xref: /openbmc/linux/drivers/firmware/efi/memmap.c (revision fcc8487d)
1 /*
2  * Common EFI memory map functions.
3  */
4 
5 #define pr_fmt(fmt) "efi: " fmt
6 
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/efi.h>
10 #include <linux/io.h>
11 #include <asm/early_ioremap.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14 
15 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
16 {
17 	return memblock_alloc(size, 0);
18 }
19 
20 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
21 {
22 	unsigned int order = get_order(size);
23 	struct page *p = alloc_pages(GFP_KERNEL, order);
24 
25 	if (!p)
26 		return 0;
27 
28 	return PFN_PHYS(page_to_pfn(p));
29 }
30 
31 /**
32  * efi_memmap_alloc - Allocate memory for the EFI memory map
33  * @num_entries: Number of entries in the allocated map.
34  *
35  * Depending on whether mm_init() has already been invoked or not,
36  * either memblock or "normal" page allocation is used.
37  *
38  * Returns the physical address of the allocated memory map on
39  * success, zero on failure.
40  */
41 phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
42 {
43 	unsigned long size = num_entries * efi.memmap.desc_size;
44 
45 	if (slab_is_available())
46 		return __efi_memmap_alloc_late(size);
47 
48 	return __efi_memmap_alloc_early(size);
49 }
50 
51 /**
52  * __efi_memmap_init - Common code for mapping the EFI memory map
53  * @data: EFI memory map data
54  * @late: Use early or late mapping function?
55  *
56  * This function takes care of figuring out which function to use to
57  * map the EFI memory map in efi.memmap based on how far into the boot
58  * we are.
59  *
60  * During bootup @late should be %false since we only have access to
61  * the early_memremap*() functions as the vmalloc space isn't setup.
62  * Once the kernel is fully booted we can fallback to the more robust
63  * memremap*() API.
64  *
65  * Returns zero on success, a negative error code on failure.
66  */
67 static int __init
68 __efi_memmap_init(struct efi_memory_map_data *data, bool late)
69 {
70 	struct efi_memory_map map;
71 	phys_addr_t phys_map;
72 
73 	if (efi_enabled(EFI_PARAVIRT))
74 		return 0;
75 
76 	phys_map = data->phys_map;
77 
78 	if (late)
79 		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
80 	else
81 		map.map = early_memremap(phys_map, data->size);
82 
83 	if (!map.map) {
84 		pr_err("Could not map the memory map!\n");
85 		return -ENOMEM;
86 	}
87 
88 	map.phys_map = data->phys_map;
89 	map.nr_map = data->size / data->desc_size;
90 	map.map_end = map.map + data->size;
91 
92 	map.desc_version = data->desc_version;
93 	map.desc_size = data->desc_size;
94 	map.late = late;
95 
96 	set_bit(EFI_MEMMAP, &efi.flags);
97 
98 	efi.memmap = map;
99 
100 	return 0;
101 }
102 
103 /**
104  * efi_memmap_init_early - Map the EFI memory map data structure
105  * @data: EFI memory map data
106  *
107  * Use early_memremap() to map the passed in EFI memory map and assign
108  * it to efi.memmap.
109  */
110 int __init efi_memmap_init_early(struct efi_memory_map_data *data)
111 {
112 	/* Cannot go backwards */
113 	WARN_ON(efi.memmap.late);
114 
115 	return __efi_memmap_init(data, false);
116 }
117 
118 void __init efi_memmap_unmap(void)
119 {
120 	if (!efi.memmap.late) {
121 		unsigned long size;
122 
123 		size = efi.memmap.desc_size * efi.memmap.nr_map;
124 		early_memunmap(efi.memmap.map, size);
125 	} else {
126 		memunmap(efi.memmap.map);
127 	}
128 
129 	efi.memmap.map = NULL;
130 	clear_bit(EFI_MEMMAP, &efi.flags);
131 }
132 
133 /**
134  * efi_memmap_init_late - Map efi.memmap with memremap()
135  * @phys_addr: Physical address of the new EFI memory map
136  * @size: Size in bytes of the new EFI memory map
137  *
138  * Setup a mapping of the EFI memory map using ioremap_cache(). This
139  * function should only be called once the vmalloc space has been
140  * setup and is therefore not suitable for calling during early EFI
141  * initialise, e.g. in efi_init(). Additionally, it expects
142  * efi_memmap_init_early() to have already been called.
143  *
144  * The reason there are two EFI memmap initialisation
145  * (efi_memmap_init_early() and this late version) is because the
146  * early EFI memmap should be explicitly unmapped once EFI
147  * initialisation is complete as the fixmap space used to map the EFI
148  * memmap (via early_memremap()) is a scarce resource.
149  *
150  * This late mapping is intended to persist for the duration of
151  * runtime so that things like efi_mem_desc_lookup() and
152  * efi_mem_attributes() always work.
153  *
154  * Returns zero on success, a negative error code on failure.
155  */
156 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
157 {
158 	struct efi_memory_map_data data = {
159 		.phys_map = addr,
160 		.size = size,
161 	};
162 
163 	/* Did we forget to unmap the early EFI memmap? */
164 	WARN_ON(efi.memmap.map);
165 
166 	/* Were we already called? */
167 	WARN_ON(efi.memmap.late);
168 
169 	/*
170 	 * It makes no sense to allow callers to register different
171 	 * values for the following fields. Copy them out of the
172 	 * existing early EFI memmap.
173 	 */
174 	data.desc_version = efi.memmap.desc_version;
175 	data.desc_size = efi.memmap.desc_size;
176 
177 	return __efi_memmap_init(&data, true);
178 }
179 
180 /**
181  * efi_memmap_install - Install a new EFI memory map in efi.memmap
182  * @addr: Physical address of the memory map
183  * @nr_map: Number of entries in the memory map
184  *
185  * Unlike efi_memmap_init_*(), this function does not allow the caller
186  * to switch from early to late mappings. It simply uses the existing
187  * mapping function and installs the new memmap.
188  *
189  * Returns zero on success, a negative error code on failure.
190  */
191 int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
192 {
193 	struct efi_memory_map_data data;
194 
195 	efi_memmap_unmap();
196 
197 	data.phys_map = addr;
198 	data.size = efi.memmap.desc_size * nr_map;
199 	data.desc_version = efi.memmap.desc_version;
200 	data.desc_size = efi.memmap.desc_size;
201 
202 	return __efi_memmap_init(&data, efi.memmap.late);
203 }
204 
205 /**
206  * efi_memmap_split_count - Count number of additional EFI memmap entries
207  * @md: EFI memory descriptor to split
208  * @range: Address range (start, end) to split around
209  *
210  * Returns the number of additional EFI memmap entries required to
211  * accomodate @range.
212  */
213 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
214 {
215 	u64 m_start, m_end;
216 	u64 start, end;
217 	int count = 0;
218 
219 	start = md->phys_addr;
220 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
221 
222 	/* modifying range */
223 	m_start = range->start;
224 	m_end = range->end;
225 
226 	if (m_start <= start) {
227 		/* split into 2 parts */
228 		if (start < m_end && m_end < end)
229 			count++;
230 	}
231 
232 	if (start < m_start && m_start < end) {
233 		/* split into 3 parts */
234 		if (m_end < end)
235 			count += 2;
236 		/* split into 2 parts */
237 		if (end <= m_end)
238 			count++;
239 	}
240 
241 	return count;
242 }
243 
244 /**
245  * efi_memmap_insert - Insert a memory region in an EFI memmap
246  * @old_memmap: The existing EFI memory map structure
247  * @buf: Address of buffer to store new map
248  * @mem: Memory map entry to insert
249  *
250  * It is suggested that you call efi_memmap_split_count() first
251  * to see how large @buf needs to be.
252  */
253 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
254 			      struct efi_mem_range *mem)
255 {
256 	u64 m_start, m_end, m_attr;
257 	efi_memory_desc_t *md;
258 	u64 start, end;
259 	void *old, *new;
260 
261 	/* modifying range */
262 	m_start = mem->range.start;
263 	m_end = mem->range.end;
264 	m_attr = mem->attribute;
265 
266 	/*
267 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
268 	 * units. Ensure that the region described by 'mem' is aligned
269 	 * correctly.
270 	 */
271 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
272 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
273 		WARN_ON(1);
274 		return;
275 	}
276 
277 	for (old = old_memmap->map, new = buf;
278 	     old < old_memmap->map_end;
279 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
280 
281 		/* copy original EFI memory descriptor */
282 		memcpy(new, old, old_memmap->desc_size);
283 		md = new;
284 		start = md->phys_addr;
285 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
286 
287 		if (m_start <= start && end <= m_end)
288 			md->attribute |= m_attr;
289 
290 		if (m_start <= start &&
291 		    (start < m_end && m_end < end)) {
292 			/* first part */
293 			md->attribute |= m_attr;
294 			md->num_pages = (m_end - md->phys_addr + 1) >>
295 				EFI_PAGE_SHIFT;
296 			/* latter part */
297 			new += old_memmap->desc_size;
298 			memcpy(new, old, old_memmap->desc_size);
299 			md = new;
300 			md->phys_addr = m_end + 1;
301 			md->num_pages = (end - md->phys_addr + 1) >>
302 				EFI_PAGE_SHIFT;
303 		}
304 
305 		if ((start < m_start && m_start < end) && m_end < end) {
306 			/* first part */
307 			md->num_pages = (m_start - md->phys_addr) >>
308 				EFI_PAGE_SHIFT;
309 			/* middle part */
310 			new += old_memmap->desc_size;
311 			memcpy(new, old, old_memmap->desc_size);
312 			md = new;
313 			md->attribute |= m_attr;
314 			md->phys_addr = m_start;
315 			md->num_pages = (m_end - m_start + 1) >>
316 				EFI_PAGE_SHIFT;
317 			/* last part */
318 			new += old_memmap->desc_size;
319 			memcpy(new, old, old_memmap->desc_size);
320 			md = new;
321 			md->phys_addr = m_end + 1;
322 			md->num_pages = (end - m_end) >>
323 				EFI_PAGE_SHIFT;
324 		}
325 
326 		if ((start < m_start && m_start < end) &&
327 		    (end <= m_end)) {
328 			/* first part */
329 			md->num_pages = (m_start - md->phys_addr) >>
330 				EFI_PAGE_SHIFT;
331 			/* latter part */
332 			new += old_memmap->desc_size;
333 			memcpy(new, old, old_memmap->desc_size);
334 			md = new;
335 			md->phys_addr = m_start;
336 			md->num_pages = (end - md->phys_addr + 1) >>
337 				EFI_PAGE_SHIFT;
338 			md->attribute |= m_attr;
339 		}
340 	}
341 }
342