1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* ----------------------------------------------------------------------- 4 * 5 * Copyright 2011 Intel Corporation; author Matt Fleming 6 * 7 * ----------------------------------------------------------------------- */ 8 9 #include <linux/efi.h> 10 #include <linux/pci.h> 11 #include <linux/stddef.h> 12 13 #include <asm/efi.h> 14 #include <asm/e820/types.h> 15 #include <asm/setup.h> 16 #include <asm/desc.h> 17 #include <asm/boot.h> 18 19 #include "efistub.h" 20 21 /* Maximum physical address for 64-bit kernel with 4-level paging */ 22 #define MAXMEM_X86_64_4LEVEL (1ull << 46) 23 24 const efi_system_table_t *efi_system_table; 25 const efi_dxe_services_table_t *efi_dxe_table; 26 extern u32 image_offset; 27 static efi_loaded_image_t *image = NULL; 28 29 static efi_status_t 30 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom) 31 { 32 struct pci_setup_rom *rom = NULL; 33 efi_status_t status; 34 unsigned long size; 35 uint64_t romsize; 36 void *romimage; 37 38 /* 39 * Some firmware images contain EFI function pointers at the place where 40 * the romimage and romsize fields are supposed to be. Typically the EFI 41 * code is mapped at high addresses, translating to an unrealistically 42 * large romsize. The UEFI spec limits the size of option ROMs to 16 43 * MiB so we reject any ROMs over 16 MiB in size to catch this. 44 */ 45 romimage = efi_table_attr(pci, romimage); 46 romsize = efi_table_attr(pci, romsize); 47 if (!romimage || !romsize || romsize > SZ_16M) 48 return EFI_INVALID_PARAMETER; 49 50 size = romsize + sizeof(*rom); 51 52 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 53 (void **)&rom); 54 if (status != EFI_SUCCESS) { 55 efi_err("Failed to allocate memory for 'rom'\n"); 56 return status; 57 } 58 59 memset(rom, 0, sizeof(*rom)); 60 61 rom->data.type = SETUP_PCI; 62 rom->data.len = size - sizeof(struct setup_data); 63 rom->data.next = 0; 64 rom->pcilen = pci->romsize; 65 *__rom = rom; 66 67 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 68 PCI_VENDOR_ID, 1, &rom->vendor); 69 70 if (status != EFI_SUCCESS) { 71 efi_err("Failed to read rom->vendor\n"); 72 goto free_struct; 73 } 74 75 status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, 76 PCI_DEVICE_ID, 1, &rom->devid); 77 78 if (status != EFI_SUCCESS) { 79 efi_err("Failed to read rom->devid\n"); 80 goto free_struct; 81 } 82 83 status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus, 84 &rom->device, &rom->function); 85 86 if (status != EFI_SUCCESS) 87 goto free_struct; 88 89 memcpy(rom->romdata, romimage, romsize); 90 return status; 91 92 free_struct: 93 efi_bs_call(free_pool, rom); 94 return status; 95 } 96 97 /* 98 * There's no way to return an informative status from this function, 99 * because any analysis (and printing of error messages) needs to be 100 * done directly at the EFI function call-site. 101 * 102 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we 103 * just didn't find any PCI devices, but there's no way to tell outside 104 * the context of the call. 105 */ 106 static void setup_efi_pci(struct boot_params *params) 107 { 108 efi_status_t status; 109 void **pci_handle = NULL; 110 efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; 111 unsigned long size = 0; 112 struct setup_data *data; 113 efi_handle_t h; 114 int i; 115 116 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 117 &pci_proto, NULL, &size, pci_handle); 118 119 if (status == EFI_BUFFER_TOO_SMALL) { 120 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 121 (void **)&pci_handle); 122 123 if (status != EFI_SUCCESS) { 124 efi_err("Failed to allocate memory for 'pci_handle'\n"); 125 return; 126 } 127 128 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 129 &pci_proto, NULL, &size, pci_handle); 130 } 131 132 if (status != EFI_SUCCESS) 133 goto free_handle; 134 135 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 136 137 while (data && data->next) 138 data = (struct setup_data *)(unsigned long)data->next; 139 140 for_each_efi_handle(h, pci_handle, size, i) { 141 efi_pci_io_protocol_t *pci = NULL; 142 struct pci_setup_rom *rom; 143 144 status = efi_bs_call(handle_protocol, h, &pci_proto, 145 (void **)&pci); 146 if (status != EFI_SUCCESS || !pci) 147 continue; 148 149 status = preserve_pci_rom_image(pci, &rom); 150 if (status != EFI_SUCCESS) 151 continue; 152 153 if (data) 154 data->next = (unsigned long)rom; 155 else 156 params->hdr.setup_data = (unsigned long)rom; 157 158 data = (struct setup_data *)rom; 159 } 160 161 free_handle: 162 efi_bs_call(free_pool, pci_handle); 163 } 164 165 static void retrieve_apple_device_properties(struct boot_params *boot_params) 166 { 167 efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID; 168 struct setup_data *data, *new; 169 efi_status_t status; 170 u32 size = 0; 171 apple_properties_protocol_t *p; 172 173 status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p); 174 if (status != EFI_SUCCESS) 175 return; 176 177 if (efi_table_attr(p, version) != 0x10000) { 178 efi_err("Unsupported properties proto version\n"); 179 return; 180 } 181 182 efi_call_proto(p, get_all, NULL, &size); 183 if (!size) 184 return; 185 186 do { 187 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, 188 size + sizeof(struct setup_data), 189 (void **)&new); 190 if (status != EFI_SUCCESS) { 191 efi_err("Failed to allocate memory for 'properties'\n"); 192 return; 193 } 194 195 status = efi_call_proto(p, get_all, new->data, &size); 196 197 if (status == EFI_BUFFER_TOO_SMALL) 198 efi_bs_call(free_pool, new); 199 } while (status == EFI_BUFFER_TOO_SMALL); 200 201 new->type = SETUP_APPLE_PROPERTIES; 202 new->len = size; 203 new->next = 0; 204 205 data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 206 if (!data) { 207 boot_params->hdr.setup_data = (unsigned long)new; 208 } else { 209 while (data->next) 210 data = (struct setup_data *)(unsigned long)data->next; 211 data->next = (unsigned long)new; 212 } 213 } 214 215 static void 216 adjust_memory_range_protection(unsigned long start, unsigned long size) 217 { 218 efi_status_t status; 219 efi_gcd_memory_space_desc_t desc; 220 unsigned long end, next; 221 unsigned long rounded_start, rounded_end; 222 unsigned long unprotect_start, unprotect_size; 223 int has_system_memory = 0; 224 225 if (efi_dxe_table == NULL) 226 return; 227 228 rounded_start = rounddown(start, EFI_PAGE_SIZE); 229 rounded_end = roundup(start + size, EFI_PAGE_SIZE); 230 231 /* 232 * Don't modify memory region attributes, they are 233 * already suitable, to lower the possibility to 234 * encounter firmware bugs. 235 */ 236 237 for (end = start + size; start < end; start = next) { 238 239 status = efi_dxe_call(get_memory_space_descriptor, start, &desc); 240 241 if (status != EFI_SUCCESS) 242 return; 243 244 next = desc.base_address + desc.length; 245 246 /* 247 * Only system memory is suitable for trampoline/kernel image placement, 248 * so only this type of memory needs its attributes to be modified. 249 */ 250 251 if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory || 252 (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0) 253 continue; 254 255 unprotect_start = max(rounded_start, (unsigned long)desc.base_address); 256 unprotect_size = min(rounded_end, next) - unprotect_start; 257 258 status = efi_dxe_call(set_memory_space_attributes, 259 unprotect_start, unprotect_size, 260 EFI_MEMORY_WB); 261 262 if (status != EFI_SUCCESS) { 263 efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %d\n", 264 unprotect_start, 265 unprotect_start + unprotect_size, 266 (int)status); 267 } 268 } 269 } 270 271 /* 272 * Trampoline takes 2 pages and can be loaded in first megabyte of memory 273 * with its end placed between 128k and 640k where BIOS might start. 274 * (see arch/x86/boot/compressed/pgtable_64.c) 275 * 276 * We cannot find exact trampoline placement since memory map 277 * can be modified by UEFI, and it can alter the computed address. 278 */ 279 280 #define TRAMPOLINE_PLACEMENT_BASE ((128 - 8)*1024) 281 #define TRAMPOLINE_PLACEMENT_SIZE (640*1024 - (128 - 8)*1024) 282 283 void startup_32(struct boot_params *boot_params); 284 285 static void 286 setup_memory_protection(unsigned long image_base, unsigned long image_size) 287 { 288 /* 289 * Allow execution of possible trampoline used 290 * for switching between 4- and 5-level page tables 291 * and relocated kernel image. 292 */ 293 294 adjust_memory_range_protection(TRAMPOLINE_PLACEMENT_BASE, 295 TRAMPOLINE_PLACEMENT_SIZE); 296 297 #ifdef CONFIG_64BIT 298 if (image_base != (unsigned long)startup_32) 299 adjust_memory_range_protection(image_base, image_size); 300 #else 301 /* 302 * Clear protection flags on a whole range of possible 303 * addresses used for KASLR. We don't need to do that 304 * on x86_64, since KASLR/extraction is performed after 305 * dedicated identity page tables are built and we only 306 * need to remove possible protection on relocated image 307 * itself disregarding further relocations. 308 */ 309 adjust_memory_range_protection(LOAD_PHYSICAL_ADDR, 310 KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR); 311 #endif 312 } 313 314 static const efi_char16_t apple[] = L"Apple"; 315 316 static void setup_quirks(struct boot_params *boot_params, 317 unsigned long image_base, 318 unsigned long image_size) 319 { 320 efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long) 321 efi_table_attr(efi_system_table, fw_vendor); 322 323 if (!memcmp(fw_vendor, apple, sizeof(apple))) { 324 if (IS_ENABLED(CONFIG_APPLE_PROPERTIES)) 325 retrieve_apple_device_properties(boot_params); 326 } 327 328 if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) 329 setup_memory_protection(image_base, image_size); 330 } 331 332 /* 333 * See if we have Universal Graphics Adapter (UGA) protocol 334 */ 335 static efi_status_t 336 setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size) 337 { 338 efi_status_t status; 339 u32 width, height; 340 void **uga_handle = NULL; 341 efi_uga_draw_protocol_t *uga = NULL, *first_uga; 342 efi_handle_t handle; 343 int i; 344 345 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 346 (void **)&uga_handle); 347 if (status != EFI_SUCCESS) 348 return status; 349 350 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 351 uga_proto, NULL, &size, uga_handle); 352 if (status != EFI_SUCCESS) 353 goto free_handle; 354 355 height = 0; 356 width = 0; 357 358 first_uga = NULL; 359 for_each_efi_handle(handle, uga_handle, size, i) { 360 efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; 361 u32 w, h, depth, refresh; 362 void *pciio; 363 364 status = efi_bs_call(handle_protocol, handle, uga_proto, 365 (void **)&uga); 366 if (status != EFI_SUCCESS) 367 continue; 368 369 pciio = NULL; 370 efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio); 371 372 status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh); 373 if (status == EFI_SUCCESS && (!first_uga || pciio)) { 374 width = w; 375 height = h; 376 377 /* 378 * Once we've found a UGA supporting PCIIO, 379 * don't bother looking any further. 380 */ 381 if (pciio) 382 break; 383 384 first_uga = uga; 385 } 386 } 387 388 if (!width && !height) 389 goto free_handle; 390 391 /* EFI framebuffer */ 392 si->orig_video_isVGA = VIDEO_TYPE_EFI; 393 394 si->lfb_depth = 32; 395 si->lfb_width = width; 396 si->lfb_height = height; 397 398 si->red_size = 8; 399 si->red_pos = 16; 400 si->green_size = 8; 401 si->green_pos = 8; 402 si->blue_size = 8; 403 si->blue_pos = 0; 404 si->rsvd_size = 8; 405 si->rsvd_pos = 24; 406 407 free_handle: 408 efi_bs_call(free_pool, uga_handle); 409 410 return status; 411 } 412 413 static void setup_graphics(struct boot_params *boot_params) 414 { 415 efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; 416 struct screen_info *si; 417 efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; 418 efi_status_t status; 419 unsigned long size; 420 void **gop_handle = NULL; 421 void **uga_handle = NULL; 422 423 si = &boot_params->screen_info; 424 memset(si, 0, sizeof(*si)); 425 426 size = 0; 427 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 428 &graphics_proto, NULL, &size, gop_handle); 429 if (status == EFI_BUFFER_TOO_SMALL) 430 status = efi_setup_gop(si, &graphics_proto, size); 431 432 if (status != EFI_SUCCESS) { 433 size = 0; 434 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 435 &uga_proto, NULL, &size, uga_handle); 436 if (status == EFI_BUFFER_TOO_SMALL) 437 setup_uga(si, &uga_proto, size); 438 } 439 } 440 441 442 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status) 443 { 444 efi_bs_call(exit, handle, status, 0, NULL); 445 for(;;) 446 asm("hlt"); 447 } 448 449 void __noreturn efi_stub_entry(efi_handle_t handle, 450 efi_system_table_t *sys_table_arg, 451 struct boot_params *boot_params); 452 453 /* 454 * Because the x86 boot code expects to be passed a boot_params we 455 * need to create one ourselves (usually the bootloader would create 456 * one for us). 457 */ 458 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, 459 efi_system_table_t *sys_table_arg) 460 { 461 struct boot_params *boot_params; 462 struct setup_header *hdr; 463 void *image_base; 464 efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; 465 int options_size = 0; 466 efi_status_t status; 467 char *cmdline_ptr; 468 469 efi_system_table = sys_table_arg; 470 471 /* Check if we were booted by the EFI firmware */ 472 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 473 efi_exit(handle, EFI_INVALID_PARAMETER); 474 475 status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image); 476 if (status != EFI_SUCCESS) { 477 efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); 478 efi_exit(handle, status); 479 } 480 481 image_base = efi_table_attr(image, image_base); 482 image_offset = (void *)startup_32 - image_base; 483 484 status = efi_allocate_pages(sizeof(struct boot_params), 485 (unsigned long *)&boot_params, ULONG_MAX); 486 if (status != EFI_SUCCESS) { 487 efi_err("Failed to allocate lowmem for boot params\n"); 488 efi_exit(handle, status); 489 } 490 491 memset(boot_params, 0x0, sizeof(struct boot_params)); 492 493 hdr = &boot_params->hdr; 494 495 /* Copy the setup header from the second sector to boot_params */ 496 memcpy(&hdr->jump, image_base + 512, 497 sizeof(struct setup_header) - offsetof(struct setup_header, jump)); 498 499 /* 500 * Fill out some of the header fields ourselves because the 501 * EFI firmware loader doesn't load the first sector. 502 */ 503 hdr->root_flags = 1; 504 hdr->vid_mode = 0xffff; 505 hdr->boot_flag = 0xAA55; 506 507 hdr->type_of_loader = 0x21; 508 509 /* Convert unicode cmdline to ascii */ 510 cmdline_ptr = efi_convert_cmdline(image, &options_size); 511 if (!cmdline_ptr) 512 goto fail; 513 514 efi_set_u64_split((unsigned long)cmdline_ptr, 515 &hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr); 516 517 hdr->ramdisk_image = 0; 518 hdr->ramdisk_size = 0; 519 520 efi_stub_entry(handle, sys_table_arg, boot_params); 521 /* not reached */ 522 523 fail: 524 efi_free(sizeof(struct boot_params), (unsigned long)boot_params); 525 526 efi_exit(handle, status); 527 } 528 529 static void add_e820ext(struct boot_params *params, 530 struct setup_data *e820ext, u32 nr_entries) 531 { 532 struct setup_data *data; 533 534 e820ext->type = SETUP_E820_EXT; 535 e820ext->len = nr_entries * sizeof(struct boot_e820_entry); 536 e820ext->next = 0; 537 538 data = (struct setup_data *)(unsigned long)params->hdr.setup_data; 539 540 while (data && data->next) 541 data = (struct setup_data *)(unsigned long)data->next; 542 543 if (data) 544 data->next = (unsigned long)e820ext; 545 else 546 params->hdr.setup_data = (unsigned long)e820ext; 547 } 548 549 static efi_status_t 550 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size) 551 { 552 struct boot_e820_entry *entry = params->e820_table; 553 struct efi_info *efi = ¶ms->efi_info; 554 struct boot_e820_entry *prev = NULL; 555 u32 nr_entries; 556 u32 nr_desc; 557 int i; 558 559 nr_entries = 0; 560 nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size; 561 562 for (i = 0; i < nr_desc; i++) { 563 efi_memory_desc_t *d; 564 unsigned int e820_type = 0; 565 unsigned long m = efi->efi_memmap; 566 567 #ifdef CONFIG_X86_64 568 m |= (u64)efi->efi_memmap_hi << 32; 569 #endif 570 571 d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i); 572 switch (d->type) { 573 case EFI_RESERVED_TYPE: 574 case EFI_RUNTIME_SERVICES_CODE: 575 case EFI_RUNTIME_SERVICES_DATA: 576 case EFI_MEMORY_MAPPED_IO: 577 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 578 case EFI_PAL_CODE: 579 e820_type = E820_TYPE_RESERVED; 580 break; 581 582 case EFI_UNUSABLE_MEMORY: 583 e820_type = E820_TYPE_UNUSABLE; 584 break; 585 586 case EFI_ACPI_RECLAIM_MEMORY: 587 e820_type = E820_TYPE_ACPI; 588 break; 589 590 case EFI_LOADER_CODE: 591 case EFI_LOADER_DATA: 592 case EFI_BOOT_SERVICES_CODE: 593 case EFI_BOOT_SERVICES_DATA: 594 case EFI_CONVENTIONAL_MEMORY: 595 if (efi_soft_reserve_enabled() && 596 (d->attribute & EFI_MEMORY_SP)) 597 e820_type = E820_TYPE_SOFT_RESERVED; 598 else 599 e820_type = E820_TYPE_RAM; 600 break; 601 602 case EFI_ACPI_MEMORY_NVS: 603 e820_type = E820_TYPE_NVS; 604 break; 605 606 case EFI_PERSISTENT_MEMORY: 607 e820_type = E820_TYPE_PMEM; 608 break; 609 610 default: 611 continue; 612 } 613 614 /* Merge adjacent mappings */ 615 if (prev && prev->type == e820_type && 616 (prev->addr + prev->size) == d->phys_addr) { 617 prev->size += d->num_pages << 12; 618 continue; 619 } 620 621 if (nr_entries == ARRAY_SIZE(params->e820_table)) { 622 u32 need = (nr_desc - i) * sizeof(struct e820_entry) + 623 sizeof(struct setup_data); 624 625 if (!e820ext || e820ext_size < need) 626 return EFI_BUFFER_TOO_SMALL; 627 628 /* boot_params map full, switch to e820 extended */ 629 entry = (struct boot_e820_entry *)e820ext->data; 630 } 631 632 entry->addr = d->phys_addr; 633 entry->size = d->num_pages << PAGE_SHIFT; 634 entry->type = e820_type; 635 prev = entry++; 636 nr_entries++; 637 } 638 639 if (nr_entries > ARRAY_SIZE(params->e820_table)) { 640 u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table); 641 642 add_e820ext(params, e820ext, nr_e820ext); 643 nr_entries -= nr_e820ext; 644 } 645 646 params->e820_entries = (u8)nr_entries; 647 648 return EFI_SUCCESS; 649 } 650 651 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, 652 u32 *e820ext_size) 653 { 654 efi_status_t status; 655 unsigned long size; 656 657 size = sizeof(struct setup_data) + 658 sizeof(struct e820_entry) * nr_desc; 659 660 if (*e820ext) { 661 efi_bs_call(free_pool, *e820ext); 662 *e820ext = NULL; 663 *e820ext_size = 0; 664 } 665 666 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 667 (void **)e820ext); 668 if (status == EFI_SUCCESS) 669 *e820ext_size = size; 670 671 return status; 672 } 673 674 static efi_status_t allocate_e820(struct boot_params *params, 675 struct setup_data **e820ext, 676 u32 *e820ext_size) 677 { 678 unsigned long map_size, desc_size, map_key; 679 efi_status_t status; 680 __u32 nr_desc, desc_version; 681 682 /* Only need the size of the mem map and size of each mem descriptor */ 683 map_size = 0; 684 status = efi_bs_call(get_memory_map, &map_size, NULL, &map_key, 685 &desc_size, &desc_version); 686 if (status != EFI_BUFFER_TOO_SMALL) 687 return (status != EFI_SUCCESS) ? status : EFI_UNSUPPORTED; 688 689 nr_desc = map_size / desc_size + EFI_MMAP_NR_SLACK_SLOTS; 690 691 if (nr_desc > ARRAY_SIZE(params->e820_table)) { 692 u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table); 693 694 status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size); 695 if (status != EFI_SUCCESS) 696 return status; 697 } 698 699 return EFI_SUCCESS; 700 } 701 702 struct exit_boot_struct { 703 struct boot_params *boot_params; 704 struct efi_info *efi; 705 }; 706 707 static efi_status_t exit_boot_func(struct efi_boot_memmap *map, 708 void *priv) 709 { 710 const char *signature; 711 struct exit_boot_struct *p = priv; 712 713 signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE 714 : EFI32_LOADER_SIGNATURE; 715 memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); 716 717 efi_set_u64_split((unsigned long)efi_system_table, 718 &p->efi->efi_systab, &p->efi->efi_systab_hi); 719 p->efi->efi_memdesc_size = *map->desc_size; 720 p->efi->efi_memdesc_version = *map->desc_ver; 721 efi_set_u64_split((unsigned long)*map->map, 722 &p->efi->efi_memmap, &p->efi->efi_memmap_hi); 723 p->efi->efi_memmap_size = *map->map_size; 724 725 return EFI_SUCCESS; 726 } 727 728 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) 729 { 730 unsigned long map_sz, key, desc_size, buff_size; 731 efi_memory_desc_t *mem_map; 732 struct setup_data *e820ext = NULL; 733 __u32 e820ext_size = 0; 734 efi_status_t status; 735 __u32 desc_version; 736 struct efi_boot_memmap map; 737 struct exit_boot_struct priv; 738 739 map.map = &mem_map; 740 map.map_size = &map_sz; 741 map.desc_size = &desc_size; 742 map.desc_ver = &desc_version; 743 map.key_ptr = &key; 744 map.buff_size = &buff_size; 745 priv.boot_params = boot_params; 746 priv.efi = &boot_params->efi_info; 747 748 status = allocate_e820(boot_params, &e820ext, &e820ext_size); 749 if (status != EFI_SUCCESS) 750 return status; 751 752 /* Might as well exit boot services now */ 753 status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func); 754 if (status != EFI_SUCCESS) 755 return status; 756 757 /* Historic? */ 758 boot_params->alt_mem_k = 32 * 1024; 759 760 status = setup_e820(boot_params, e820ext, e820ext_size); 761 if (status != EFI_SUCCESS) 762 return status; 763 764 return EFI_SUCCESS; 765 } 766 767 /* 768 * On success, we return the address of startup_32, which has potentially been 769 * relocated by efi_relocate_kernel. 770 * On failure, we exit to the firmware via efi_exit instead of returning. 771 */ 772 unsigned long efi_main(efi_handle_t handle, 773 efi_system_table_t *sys_table_arg, 774 struct boot_params *boot_params) 775 { 776 unsigned long bzimage_addr = (unsigned long)startup_32; 777 unsigned long buffer_start, buffer_end; 778 struct setup_header *hdr = &boot_params->hdr; 779 unsigned long addr, size; 780 efi_status_t status; 781 782 efi_system_table = sys_table_arg; 783 /* Check if we were booted by the EFI firmware */ 784 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 785 efi_exit(handle, EFI_INVALID_PARAMETER); 786 787 efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID); 788 if (efi_dxe_table && 789 efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) { 790 efi_warn("Ignoring DXE services table: invalid signature\n"); 791 efi_dxe_table = NULL; 792 } 793 794 /* 795 * If the kernel isn't already loaded at a suitable address, 796 * relocate it. 797 * 798 * It must be loaded above LOAD_PHYSICAL_ADDR. 799 * 800 * The maximum address for 64-bit is 1 << 46 for 4-level paging. This 801 * is defined as the macro MAXMEM, but unfortunately that is not a 802 * compile-time constant if 5-level paging is configured, so we instead 803 * define our own macro for use here. 804 * 805 * For 32-bit, the maximum address is complicated to figure out, for 806 * now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what 807 * KASLR uses. 808 * 809 * Also relocate it if image_offset is zero, i.e. the kernel wasn't 810 * loaded by LoadImage, but rather by a bootloader that called the 811 * handover entry. The reason we must always relocate in this case is 812 * to handle the case of systemd-boot booting a unified kernel image, 813 * which is a PE executable that contains the bzImage and an initrd as 814 * COFF sections. The initrd section is placed after the bzImage 815 * without ensuring that there are at least init_size bytes available 816 * for the bzImage, and thus the compressed kernel's startup code may 817 * overwrite the initrd unless it is moved out of the way. 818 */ 819 820 buffer_start = ALIGN(bzimage_addr - image_offset, 821 hdr->kernel_alignment); 822 buffer_end = buffer_start + hdr->init_size; 823 824 if ((buffer_start < LOAD_PHYSICAL_ADDR) || 825 (IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE) || 826 (IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) || 827 (image_offset == 0)) { 828 extern char _bss[]; 829 830 status = efi_relocate_kernel(&bzimage_addr, 831 (unsigned long)_bss - bzimage_addr, 832 hdr->init_size, 833 hdr->pref_address, 834 hdr->kernel_alignment, 835 LOAD_PHYSICAL_ADDR); 836 if (status != EFI_SUCCESS) { 837 efi_err("efi_relocate_kernel() failed!\n"); 838 goto fail; 839 } 840 /* 841 * Now that we've copied the kernel elsewhere, we no longer 842 * have a set up block before startup_32(), so reset image_offset 843 * to zero in case it was set earlier. 844 */ 845 image_offset = 0; 846 } 847 848 #ifdef CONFIG_CMDLINE_BOOL 849 status = efi_parse_options(CONFIG_CMDLINE); 850 if (status != EFI_SUCCESS) { 851 efi_err("Failed to parse options\n"); 852 goto fail; 853 } 854 #endif 855 if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { 856 unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr | 857 ((u64)boot_params->ext_cmd_line_ptr << 32)); 858 status = efi_parse_options((char *)cmdline_paddr); 859 if (status != EFI_SUCCESS) { 860 efi_err("Failed to parse options\n"); 861 goto fail; 862 } 863 } 864 865 /* 866 * At this point, an initrd may already have been loaded by the 867 * bootloader and passed via bootparams. We permit an initrd loaded 868 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it. 869 * 870 * If the device path is not present, any command-line initrd= 871 * arguments will be processed only if image is not NULL, which will be 872 * the case only if we were loaded via the PE entry point. 873 */ 874 status = efi_load_initrd(image, &addr, &size, hdr->initrd_addr_max, 875 ULONG_MAX); 876 if (status != EFI_SUCCESS) 877 goto fail; 878 if (size > 0) { 879 efi_set_u64_split(addr, &hdr->ramdisk_image, 880 &boot_params->ext_ramdisk_image); 881 efi_set_u64_split(size, &hdr->ramdisk_size, 882 &boot_params->ext_ramdisk_size); 883 } 884 885 /* 886 * If the boot loader gave us a value for secure_boot then we use that, 887 * otherwise we ask the BIOS. 888 */ 889 if (boot_params->secure_boot == efi_secureboot_mode_unset) 890 boot_params->secure_boot = efi_get_secureboot(); 891 892 /* Ask the firmware to clear memory on unclean shutdown */ 893 efi_enable_reset_attack_mitigation(); 894 895 efi_random_get_seed(); 896 897 efi_retrieve_tpm2_eventlog(); 898 899 setup_graphics(boot_params); 900 901 setup_efi_pci(boot_params); 902 903 setup_quirks(boot_params, bzimage_addr, buffer_end - buffer_start); 904 905 status = exit_boot(boot_params, handle); 906 if (status != EFI_SUCCESS) { 907 efi_err("exit_boot() failed!\n"); 908 goto fail; 909 } 910 911 return bzimage_addr; 912 fail: 913 efi_err("efi_main() failed!\n"); 914 915 efi_exit(handle, status); 916 } 917