xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision abfbd895)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 			unsigned long orig_fdt_size,
21 			void *fdt, int new_fdt_size, char *cmdline_ptr,
22 			u64 initrd_addr, u64 initrd_size,
23 			efi_memory_desc_t *memory_map,
24 			unsigned long map_size, unsigned long desc_size,
25 			u32 desc_ver)
26 {
27 	int node, prev, num_rsv;
28 	int status;
29 	u32 fdt_val32;
30 	u64 fdt_val64;
31 
32 	/* Do some checks on provided FDT, if it exists*/
33 	if (orig_fdt) {
34 		if (fdt_check_header(orig_fdt)) {
35 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
36 			return EFI_LOAD_ERROR;
37 		}
38 		/*
39 		 * We don't get the size of the FDT if we get if from a
40 		 * configuration table.
41 		 */
42 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44 			return EFI_LOAD_ERROR;
45 		}
46 	}
47 
48 	if (orig_fdt)
49 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50 	else
51 		status = fdt_create_empty_tree(fdt, new_fdt_size);
52 
53 	if (status != 0)
54 		goto fdt_set_fail;
55 
56 	/*
57 	 * Delete any memory nodes present. We must delete nodes which
58 	 * early_init_dt_scan_memory may try to use.
59 	 */
60 	prev = 0;
61 	for (;;) {
62 		const char *type;
63 		int len;
64 
65 		node = fdt_next_node(fdt, prev, NULL);
66 		if (node < 0)
67 			break;
68 
69 		type = fdt_getprop(fdt, node, "device_type", &len);
70 		if (type && strncmp(type, "memory", len) == 0) {
71 			fdt_del_node(fdt, node);
72 			continue;
73 		}
74 
75 		prev = node;
76 	}
77 
78 	/*
79 	 * Delete all memory reserve map entries. When booting via UEFI,
80 	 * kernel will use the UEFI memory map to find reserved regions.
81 	 */
82 	num_rsv = fdt_num_mem_rsv(fdt);
83 	while (num_rsv-- > 0)
84 		fdt_del_mem_rsv(fdt, num_rsv);
85 
86 	node = fdt_subnode_offset(fdt, 0, "chosen");
87 	if (node < 0) {
88 		node = fdt_add_subnode(fdt, 0, "chosen");
89 		if (node < 0) {
90 			status = node; /* node is error code when negative */
91 			goto fdt_set_fail;
92 		}
93 	}
94 
95 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97 				     strlen(cmdline_ptr) + 1);
98 		if (status)
99 			goto fdt_set_fail;
100 	}
101 
102 	/* Set initrd address/end in device tree, if present */
103 	if (initrd_size != 0) {
104 		u64 initrd_image_end;
105 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106 
107 		status = fdt_setprop(fdt, node, "linux,initrd-start",
108 				     &initrd_image_start, sizeof(u64));
109 		if (status)
110 			goto fdt_set_fail;
111 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112 		status = fdt_setprop(fdt, node, "linux,initrd-end",
113 				     &initrd_image_end, sizeof(u64));
114 		if (status)
115 			goto fdt_set_fail;
116 	}
117 
118 	/* Add FDT entries for EFI runtime services in chosen node. */
119 	node = fdt_subnode_offset(fdt, 0, "chosen");
120 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122 			     &fdt_val64, sizeof(fdt_val64));
123 	if (status)
124 		goto fdt_set_fail;
125 
126 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128 			     &fdt_val64,  sizeof(fdt_val64));
129 	if (status)
130 		goto fdt_set_fail;
131 
132 	fdt_val32 = cpu_to_fdt32(map_size);
133 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134 			     &fdt_val32,  sizeof(fdt_val32));
135 	if (status)
136 		goto fdt_set_fail;
137 
138 	fdt_val32 = cpu_to_fdt32(desc_size);
139 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140 			     &fdt_val32, sizeof(fdt_val32));
141 	if (status)
142 		goto fdt_set_fail;
143 
144 	fdt_val32 = cpu_to_fdt32(desc_ver);
145 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146 			     &fdt_val32, sizeof(fdt_val32));
147 	if (status)
148 		goto fdt_set_fail;
149 
150 	return EFI_SUCCESS;
151 
152 fdt_set_fail:
153 	if (status == -FDT_ERR_NOSPACE)
154 		return EFI_BUFFER_TOO_SMALL;
155 
156 	return EFI_LOAD_ERROR;
157 }
158 
159 #ifndef EFI_FDT_ALIGN
160 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
161 #endif
162 
163 /*
164  * Allocate memory for a new FDT, then add EFI, commandline, and
165  * initrd related fields to the FDT.  This routine increases the
166  * FDT allocation size until the allocated memory is large
167  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
168  * which are fixed at 4K bytes, so in most cases the first
169  * allocation should succeed.
170  * EFI boot services are exited at the end of this function.
171  * There must be no allocations between the get_memory_map()
172  * call and the exit_boot_services() call, so the exiting of
173  * boot services is very tightly tied to the creation of the FDT
174  * with the final memory map in it.
175  */
176 
177 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
178 					    void *handle,
179 					    unsigned long *new_fdt_addr,
180 					    unsigned long max_addr,
181 					    u64 initrd_addr, u64 initrd_size,
182 					    char *cmdline_ptr,
183 					    unsigned long fdt_addr,
184 					    unsigned long fdt_size)
185 {
186 	unsigned long map_size, desc_size;
187 	u32 desc_ver;
188 	unsigned long mmap_key;
189 	efi_memory_desc_t *memory_map, *runtime_map;
190 	unsigned long new_fdt_size;
191 	efi_status_t status;
192 	int runtime_entry_count = 0;
193 
194 	/*
195 	 * Get a copy of the current memory map that we will use to prepare
196 	 * the input for SetVirtualAddressMap(). We don't have to worry about
197 	 * subsequent allocations adding entries, since they could not affect
198 	 * the number of EFI_MEMORY_RUNTIME regions.
199 	 */
200 	status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
201 				    &desc_size, &desc_ver, &mmap_key);
202 	if (status != EFI_SUCCESS) {
203 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
204 		return status;
205 	}
206 
207 	pr_efi(sys_table,
208 	       "Exiting boot services and installing virtual address map...\n");
209 
210 	/*
211 	 * Estimate size of new FDT, and allocate memory for it. We
212 	 * will allocate a bigger buffer if this ends up being too
213 	 * small, so a rough guess is OK here.
214 	 */
215 	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
216 	while (1) {
217 		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
218 					new_fdt_addr, max_addr);
219 		if (status != EFI_SUCCESS) {
220 			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
221 			goto fail;
222 		}
223 
224 		/*
225 		 * Now that we have done our final memory allocation (and free)
226 		 * we can get the memory map key  needed for
227 		 * exit_boot_services().
228 		 */
229 		status = efi_get_memory_map(sys_table, &memory_map, &map_size,
230 					    &desc_size, &desc_ver, &mmap_key);
231 		if (status != EFI_SUCCESS)
232 			goto fail_free_new_fdt;
233 
234 		status = update_fdt(sys_table,
235 				    (void *)fdt_addr, fdt_size,
236 				    (void *)*new_fdt_addr, new_fdt_size,
237 				    cmdline_ptr, initrd_addr, initrd_size,
238 				    memory_map, map_size, desc_size, desc_ver);
239 
240 		/* Succeeding the first time is the expected case. */
241 		if (status == EFI_SUCCESS)
242 			break;
243 
244 		if (status == EFI_BUFFER_TOO_SMALL) {
245 			/*
246 			 * We need to allocate more space for the new
247 			 * device tree, so free existing buffer that is
248 			 * too small.  Also free memory map, as we will need
249 			 * to get new one that reflects the free/alloc we do
250 			 * on the device tree buffer.
251 			 */
252 			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
253 			sys_table->boottime->free_pool(memory_map);
254 			new_fdt_size += EFI_PAGE_SIZE;
255 		} else {
256 			pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
257 			goto fail_free_mmap;
258 		}
259 	}
260 
261 	/*
262 	 * Update the memory map with virtual addresses. The function will also
263 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
264 	 * entries so that we can pass it straight into SetVirtualAddressMap()
265 	 */
266 	efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
267 			&runtime_entry_count);
268 
269 	/* Now we are ready to exit_boot_services.*/
270 	status = sys_table->boottime->exit_boot_services(handle, mmap_key);
271 
272 	if (status == EFI_SUCCESS) {
273 		efi_set_virtual_address_map_t *svam;
274 
275 		/* Install the new virtual address map */
276 		svam = sys_table->runtime->set_virtual_address_map;
277 		status = svam(runtime_entry_count * desc_size, desc_size,
278 			      desc_ver, runtime_map);
279 
280 		/*
281 		 * We are beyond the point of no return here, so if the call to
282 		 * SetVirtualAddressMap() failed, we need to signal that to the
283 		 * incoming kernel but proceed normally otherwise.
284 		 */
285 		if (status != EFI_SUCCESS) {
286 			int l;
287 
288 			/*
289 			 * Set the virtual address field of all
290 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
291 			 * the incoming kernel that no virtual translation has
292 			 * been installed.
293 			 */
294 			for (l = 0; l < map_size; l += desc_size) {
295 				efi_memory_desc_t *p = (void *)memory_map + l;
296 
297 				if (p->attribute & EFI_MEMORY_RUNTIME)
298 					p->virt_addr = 0;
299 			}
300 		}
301 		return EFI_SUCCESS;
302 	}
303 
304 	pr_efi_err(sys_table, "Exit boot services failed.\n");
305 
306 fail_free_mmap:
307 	sys_table->boottime->free_pool(memory_map);
308 
309 fail_free_new_fdt:
310 	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
311 
312 fail:
313 	sys_table->boottime->free_pool(runtime_map);
314 	return EFI_LOAD_ERROR;
315 }
316 
317 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
318 {
319 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
320 	efi_config_table_t *tables;
321 	void *fdt;
322 	int i;
323 
324 	tables = (efi_config_table_t *) sys_table->tables;
325 	fdt = NULL;
326 
327 	for (i = 0; i < sys_table->nr_tables; i++)
328 		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
329 			fdt = (void *) tables[i].table;
330 			if (fdt_check_header(fdt) != 0) {
331 				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
332 				return NULL;
333 			}
334 			*fdt_size = fdt_totalsize(fdt);
335 			break;
336 	 }
337 
338 	return fdt;
339 }
340