xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision abfb7b68)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 			       unsigned long orig_fdt_size,
21 			       void *fdt, int new_fdt_size, char *cmdline_ptr,
22 			       u64 initrd_addr, u64 initrd_size)
23 {
24 	int node, num_rsv;
25 	int status;
26 	u32 fdt_val32;
27 	u64 fdt_val64;
28 
29 	/* Do some checks on provided FDT, if it exists*/
30 	if (orig_fdt) {
31 		if (fdt_check_header(orig_fdt)) {
32 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
33 			return EFI_LOAD_ERROR;
34 		}
35 		/*
36 		 * We don't get the size of the FDT if we get if from a
37 		 * configuration table.
38 		 */
39 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
40 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
41 			return EFI_LOAD_ERROR;
42 		}
43 	}
44 
45 	if (orig_fdt)
46 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
47 	else
48 		status = fdt_create_empty_tree(fdt, new_fdt_size);
49 
50 	if (status != 0)
51 		goto fdt_set_fail;
52 
53 	/*
54 	 * Delete all memory reserve map entries. When booting via UEFI,
55 	 * kernel will use the UEFI memory map to find reserved regions.
56 	 */
57 	num_rsv = fdt_num_mem_rsv(fdt);
58 	while (num_rsv-- > 0)
59 		fdt_del_mem_rsv(fdt, num_rsv);
60 
61 	node = fdt_subnode_offset(fdt, 0, "chosen");
62 	if (node < 0) {
63 		node = fdt_add_subnode(fdt, 0, "chosen");
64 		if (node < 0) {
65 			status = node; /* node is error code when negative */
66 			goto fdt_set_fail;
67 		}
68 	}
69 
70 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
71 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
72 				     strlen(cmdline_ptr) + 1);
73 		if (status)
74 			goto fdt_set_fail;
75 	}
76 
77 	/* Set initrd address/end in device tree, if present */
78 	if (initrd_size != 0) {
79 		u64 initrd_image_end;
80 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
81 
82 		status = fdt_setprop(fdt, node, "linux,initrd-start",
83 				     &initrd_image_start, sizeof(u64));
84 		if (status)
85 			goto fdt_set_fail;
86 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
87 		status = fdt_setprop(fdt, node, "linux,initrd-end",
88 				     &initrd_image_end, sizeof(u64));
89 		if (status)
90 			goto fdt_set_fail;
91 	}
92 
93 	/* Add FDT entries for EFI runtime services in chosen node. */
94 	node = fdt_subnode_offset(fdt, 0, "chosen");
95 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
96 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
97 			     &fdt_val64, sizeof(fdt_val64));
98 	if (status)
99 		goto fdt_set_fail;
100 
101 	fdt_val64 = U64_MAX; /* placeholder */
102 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
103 			     &fdt_val64,  sizeof(fdt_val64));
104 	if (status)
105 		goto fdt_set_fail;
106 
107 	fdt_val32 = U32_MAX; /* placeholder */
108 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
109 			     &fdt_val32,  sizeof(fdt_val32));
110 	if (status)
111 		goto fdt_set_fail;
112 
113 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
114 			     &fdt_val32, sizeof(fdt_val32));
115 	if (status)
116 		goto fdt_set_fail;
117 
118 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
119 			     &fdt_val32, sizeof(fdt_val32));
120 	if (status)
121 		goto fdt_set_fail;
122 
123 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
124 		efi_status_t efi_status;
125 
126 		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
127 						  (u8 *)&fdt_val64);
128 		if (efi_status == EFI_SUCCESS) {
129 			status = fdt_setprop(fdt, node, "kaslr-seed",
130 					     &fdt_val64, sizeof(fdt_val64));
131 			if (status)
132 				goto fdt_set_fail;
133 		} else if (efi_status != EFI_NOT_FOUND) {
134 			return efi_status;
135 		}
136 	}
137 	return EFI_SUCCESS;
138 
139 fdt_set_fail:
140 	if (status == -FDT_ERR_NOSPACE)
141 		return EFI_BUFFER_TOO_SMALL;
142 
143 	return EFI_LOAD_ERROR;
144 }
145 
146 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
147 {
148 	int node = fdt_path_offset(fdt, "/chosen");
149 	u64 fdt_val64;
150 	u32 fdt_val32;
151 	int err;
152 
153 	if (node < 0)
154 		return EFI_LOAD_ERROR;
155 
156 	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
157 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
158 				  &fdt_val64, sizeof(fdt_val64));
159 	if (err)
160 		return EFI_LOAD_ERROR;
161 
162 	fdt_val32 = cpu_to_fdt32(*map->map_size);
163 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
164 				  &fdt_val32, sizeof(fdt_val32));
165 	if (err)
166 		return EFI_LOAD_ERROR;
167 
168 	fdt_val32 = cpu_to_fdt32(*map->desc_size);
169 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
170 				  &fdt_val32, sizeof(fdt_val32));
171 	if (err)
172 		return EFI_LOAD_ERROR;
173 
174 	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
175 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
176 				  &fdt_val32, sizeof(fdt_val32));
177 	if (err)
178 		return EFI_LOAD_ERROR;
179 
180 	return EFI_SUCCESS;
181 }
182 
183 #ifndef EFI_FDT_ALIGN
184 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
185 #endif
186 
187 struct exit_boot_struct {
188 	efi_memory_desc_t *runtime_map;
189 	int *runtime_entry_count;
190 };
191 
192 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
193 				   struct efi_boot_memmap *map,
194 				   void *priv)
195 {
196 	struct exit_boot_struct *p = priv;
197 	/*
198 	 * Update the memory map with virtual addresses. The function will also
199 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
200 	 * entries so that we can pass it straight to SetVirtualAddressMap()
201 	 */
202 	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
203 			p->runtime_map, p->runtime_entry_count);
204 
205 	return EFI_SUCCESS;
206 }
207 
208 /*
209  * Allocate memory for a new FDT, then add EFI, commandline, and
210  * initrd related fields to the FDT.  This routine increases the
211  * FDT allocation size until the allocated memory is large
212  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
213  * which are fixed at 4K bytes, so in most cases the first
214  * allocation should succeed.
215  * EFI boot services are exited at the end of this function.
216  * There must be no allocations between the get_memory_map()
217  * call and the exit_boot_services() call, so the exiting of
218  * boot services is very tightly tied to the creation of the FDT
219  * with the final memory map in it.
220  */
221 
222 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
223 					    void *handle,
224 					    unsigned long *new_fdt_addr,
225 					    unsigned long max_addr,
226 					    u64 initrd_addr, u64 initrd_size,
227 					    char *cmdline_ptr,
228 					    unsigned long fdt_addr,
229 					    unsigned long fdt_size)
230 {
231 	unsigned long map_size, desc_size, buff_size;
232 	u32 desc_ver;
233 	unsigned long mmap_key;
234 	efi_memory_desc_t *memory_map, *runtime_map;
235 	unsigned long new_fdt_size;
236 	efi_status_t status;
237 	int runtime_entry_count = 0;
238 	struct efi_boot_memmap map;
239 	struct exit_boot_struct priv;
240 
241 	map.map =	&runtime_map;
242 	map.map_size =	&map_size;
243 	map.desc_size =	&desc_size;
244 	map.desc_ver =	&desc_ver;
245 	map.key_ptr =	&mmap_key;
246 	map.buff_size =	&buff_size;
247 
248 	/*
249 	 * Get a copy of the current memory map that we will use to prepare
250 	 * the input for SetVirtualAddressMap(). We don't have to worry about
251 	 * subsequent allocations adding entries, since they could not affect
252 	 * the number of EFI_MEMORY_RUNTIME regions.
253 	 */
254 	status = efi_get_memory_map(sys_table, &map);
255 	if (status != EFI_SUCCESS) {
256 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
257 		return status;
258 	}
259 
260 	pr_efi(sys_table,
261 	       "Exiting boot services and installing virtual address map...\n");
262 
263 	map.map = &memory_map;
264 	/*
265 	 * Estimate size of new FDT, and allocate memory for it. We
266 	 * will allocate a bigger buffer if this ends up being too
267 	 * small, so a rough guess is OK here.
268 	 */
269 	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
270 	while (1) {
271 		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
272 					new_fdt_addr, max_addr);
273 		if (status != EFI_SUCCESS) {
274 			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
275 			goto fail;
276 		}
277 
278 		status = update_fdt(sys_table,
279 				    (void *)fdt_addr, fdt_size,
280 				    (void *)*new_fdt_addr, new_fdt_size,
281 				    cmdline_ptr, initrd_addr, initrd_size);
282 
283 		/* Succeeding the first time is the expected case. */
284 		if (status == EFI_SUCCESS)
285 			break;
286 
287 		if (status == EFI_BUFFER_TOO_SMALL) {
288 			/*
289 			 * We need to allocate more space for the new
290 			 * device tree, so free existing buffer that is
291 			 * too small.
292 			 */
293 			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
294 			new_fdt_size += EFI_PAGE_SIZE;
295 		} else {
296 			pr_efi_err(sys_table, "Unable to construct new device tree.\n");
297 			goto fail_free_new_fdt;
298 		}
299 	}
300 
301 	priv.runtime_map = runtime_map;
302 	priv.runtime_entry_count = &runtime_entry_count;
303 	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
304 					exit_boot_func);
305 
306 	if (status == EFI_SUCCESS) {
307 		efi_set_virtual_address_map_t *svam;
308 
309 		status = update_fdt_memmap((void *)*new_fdt_addr, &map);
310 		if (status != EFI_SUCCESS) {
311 			/*
312 			 * The kernel won't get far without the memory map, but
313 			 * may still be able to print something meaningful so
314 			 * return success here.
315 			 */
316 			return EFI_SUCCESS;
317 		}
318 
319 		/* Install the new virtual address map */
320 		svam = sys_table->runtime->set_virtual_address_map;
321 		status = svam(runtime_entry_count * desc_size, desc_size,
322 			      desc_ver, runtime_map);
323 
324 		/*
325 		 * We are beyond the point of no return here, so if the call to
326 		 * SetVirtualAddressMap() failed, we need to signal that to the
327 		 * incoming kernel but proceed normally otherwise.
328 		 */
329 		if (status != EFI_SUCCESS) {
330 			int l;
331 
332 			/*
333 			 * Set the virtual address field of all
334 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
335 			 * the incoming kernel that no virtual translation has
336 			 * been installed.
337 			 */
338 			for (l = 0; l < map_size; l += desc_size) {
339 				efi_memory_desc_t *p = (void *)memory_map + l;
340 
341 				if (p->attribute & EFI_MEMORY_RUNTIME)
342 					p->virt_addr = 0;
343 			}
344 		}
345 		return EFI_SUCCESS;
346 	}
347 
348 	pr_efi_err(sys_table, "Exit boot services failed.\n");
349 
350 fail_free_new_fdt:
351 	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
352 
353 fail:
354 	sys_table->boottime->free_pool(runtime_map);
355 	return EFI_LOAD_ERROR;
356 }
357 
358 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
359 {
360 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
361 	efi_config_table_t *tables;
362 	void *fdt;
363 	int i;
364 
365 	tables = (efi_config_table_t *) sys_table->tables;
366 	fdt = NULL;
367 
368 	for (i = 0; i < sys_table->nr_tables; i++)
369 		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
370 			fdt = (void *) tables[i].table;
371 			if (fdt_check_header(fdt) != 0) {
372 				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
373 				return NULL;
374 			}
375 			*fdt_size = fdt_totalsize(fdt);
376 			break;
377 	 }
378 
379 	return fdt;
380 }
381