 217 * @match_name: a NUL-terminated pattern string, optionally ending in "*". A 218 * final "*" character matches any trailing characters @var_name, 219 * including the case when there are none left in @var_name. 220 * @match: on output, the number of non-wildcard characters in @match_name 221 * that @var_name matches, regardless of the return value. 222 * @return: whether @var_name fully matches @match_name. 223 */ 224 static bool 225 variable_matches(const char *var_name, size_t len, const char *match_name, 226 int *match) 227 { 228 for (*match = 0; ; (*match)++) { 229 char c = match_name[*match]; 230 231 switch (c) { 232 case '*': 233 /* Wildcard in @match_name means we've matched. */ 234 return true; 235 236 case '\0': 237 /* @match_name has ended. Has @var_name too? */ 238 return (*match == len); 239 240 default: 241 /* 242 * We've reached a non-wildcard char in @match_name. 243 * Continue only if there's an identical character in 244 * @var_name. 245 */ 246 if (*match < len && c == var_name[*match]) 247 continue; 248 return false; 249 } 250 } 251 } 252 253 bool 254 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data, 255 unsigned long data_size) 256 { 257 int i; 258 unsigned long utf8_size; 259 u8 *utf8_name; 260 261 utf8_size = ucs2_utf8size(var_name); 262 utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL); 263 if (!utf8_name) 264 return false; 265 266 ucs2_as_utf8(utf8_name, var_name, utf8_size); 267 utf8_name[utf8_size] = '\0'; 268 269 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 270 const char *name = variable_validate[i].name; 271 int match = 0; 272 273 if (efi_guidcmp(vendor, variable_validate[i].vendor)) 274 continue; 275 276 if (variable_matches(utf8_name, utf8_size+1, name, &match)) { 277 if (variable_validate[i].validate == NULL) 278 break; 279 kfree(utf8_name); 280 return variable_validate[i].validate(var_name, match, 281 data, data_size); 282 } 283 } 284 kfree(utf8_name); 285 return true; 286 } 287 EXPORT_SYMBOL_GPL(efivar_validate); 288 289 bool 290 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name, 291 size_t len) 292 { 293 int i; 294 bool found = false; 295 int match = 0; 296 297 /* 298 * Check if our variable is in the validated variables list 299 */ 300 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 301 if (efi_guidcmp(variable_validate[i].vendor, vendor)) 302 continue; 303 304 if (variable_matches(var_name, len, 305 variable_validate[i].name, &match)) { 306 found = true; 307 break; 308 } 309 } 310 311 /* 312 * If it's in our list, it is removable. 313 */ 314 return found; 315 } 316 EXPORT_SYMBOL_GPL(efivar_variable_is_removable); 317 318 static efi_status_t 319 check_var_size(u32 attributes, unsigned long size) 320 { 321 const struct efivar_operations *fops = __efivars->ops; 322 323 if (!fops->query_variable_store) 324 return EFI_UNSUPPORTED; 325 326 return fops->query_variable_store(attributes, size, false); 327 } 328 329 static efi_status_t 330 check_var_size_nonblocking(u32 attributes, unsigned long size) 331 { 332 const struct efivar_operations *fops = __efivars->ops; 333 334 if (!fops->query_variable_store) 335 return EFI_UNSUPPORTED; 336 337 return fops->query_variable_store(attributes, size, true); 338 } 339 340 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor, 341 struct list_head *head) 342 { 343 struct efivar_entry *entry, *n; 344 unsigned long strsize1, strsize2; 345 bool found = false; 346 347 strsize1 = ucs2_strsize(variable_name, 1024); 348 list_for_each_entry_safe(entry, n, head, list) { 349 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 350 if (strsize1 == strsize2 && 351 !memcmp(variable_name, &(entry->var.VariableName), 352 strsize2) && 353 !efi_guidcmp(entry->var.VendorGuid, 354 *vendor)) { 355 found = true; 356 break; 357 } 358 } 359 return found; 360 } 361 362 /* 363 * Returns the size of variable_name, in bytes, including the 364 * terminating NULL character, or variable_name_size if no NULL 365 * character is found among the first variable_name_size bytes. 366 */ 367 static unsigned long var_name_strnsize(efi_char16_t *variable_name, 368 unsigned long variable_name_size) 369 { 370 unsigned long len; 371 efi_char16_t c; 372 373 /* 374 * The variable name is, by definition, a NULL-terminated 375 * string, so make absolutely sure that variable_name_size is 376 * the value we expect it to be. If not, return the real size. 377 */ 378 for (len = 2; len <= variable_name_size; len += sizeof(c)) { 379 c = variable_name[(len / sizeof(c)) - 1]; 380 if (!c) 381 break; 382 } 383 384 return min(len, variable_name_size); 385 } 386 387 /* 388 * Print a warning when duplicate EFI variables are encountered and 389 * disable the sysfs workqueue since the firmware is buggy. 390 */ 391 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid, 392 unsigned long len16) 393 { 394 size_t i, len8 = len16 / sizeof(efi_char16_t); 395 char *str8; 396 397 /* 398 * Disable the workqueue since the algorithm it uses for 399 * detecting new variables won't work with this buggy 400 * implementation of GetNextVariableName(). 401 */ 402 efivar_wq_enabled = false; 403 404 str8 = kzalloc(len8, GFP_KERNEL); 405 if (!str8) 406 return; 407 408 for (i = 0; i < len8; i++) 409 str8[i] = str16[i]; 410 411 printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n", 412 str8, vendor_guid); 413 kfree(str8); 414 } 415 416 /** 417 * efivar_init - build the initial list of EFI variables 418 * @func: callback function to invoke for every variable 419 * @data: function-specific data to pass to @func 420 * @atomic: do we need to execute the @func-loop atomically? 421 * @duplicates: error if we encounter duplicates on @head? 422 * @head: initialised head of variable list 423 * 424 * Get every EFI variable from the firmware and invoke @func. @func 425 * should call efivar_entry_add() to build the list of variables. 426 * 427 * Returns 0 on success, or a kernel error code on failure. 428 */ 429 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *), 430 void *data, bool duplicates, struct list_head *head) 431 { 432 const struct efivar_operations *ops = __efivars->ops; 433 unsigned long variable_name_size = 1024; 434 efi_char16_t *variable_name; 435 efi_status_t status; 436 efi_guid_t vendor_guid; 437 int err = 0; 438 439 variable_name = kzalloc(variable_name_size, GFP_KERNEL); 440 if (!variable_name) { 441 printk(KERN_ERR "efivars: Memory allocation failed.\n"); 442 return -ENOMEM; 443 } 444 445 if (down_interruptible(&efivars_lock)) { 446 err = -EINTR; 447 goto free; 448 } 449 450 /* 451 * Per EFI spec, the maximum storage allocated for both 452 * the variable name and variable data is 1024 bytes. 453 */ 454 455 do { 456 variable_name_size = 1024; 457 458 status = ops->get_next_variable(&variable_name_size, 459 variable_name, 460 &vendor_guid); 461 switch (status) { 462 case EFI_SUCCESS: 463 if (duplicates) 464 up(&efivars_lock); 465 466 variable_name_size = var_name_strnsize(variable_name, 467 variable_name_size); 468 469 /* 470 * Some firmware implementations return the 471 * same variable name on multiple calls to 472 * get_next_variable(). Terminate the loop 473 * immediately as there is no guarantee that 474 * we'll ever see a different variable name, 475 * and may end up looping here forever. 476 */ 477 if (duplicates && 478 variable_is_present(variable_name, &vendor_guid, 479 head)) { 480 dup_variable_bug(variable_name, &vendor_guid, 481 variable_name_size); 482 status = EFI_NOT_FOUND; 483 } else { 484 err = func(variable_name, vendor_guid, 485 variable_name_size, data); 486 if (err) 487 status = EFI_NOT_FOUND; 488 } 489 490 if (duplicates) { 491 if (down_interruptible(&efivars_lock)) { 492 err = -EINTR; 493 goto free; 494 } 495 } 496 497 break; 498 case EFI_NOT_FOUND: 499 break; 500 default: 501 printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n", 502 status); 503 status = EFI_NOT_FOUND; 504 break; 505 } 506 507 } while (status != EFI_NOT_FOUND); 508 509 up(&efivars_lock); 510 free: 511 kfree(variable_name); 512 513 return err; 514 } 515 EXPORT_SYMBOL_GPL(efivar_init); 516 517 /** 518 * efivar_entry_add - add entry to variable list 519 * @entry: entry to add to list 520 * @head: list head 521 * 522 * Returns 0 on success, or a kernel error code on failure. 523 */ 524 int efivar_entry_add(struct efivar_entry *entry, struct list_head *head) 525 { 526 if (down_interruptible(&efivars_lock)) 527 return -EINTR; 528 list_add(&entry->list, head); 529 up(&efivars_lock); 530 531 return 0; 532 } 533 EXPORT_SYMBOL_GPL(efivar_entry_add); 534 535 /** 536 * efivar_entry_remove - remove entry from variable list 537 * @entry: entry to remove from list 538 * 539 * Returns 0 on success, or a kernel error code on failure. 540 */ 541 int efivar_entry_remove(struct efivar_entry *entry) 542 { 543 if (down_interruptible(&efivars_lock)) 544 return -EINTR; 545 list_del(&entry->list); 546 up(&efivars_lock); 547 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(efivar_entry_remove); 551 552 /* 553 * efivar_entry_list_del_unlock - remove entry from variable list 554 * @entry: entry to remove 555 * 556 * Remove @entry from the variable list and release the list lock. 557 * 558 * NOTE: slightly weird locking semantics here - we expect to be 559 * called with the efivars lock already held, and we release it before 560 * returning. This is because this function is usually called after 561 * set_variable() while the lock is still held. 562 */ 563 static void efivar_entry_list_del_unlock(struct efivar_entry *entry) 564 { 565 list_del(&entry->list); 566 up(&efivars_lock); 567 } 568 569 /** 570 * __efivar_entry_delete - delete an EFI variable 571 * @entry: entry containing EFI variable to delete 572 * 573 * Delete the variable from the firmware but leave @entry on the 574 * variable list. 575 * 576 * This function differs from efivar_entry_delete() because it does 577 * not remove @entry from the variable list. Also, it is safe to be 578 * called from within a efivar_entry_iter_begin() and 579 * efivar_entry_iter_end() region, unlike efivar_entry_delete(). 580 * 581 * Returns 0 on success, or a converted EFI status code if 582 * set_variable() fails. 583 */ 584 int __efivar_entry_delete(struct efivar_entry *entry) 585 { 586 const struct efivar_operations *ops = __efivars->ops; 587 efi_status_t status; 588 589 status = ops->set_variable(entry->var.VariableName, 590 &entry->var.VendorGuid, 591 0, 0, NULL); 592 593 return efi_status_to_err(status); 594 } 595 EXPORT_SYMBOL_GPL(__efivar_entry_delete); 596 597 /** 598 * efivar_entry_delete - delete variable and remove entry from list 599 * @entry: entry containing variable to delete 600 * 601 * Delete the variable from the firmware and remove @entry from the 602 * variable list. It is the caller's responsibility to free @entry 603 * once we return. 604 * 605 * Returns 0 on success, -EINTR if we can't grab the semaphore, 606 * converted EFI status code if set_variable() fails. 607 */ 608 int efivar_entry_delete(struct efivar_entry *entry) 609 { 610 const struct efivar_operations *ops = __efivars->ops; 611 efi_status_t status; 612 613 if (down_interruptible(&efivars_lock)) 614 return -EINTR; 615 616 status = ops->set_variable(entry->var.VariableName, 617 &entry->var.VendorGuid, 618 0, 0, NULL); 619 if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) { 620 up(&efivars_lock); 621 return efi_status_to_err(status); 622 } 623 624 efivar_entry_list_del_unlock(entry); 625 return 0; 626 } 627 EXPORT_SYMBOL_GPL(efivar_entry_delete); 628 629 /** 630 * efivar_entry_set - call set_variable() 631 * @entry: entry containing the EFI variable to write 632 * @attributes: variable attributes 633 * @size: size of @data buffer 634 * @data: buffer containing variable data 635 * @head: head of variable list 636 * 637 * Calls set_variable() for an EFI variable. If creating a new EFI 638 * variable, this function is usually followed by efivar_entry_add(). 639 * 640 * Before writing the variable, the remaining EFI variable storage 641 * space is checked to ensure there is enough room available. 642 * 643 * If @head is not NULL a lookup is performed to determine whether 644 * the entry is already on the list. 645 * 646 * Returns 0 on success, -EINTR if we can't grab the semaphore, 647 * -EEXIST if a lookup is performed and the entry already exists on 648 * the list, or a converted EFI status code if set_variable() fails. 649 */ 650 int efivar_entry_set(struct efivar_entry *entry, u32 attributes, 651 unsigned long size, void *data, struct list_head *head) 652 { 653 const struct efivar_operations *ops = __efivars->ops; 654 efi_status_t status; 655 efi_char16_t *name = entry->var.VariableName; 656 efi_guid_t vendor = entry->var.VendorGuid; 657 658 if (down_interruptible(&efivars_lock)) 659 return -EINTR; 660 if (head && efivar_entry_find(name, vendor, head, false)) { 661 up(&efivars_lock); 662 return -EEXIST; 663 } 664 665 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 666 if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED) 667 status = ops->set_variable(name, &vendor, 668 attributes, size, data); 669 670 up(&efivars_lock); 671 672 return efi_status_to_err(status); 673 674 } 675 EXPORT_SYMBOL_GPL(efivar_entry_set); 676 677 /* 678 * efivar_entry_set_nonblocking - call set_variable_nonblocking() 679 * 680 * This function is guaranteed to not block and is suitable for calling 681 * from crash/panic handlers. 682 * 683 * Crucially, this function will not block if it cannot acquire 684 * efivars_lock. Instead, it returns -EBUSY. 685 */ 686 static int 687 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor, 688 u32 attributes, unsigned long size, void *data) 689 { 690 const struct efivar_operations *ops = __efivars->ops; 691 efi_status_t status; 692 693 if (down_trylock(&efivars_lock)) 694 return -EBUSY; 695 696 status = check_var_size_nonblocking(attributes, 697 size + ucs2_strsize(name, 1024)); 698 if (status != EFI_SUCCESS) { 699 up(&efivars_lock); 700 return -ENOSPC; 701 } 702 703 status = ops->set_variable_nonblocking(name, &vendor, attributes, 704 size, data); 705 706 up(&efivars_lock); 707 return efi_status_to_err(status); 708 } 709 710 /** 711 * efivar_entry_set_safe - call set_variable() if enough space in firmware 712 * @name: buffer containing the variable name 713 * @vendor: variable vendor guid 714 * @attributes: variable attributes 715 * @block: can we block in this context? 716 * @size: size of @data buffer 717 * @data: buffer containing variable data 718 * 719 * Ensures there is enough free storage in the firmware for this variable, and 720 * if so, calls set_variable(). If creating a new EFI variable, this function 721 * is usually followed by efivar_entry_add(). 722 * 723 * Returns 0 on success, -ENOSPC if the firmware does not have enough 724 * space for set_variable() to succeed, or a converted EFI status code 725 * if set_variable() fails. 726 */ 727 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes, 728 bool block, unsigned long size, void *data) 729 { 730 const struct efivar_operations *ops = __efivars->ops; 731 efi_status_t status; 732 733 if (!ops->query_variable_store) 734 return -ENOSYS; 735 736 /* 737 * If the EFI variable backend provides a non-blocking 738 * ->set_variable() operation and we're in a context where we 739 * cannot block, then we need to use it to avoid live-locks, 740 * since the implication is that the regular ->set_variable() 741 * will block. 742 * 743 * If no ->set_variable_nonblocking() is provided then 744 * ->set_variable() is assumed to be non-blocking. 745 */ 746 if (!block && ops->set_variable_nonblocking) 747 return efivar_entry_set_nonblocking(name, vendor, attributes, 748 size, data); 749 750 if (!block) { 751 if (down_trylock(&efivars_lock)) 752 return -EBUSY; 753 } else { 754 if (down_interruptible(&efivars_lock)) 755 return -EINTR; 756 } 757 758 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 759 if (status != EFI_SUCCESS) { 760 up(&efivars_lock); 761 return -ENOSPC; 762 } 763 764 status = ops->set_variable(name, &vendor, attributes, size, data); 765 766 up(&efivars_lock); 767 768 return efi_status_to_err(status); 769 } 770 EXPORT_SYMBOL_GPL(efivar_entry_set_safe); 771 772 /** 773 * efivar_entry_find - search for an entry 774 * @name: the EFI variable name 775 * @guid: the EFI variable vendor's guid 776 * @head: head of the variable list 777 * @remove: should we remove the entry from the list? 778 * 779 * Search for an entry on the variable list that has the EFI variable 780 * name @name and vendor guid @guid. If an entry is found on the list 781 * and @remove is true, the entry is removed from the list. 782 * 783 * The caller MUST call efivar_entry_iter_begin() and 784 * efivar_entry_iter_end() before and after the invocation of this 785 * function, respectively. 786 * 787 * Returns the entry if found on the list, %NULL otherwise. 788 */ 789 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid, 790 struct list_head *head, bool remove) 791 { 792 struct efivar_entry *entry, *n; 793 int strsize1, strsize2; 794 bool found = false; 795 796 list_for_each_entry_safe(entry, n, head, list) { 797 strsize1 = ucs2_strsize(name, 1024); 798 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 799 if (strsize1 == strsize2 && 800 !memcmp(name, &(entry->var.VariableName), strsize1) && 801 !efi_guidcmp(guid, entry->var.VendorGuid)) { 802 found = true; 803 break; 804 } 805 } 806 807 if (!found) 808 return NULL; 809 810 if (remove) { 811 if (entry->scanning) { 812 /* 813 * The entry will be deleted 814 * after scanning is completed. 815 */ 816 entry->deleting = true; 817 } else 818 list_del(&entry->list); 819 } 820 821 return entry; 822 } 823 EXPORT_SYMBOL_GPL(efivar_entry_find); 824 825 /** 826 * efivar_entry_size - obtain the size of a variable 827 * @entry: entry for this variable 828 * @size: location to store the variable's size 829 */ 830 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size) 831 { 832 const struct efivar_operations *ops = __efivars->ops; 833 efi_status_t status; 834 835 *size = 0; 836 837 if (down_interruptible(&efivars_lock)) 838 return -EINTR; 839 status = ops->get_variable(entry->var.VariableName, 840 &entry->var.VendorGuid, NULL, size, NULL); 841 up(&efivars_lock); 842 843 if (status != EFI_BUFFER_TOO_SMALL) 844 return efi_status_to_err(status); 845 846 return 0; 847 } 848 EXPORT_SYMBOL_GPL(efivar_entry_size); 849 850 /** 851 * __efivar_entry_get - call get_variable() 852 * @entry: read data for this variable 853 * @attributes: variable attributes 854 * @size: size of @data buffer 855 * @data: buffer to store variable data 856 * 857 * The caller MUST call efivar_entry_iter_begin() and 858 * efivar_entry_iter_end() before and after the invocation of this 859 * function, respectively. 860 */ 861 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 862 unsigned long *size, void *data) 863 { 864 const struct efivar_operations *ops = __efivars->ops; 865 efi_status_t status; 866 867 status = ops->get_variable(entry->var.VariableName, 868 &entry->var.VendorGuid, 869 attributes, size, data); 870 871 return efi_status_to_err(status); 872 } 873 EXPORT_SYMBOL_GPL(__efivar_entry_get); 874 875 /** 876 * efivar_entry_get - call get_variable() 877 * @entry: read data for this variable 878 * @attributes: variable attributes 879 * @size: size of @data buffer 880 * @data: buffer to store variable data 881 */ 882 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 883 unsigned long *size, void *data) 884 { 885 const struct efivar_operations *ops = __efivars->ops; 886 efi_status_t status; 887 888 if (down_interruptible(&efivars_lock)) 889 return -EINTR; 890 status = ops->get_variable(entry->var.VariableName, 891 &entry->var.VendorGuid, 892 attributes, size, data); 893 up(&efivars_lock); 894 895 return efi_status_to_err(status); 896 } 897 EXPORT_SYMBOL_GPL(efivar_entry_get); 898 899 /** 900 * efivar_entry_set_get_size - call set_variable() and get new size (atomic) 901 * @entry: entry containing variable to set and get 902 * @attributes: attributes of variable to be written 903 * @size: size of data buffer 904 * @data: buffer containing data to write 905 * @set: did the set_variable() call succeed? 906 * 907 * This is a pretty special (complex) function. See efivarfs_file_write(). 908 * 909 * Atomically call set_variable() for @entry and if the call is 910 * successful, return the new size of the variable from get_variable() 911 * in @size. The success of set_variable() is indicated by @set. 912 * 913 * Returns 0 on success, -EINVAL if the variable data is invalid, 914 * -ENOSPC if the firmware does not have enough available space, or a 915 * converted EFI status code if either of set_variable() or 916 * get_variable() fail. 917 * 918 * If the EFI variable does not exist when calling set_variable() 919 * (EFI_NOT_FOUND), @entry is removed from the variable list. 920 */ 921 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes, 922 unsigned long *size, void *data, bool *set) 923 { 924 const struct efivar_operations *ops = __efivars->ops; 925 efi_char16_t *name = entry->var.VariableName; 926 efi_guid_t *vendor = &entry->var.VendorGuid; 927 efi_status_t status; 928 int err; 929 930 *set = false; 931 932 if (efivar_validate(*vendor, name, data, *size) == false) 933 return -EINVAL; 934 935 /* 936 * The lock here protects the get_variable call, the conditional 937 * set_variable call, and removal of the variable from the efivars 938 * list (in the case of an authenticated delete). 939 */ 940 if (down_interruptible(&efivars_lock)) 941 return -EINTR; 942 943 /* 944 * Ensure that the available space hasn't shrunk below the safe level 945 */ 946 status = check_var_size(attributes, *size + ucs2_strsize(name, 1024)); 947 if (status != EFI_SUCCESS) { 948 if (status != EFI_UNSUPPORTED) { 949 err = efi_status_to_err(status); 950 goto out; 951 } 952 953 if (*size > 65536) { 954 err = -ENOSPC; 955 goto out; 956 } 957 } 958 959 status = ops->set_variable(name, vendor, attributes, *size, data); 960 if (status != EFI_SUCCESS) { 961 err = efi_status_to_err(status); 962 goto out; 963 } 964 965 *set = true; 966 967 /* 968 * Writing to the variable may have caused a change in size (which 969 * could either be an append or an overwrite), or the variable to be 970 * deleted. Perform a GetVariable() so we can tell what actually 971 * happened. 972 */ 973 *size = 0; 974 status = ops->get_variable(entry->var.VariableName, 975 &entry->var.VendorGuid, 976 NULL, size, NULL); 977 978 if (status == EFI_NOT_FOUND) 979 efivar_entry_list_del_unlock(entry); 980 else 981 up(&efivars_lock); 982 983 if (status && status != EFI_BUFFER_TOO_SMALL) 984 return efi_status_to_err(status); 985 986 return 0; 987 988 out: 989 up(&efivars_lock); 990 return err; 991 992 } 993 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size); 994 995 /** 996 * efivar_entry_iter_begin - begin iterating the variable list 997 * 998 * Lock the variable list to prevent entry insertion and removal until 999 * efivar_entry_iter_end() is called. This function is usually used in 1000 * conjunction with __efivar_entry_iter() or efivar_entry_iter(). 1001 */ 1002 int efivar_entry_iter_begin(void) 1003 { 1004 return down_interruptible(&efivars_lock); 1005 } 1006 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin); 1007 1008 /** 1009 * efivar_entry_iter_end - finish iterating the variable list 1010 * 1011 * Unlock the variable list and allow modifications to the list again. 1012 */ 1013 void efivar_entry_iter_end(void) 1014 { 1015 up(&efivars_lock); 1016 } 1017 EXPORT_SYMBOL_GPL(efivar_entry_iter_end); 1018 1019 /** 1020 * __efivar_entry_iter - iterate over variable list 1021 * @func: callback function 1022 * @head: head of the variable list 1023 * @data: function-specific data to pass to callback 1024 * @prev: entry to begin iterating from 1025 * 1026 * Iterate over the list of EFI variables and call @func with every 1027 * entry on the list. It is safe for @func to remove entries in the 1028 * list via efivar_entry_delete(). 1029 * 1030 * You MUST call efivar_enter_iter_begin() before this function, and 1031 * efivar_entry_iter_end() afterwards. 1032 * 1033 * It is possible to begin iteration from an arbitrary entry within 1034 * the list by passing @prev. @prev is updated on return to point to 1035 * the last entry passed to @func. To begin iterating from the 1036 * beginning of the list @prev must be %NULL. 1037 * 1038 * The restrictions for @func are the same as documented for 1039 * efivar_entry_iter(). 1040 */ 1041 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1042 struct list_head *head, void *data, 1043 struct efivar_entry **prev) 1044 { 1045 struct efivar_entry *entry, *n; 1046 int err = 0; 1047 1048 if (!prev || !*prev) { 1049 list_for_each_entry_safe(entry, n, head, list) { 1050 err = func(entry, data); 1051 if (err) 1052 break; 1053 } 1054 1055 if (prev) 1056 *prev = entry; 1057 1058 return err; 1059 } 1060 1061 1062 list_for_each_entry_safe_continue((*prev), n, head, list) { 1063 err = func(*prev, data); 1064 if (err) 1065 break; 1066 } 1067 1068 return err; 1069 } 1070 EXPORT_SYMBOL_GPL(__efivar_entry_iter); 1071 1072 /** 1073 * efivar_entry_iter - iterate over variable list 1074 * @func: callback function 1075 * @head: head of variable list 1076 * @data: function-specific data to pass to callback 1077 * 1078 * Iterate over the list of EFI variables and call @func with every 1079 * entry on the list. It is safe for @func to remove entries in the 1080 * list via efivar_entry_delete() while iterating. 1081 * 1082 * Some notes for the callback function: 1083 * - a non-zero return value indicates an error and terminates the loop 1084 * - @func is called from atomic context 1085 */ 1086 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1087 struct list_head *head, void *data) 1088 { 1089 int err = 0; 1090 1091 err = efivar_entry_iter_begin(); 1092 if (err) 1093 return err; 1094 err = __efivar_entry_iter(func, head, data, NULL); 1095 efivar_entry_iter_end(); 1096 1097 return err; 1098 } 1099 EXPORT_SYMBOL_GPL(efivar_entry_iter); 1100 1101 /** 1102 * efivars_kobject - get the kobject for the registered efivars 1103 * 1104 * If efivars_register() has not been called we return NULL, 1105 * otherwise return the kobject used at registration time. 1106 */ 1107 struct kobject *efivars_kobject(void) 1108 { 1109 if (!__efivars) 1110 return NULL; 1111 1112 return __efivars->kobject; 1113 } 1114 EXPORT_SYMBOL_GPL(efivars_kobject); 1115 1116 /** 1117 * efivar_run_worker - schedule the efivar worker thread 1118 */ 1119 void efivar_run_worker(void) 1120 { 1121 if (efivar_wq_enabled) 1122 schedule_work(&efivar_work); 1123 } 1124 EXPORT_SYMBOL_GPL(efivar_run_worker); 1125 1126 /** 1127 * efivars_register - register an efivars 1128 * @efivars: efivars to register 1129 * @ops: efivars operations 1130 * @kobject: @efivars-specific kobject 1131 * 1132 * Only a single efivars can be registered at any time. 1133 */ 1134 int efivars_register(struct efivars *efivars, 1135 const struct efivar_operations *ops, 1136 struct kobject *kobject) 1137 { 1138 if (down_interruptible(&efivars_lock)) 1139 return -EINTR; 1140 1141 efivars->ops = ops; 1142 efivars->kobject = kobject; 1143 1144 __efivars = efivars; 1145 1146 pr_info("Registered efivars operations\n"); 1147 1148 up(&efivars_lock); 1149 1150 return 0; 1151 } 1152 EXPORT_SYMBOL_GPL(efivars_register); 1153 1154 /** 1155 * efivars_unregister - unregister an efivars 1156 * @efivars: efivars to unregister 1157 * 1158 * The caller must have already removed every entry from the list, 1159 * failure to do so is an error. 1160 */ 1161 int efivars_unregister(struct efivars *efivars) 1162 { 1163 int rv; 1164 1165 if (down_interruptible(&efivars_lock)) 1166 return -EINTR; 1167 1168 if (!__efivars) { 1169 printk(KERN_ERR "efivars not registered\n"); 1170 rv = -EINVAL; 1171 goto out; 1172 } 1173 1174 if (__efivars != efivars) { 1175 rv = -EINVAL; 1176 goto out; 1177 } 1178 1179 pr_info("Unregistered efivars operations\n"); 1180 __efivars = NULL; 1181 1182 rv = 0; 1183 out: 1184 up(&efivars_lock); 1185 return rv; 1186 } 1187 EXPORT_SYMBOL_GPL(efivars_unregister); 1188