xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision f4dc7fff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FDT related Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2013 Linaro Limited; author Roy Franz
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
12 #include <asm/efi.h>
13 
14 #include "efistub.h"
15 
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
18 
19 static void fdt_update_cell_size(void *fdt)
20 {
21 	int offset;
22 
23 	offset = fdt_path_offset(fdt, "/");
24 	/* Set the #address-cells and #size-cells values for an empty tree */
25 
26 	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
28 }
29 
30 static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
31 			       void *fdt, int new_fdt_size, char *cmdline_ptr)
32 {
33 	int node, num_rsv;
34 	int status;
35 	u32 fdt_val32;
36 	u64 fdt_val64;
37 
38 	/* Do some checks on provided FDT, if it exists: */
39 	if (orig_fdt) {
40 		if (fdt_check_header(orig_fdt)) {
41 			efi_err("Device Tree header not valid!\n");
42 			return EFI_LOAD_ERROR;
43 		}
44 		/*
45 		 * We don't get the size of the FDT if we get if from a
46 		 * configuration table:
47 		 */
48 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
49 			efi_err("Truncated device tree! foo!\n");
50 			return EFI_LOAD_ERROR;
51 		}
52 	}
53 
54 	if (orig_fdt) {
55 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
56 	} else {
57 		status = fdt_create_empty_tree(fdt, new_fdt_size);
58 		if (status == 0) {
59 			/*
60 			 * Any failure from the following function is
61 			 * non-critical:
62 			 */
63 			fdt_update_cell_size(fdt);
64 		}
65 	}
66 
67 	if (status != 0)
68 		goto fdt_set_fail;
69 
70 	/*
71 	 * Delete all memory reserve map entries. When booting via UEFI,
72 	 * kernel will use the UEFI memory map to find reserved regions.
73 	 */
74 	num_rsv = fdt_num_mem_rsv(fdt);
75 	while (num_rsv-- > 0)
76 		fdt_del_mem_rsv(fdt, num_rsv);
77 
78 	node = fdt_subnode_offset(fdt, 0, "chosen");
79 	if (node < 0) {
80 		node = fdt_add_subnode(fdt, 0, "chosen");
81 		if (node < 0) {
82 			/* 'node' is an error code when negative: */
83 			status = node;
84 			goto fdt_set_fail;
85 		}
86 	}
87 
88 	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
89 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
90 				     strlen(cmdline_ptr) + 1);
91 		if (status)
92 			goto fdt_set_fail;
93 	}
94 
95 	/* Add FDT entries for EFI runtime services in chosen node. */
96 	node = fdt_subnode_offset(fdt, 0, "chosen");
97 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
98 
99 	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
100 	if (status)
101 		goto fdt_set_fail;
102 
103 	fdt_val64 = U64_MAX; /* placeholder */
104 
105 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
106 	if (status)
107 		goto fdt_set_fail;
108 
109 	fdt_val32 = U32_MAX; /* placeholder */
110 
111 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
112 	if (status)
113 		goto fdt_set_fail;
114 
115 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
116 	if (status)
117 		goto fdt_set_fail;
118 
119 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
120 	if (status)
121 		goto fdt_set_fail;
122 
123 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
124 		efi_status_t efi_status;
125 
126 		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
127 						  (u8 *)&fdt_val64);
128 		if (efi_status == EFI_SUCCESS) {
129 			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
130 			if (status)
131 				goto fdt_set_fail;
132 		}
133 	}
134 
135 	/* Shrink the FDT back to its minimum size: */
136 	fdt_pack(fdt);
137 
138 	return EFI_SUCCESS;
139 
140 fdt_set_fail:
141 	if (status == -FDT_ERR_NOSPACE)
142 		return EFI_BUFFER_TOO_SMALL;
143 
144 	return EFI_LOAD_ERROR;
145 }
146 
147 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
148 {
149 	int node = fdt_path_offset(fdt, "/chosen");
150 	u64 fdt_val64;
151 	u32 fdt_val32;
152 	int err;
153 
154 	if (node < 0)
155 		return EFI_LOAD_ERROR;
156 
157 	fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
158 
159 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
160 	if (err)
161 		return EFI_LOAD_ERROR;
162 
163 	fdt_val32 = cpu_to_fdt32(map->map_size);
164 
165 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
166 	if (err)
167 		return EFI_LOAD_ERROR;
168 
169 	fdt_val32 = cpu_to_fdt32(map->desc_size);
170 
171 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
172 	if (err)
173 		return EFI_LOAD_ERROR;
174 
175 	fdt_val32 = cpu_to_fdt32(map->desc_ver);
176 
177 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
178 	if (err)
179 		return EFI_LOAD_ERROR;
180 
181 	return EFI_SUCCESS;
182 }
183 
184 struct exit_boot_struct {
185 	struct efi_boot_memmap	*boot_memmap;
186 	efi_memory_desc_t	*runtime_map;
187 	int			runtime_entry_count;
188 	void			*new_fdt_addr;
189 };
190 
191 static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
192 {
193 	struct exit_boot_struct *p = priv;
194 
195 	p->boot_memmap = map;
196 
197 	/*
198 	 * Update the memory map with virtual addresses. The function will also
199 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
200 	 * entries so that we can pass it straight to SetVirtualAddressMap()
201 	 */
202 	efi_get_virtmap(map->map, map->map_size, map->desc_size,
203 			p->runtime_map, &p->runtime_entry_count);
204 
205 	return update_fdt_memmap(p->new_fdt_addr, map);
206 }
207 
208 #ifndef MAX_FDT_SIZE
209 # define MAX_FDT_SIZE SZ_2M
210 #endif
211 
212 /*
213  * Allocate memory for a new FDT, then add EFI and commandline related fields
214  * to the FDT.  This routine increases the FDT allocation size until the
215  * allocated memory is large enough.  EFI allocations are in EFI_PAGE_SIZE
216  * granules, which are fixed at 4K bytes, so in most cases the first allocation
217  * should succeed.  EFI boot services are exited at the end of this function.
218  * There must be no allocations between the get_memory_map() call and the
219  * exit_boot_services() call, so the exiting of boot services is very tightly
220  * tied to the creation of the FDT with the final memory map in it.
221  */
222 
223 efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
224 					    unsigned long *new_fdt_addr,
225 					    char *cmdline_ptr,
226 					    unsigned long fdt_addr,
227 					    unsigned long fdt_size)
228 {
229 	unsigned long desc_size;
230 	u32 desc_ver;
231 	efi_status_t status;
232 	struct exit_boot_struct priv;
233 
234 	if (!efi_novamap) {
235 		status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
236 					   &desc_ver);
237 		if (status != EFI_SUCCESS) {
238 			efi_err("Unable to retrieve UEFI memory map.\n");
239 			return status;
240 		}
241 	}
242 
243 	efi_info("Exiting boot services...\n");
244 
245 	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
246 	if (status != EFI_SUCCESS) {
247 		efi_err("Unable to allocate memory for new device tree.\n");
248 		goto fail;
249 	}
250 
251 	status = update_fdt((void *)fdt_addr, fdt_size,
252 			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr);
253 
254 	if (status != EFI_SUCCESS) {
255 		efi_err("Unable to construct new device tree.\n");
256 		goto fail_free_new_fdt;
257 	}
258 
259 	priv.new_fdt_addr = (void *)*new_fdt_addr;
260 
261 	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
262 
263 	if (status == EFI_SUCCESS) {
264 		efi_set_virtual_address_map_t *svam;
265 
266 		if (efi_novamap)
267 			return EFI_SUCCESS;
268 
269 		/* Install the new virtual address map */
270 		svam = efi_system_table->runtime->set_virtual_address_map;
271 		status = svam(priv.runtime_entry_count * desc_size, desc_size,
272 			      desc_ver, priv.runtime_map);
273 
274 		/*
275 		 * We are beyond the point of no return here, so if the call to
276 		 * SetVirtualAddressMap() failed, we need to signal that to the
277 		 * incoming kernel but proceed normally otherwise.
278 		 */
279 		if (status != EFI_SUCCESS) {
280 			efi_memory_desc_t *p;
281 			int l;
282 
283 			/*
284 			 * Set the virtual address field of all
285 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
286 			 * the incoming kernel that no virtual translation has
287 			 * been installed.
288 			 */
289 			for (l = 0; l < priv.boot_memmap->map_size;
290 			     l += priv.boot_memmap->desc_size) {
291 				p = (void *)priv.boot_memmap->map + l;
292 
293 				if (p->attribute & EFI_MEMORY_RUNTIME)
294 					p->virt_addr = 0;
295 			}
296 		}
297 		return EFI_SUCCESS;
298 	}
299 
300 	efi_err("Exit boot services failed.\n");
301 
302 fail_free_new_fdt:
303 	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
304 
305 fail:
306 	efi_bs_call(free_pool, priv.runtime_map);
307 
308 	return EFI_LOAD_ERROR;
309 }
310 
311 void *get_fdt(unsigned long *fdt_size)
312 {
313 	void *fdt;
314 
315 	fdt = get_efi_config_table(DEVICE_TREE_GUID);
316 
317 	if (!fdt)
318 		return NULL;
319 
320 	if (fdt_check_header(fdt) != 0) {
321 		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
322 		return NULL;
323 	}
324 	*fdt_size = fdt_totalsize(fdt);
325 	return fdt;
326 }
327