1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/efi.h>
7 #include <linux/log2.h>
8 #include <asm/efi.h>
9 
10 #include "efistub.h"
11 
12 struct efi_rng_protocol {
13 	efi_status_t (*get_info)(struct efi_rng_protocol *,
14 				 unsigned long *, efi_guid_t *);
15 	efi_status_t (*get_rng)(struct efi_rng_protocol *,
16 				efi_guid_t *, unsigned long, u8 *out);
17 };
18 
19 efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
20 				  unsigned long size, u8 *out)
21 {
22 	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
23 	efi_status_t status;
24 	struct efi_rng_protocol *rng;
25 
26 	status = efi_call_early(locate_protocol, &rng_proto, NULL,
27 				(void **)&rng);
28 	if (status != EFI_SUCCESS)
29 		return status;
30 
31 	return rng->get_rng(rng, NULL, size, out);
32 }
33 
34 /*
35  * Return the number of slots covered by this entry, i.e., the number of
36  * addresses it covers that are suitably aligned and supply enough room
37  * for the allocation.
38  */
39 static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
40 					 unsigned long size,
41 					 unsigned long align_shift)
42 {
43 	unsigned long align = 1UL << align_shift;
44 	u64 first_slot, last_slot, region_end;
45 
46 	if (md->type != EFI_CONVENTIONAL_MEMORY)
47 		return 0;
48 
49 	region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
50 
51 	first_slot = round_up(md->phys_addr, align);
52 	last_slot = round_down(region_end - size + 1, align);
53 
54 	if (first_slot > last_slot)
55 		return 0;
56 
57 	return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
58 }
59 
60 /*
61  * The UEFI memory descriptors have a virtual address field that is only used
62  * when installing the virtual mapping using SetVirtualAddressMap(). Since it
63  * is unused here, we can reuse it to keep track of each descriptor's slot
64  * count.
65  */
66 #define MD_NUM_SLOTS(md)	((md)->virt_addr)
67 
68 efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
69 			      unsigned long size,
70 			      unsigned long align,
71 			      unsigned long *addr,
72 			      unsigned long random_seed)
73 {
74 	unsigned long map_size, desc_size, total_slots = 0, target_slot;
75 	unsigned long buff_size;
76 	efi_status_t status;
77 	efi_memory_desc_t *memory_map;
78 	int map_offset;
79 	struct efi_boot_memmap map;
80 
81 	map.map =	&memory_map;
82 	map.map_size =	&map_size;
83 	map.desc_size =	&desc_size;
84 	map.desc_ver =	NULL;
85 	map.key_ptr =	NULL;
86 	map.buff_size =	&buff_size;
87 
88 	status = efi_get_memory_map(sys_table_arg, &map);
89 	if (status != EFI_SUCCESS)
90 		return status;
91 
92 	if (align < EFI_ALLOC_ALIGN)
93 		align = EFI_ALLOC_ALIGN;
94 
95 	/* count the suitable slots in each memory map entry */
96 	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
97 		efi_memory_desc_t *md = (void *)memory_map + map_offset;
98 		unsigned long slots;
99 
100 		slots = get_entry_num_slots(md, size, ilog2(align));
101 		MD_NUM_SLOTS(md) = slots;
102 		total_slots += slots;
103 	}
104 
105 	/* find a random number between 0 and total_slots */
106 	target_slot = (total_slots * (u16)random_seed) >> 16;
107 
108 	/*
109 	 * target_slot is now a value in the range [0, total_slots), and so
110 	 * it corresponds with exactly one of the suitable slots we recorded
111 	 * when iterating over the memory map the first time around.
112 	 *
113 	 * So iterate over the memory map again, subtracting the number of
114 	 * slots of each entry at each iteration, until we have found the entry
115 	 * that covers our chosen slot. Use the residual value of target_slot
116 	 * to calculate the randomly chosen address, and allocate it directly
117 	 * using EFI_ALLOCATE_ADDRESS.
118 	 */
119 	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
120 		efi_memory_desc_t *md = (void *)memory_map + map_offset;
121 		efi_physical_addr_t target;
122 		unsigned long pages;
123 
124 		if (target_slot >= MD_NUM_SLOTS(md)) {
125 			target_slot -= MD_NUM_SLOTS(md);
126 			continue;
127 		}
128 
129 		target = round_up(md->phys_addr, align) + target_slot * align;
130 		pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
131 
132 		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
133 					EFI_LOADER_DATA, pages, &target);
134 		if (status == EFI_SUCCESS)
135 			*addr = target;
136 		break;
137 	}
138 
139 	efi_call_early(free_pool, memory_map);
140 
141 	return status;
142 }
143 
144 efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
145 {
146 	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
147 	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
148 	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
149 	struct efi_rng_protocol *rng;
150 	struct linux_efi_random_seed *seed;
151 	efi_status_t status;
152 
153 	status = efi_call_early(locate_protocol, &rng_proto, NULL,
154 				(void **)&rng);
155 	if (status != EFI_SUCCESS)
156 		return status;
157 
158 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
159 				sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
160 				(void **)&seed);
161 	if (status != EFI_SUCCESS)
162 		return status;
163 
164 	status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
165 			      seed->bits);
166 	if (status == EFI_UNSUPPORTED)
167 		/*
168 		 * Use whatever algorithm we have available if the raw algorithm
169 		 * is not implemented.
170 		 */
171 		status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
172 				      seed->bits);
173 
174 	if (status != EFI_SUCCESS)
175 		goto err_freepool;
176 
177 	seed->size = EFI_RANDOM_SEED_SIZE;
178 	status = efi_call_early(install_configuration_table, &rng_table_guid,
179 				seed);
180 	if (status != EFI_SUCCESS)
181 		goto err_freepool;
182 
183 	return EFI_SUCCESS;
184 
185 err_freepool:
186 	efi_call_early(free_pool, seed);
187 	return status;
188 }
189