xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision 9fb29c73)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 #define EFI_DT_ADDR_CELLS_DEFAULT 2
20 #define EFI_DT_SIZE_CELLS_DEFAULT 2
21 
22 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
23 {
24 	int offset;
25 
26 	offset = fdt_path_offset(fdt, "/");
27 	/* Set the #address-cells and #size-cells values for an empty tree */
28 
29 	fdt_setprop_u32(fdt, offset, "#address-cells",
30 			EFI_DT_ADDR_CELLS_DEFAULT);
31 
32 	fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
33 }
34 
35 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
36 			       unsigned long orig_fdt_size,
37 			       void *fdt, int new_fdt_size, char *cmdline_ptr,
38 			       u64 initrd_addr, u64 initrd_size)
39 {
40 	int node, num_rsv;
41 	int status;
42 	u32 fdt_val32;
43 	u64 fdt_val64;
44 
45 	/* Do some checks on provided FDT, if it exists*/
46 	if (orig_fdt) {
47 		if (fdt_check_header(orig_fdt)) {
48 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
49 			return EFI_LOAD_ERROR;
50 		}
51 		/*
52 		 * We don't get the size of the FDT if we get if from a
53 		 * configuration table.
54 		 */
55 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
56 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
57 			return EFI_LOAD_ERROR;
58 		}
59 	}
60 
61 	if (orig_fdt) {
62 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
63 	} else {
64 		status = fdt_create_empty_tree(fdt, new_fdt_size);
65 		if (status == 0) {
66 			/*
67 			 * Any failure from the following function is non
68 			 * critical
69 			 */
70 			fdt_update_cell_size(sys_table, fdt);
71 		}
72 	}
73 
74 	if (status != 0)
75 		goto fdt_set_fail;
76 
77 	/*
78 	 * Delete all memory reserve map entries. When booting via UEFI,
79 	 * kernel will use the UEFI memory map to find reserved regions.
80 	 */
81 	num_rsv = fdt_num_mem_rsv(fdt);
82 	while (num_rsv-- > 0)
83 		fdt_del_mem_rsv(fdt, num_rsv);
84 
85 	node = fdt_subnode_offset(fdt, 0, "chosen");
86 	if (node < 0) {
87 		node = fdt_add_subnode(fdt, 0, "chosen");
88 		if (node < 0) {
89 			status = node; /* node is error code when negative */
90 			goto fdt_set_fail;
91 		}
92 	}
93 
94 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
95 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
96 				     strlen(cmdline_ptr) + 1);
97 		if (status)
98 			goto fdt_set_fail;
99 	}
100 
101 	/* Set initrd address/end in device tree, if present */
102 	if (initrd_size != 0) {
103 		u64 initrd_image_end;
104 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
105 
106 		status = fdt_setprop(fdt, node, "linux,initrd-start",
107 				     &initrd_image_start, sizeof(u64));
108 		if (status)
109 			goto fdt_set_fail;
110 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
111 		status = fdt_setprop(fdt, node, "linux,initrd-end",
112 				     &initrd_image_end, sizeof(u64));
113 		if (status)
114 			goto fdt_set_fail;
115 	}
116 
117 	/* Add FDT entries for EFI runtime services in chosen node. */
118 	node = fdt_subnode_offset(fdt, 0, "chosen");
119 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
120 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
121 			     &fdt_val64, sizeof(fdt_val64));
122 	if (status)
123 		goto fdt_set_fail;
124 
125 	fdt_val64 = U64_MAX; /* placeholder */
126 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
127 			     &fdt_val64,  sizeof(fdt_val64));
128 	if (status)
129 		goto fdt_set_fail;
130 
131 	fdt_val32 = U32_MAX; /* placeholder */
132 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
133 			     &fdt_val32,  sizeof(fdt_val32));
134 	if (status)
135 		goto fdt_set_fail;
136 
137 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
138 			     &fdt_val32, sizeof(fdt_val32));
139 	if (status)
140 		goto fdt_set_fail;
141 
142 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
143 			     &fdt_val32, sizeof(fdt_val32));
144 	if (status)
145 		goto fdt_set_fail;
146 
147 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
148 		efi_status_t efi_status;
149 
150 		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
151 						  (u8 *)&fdt_val64);
152 		if (efi_status == EFI_SUCCESS) {
153 			status = fdt_setprop(fdt, node, "kaslr-seed",
154 					     &fdt_val64, sizeof(fdt_val64));
155 			if (status)
156 				goto fdt_set_fail;
157 		} else if (efi_status != EFI_NOT_FOUND) {
158 			return efi_status;
159 		}
160 	}
161 
162 	/* shrink the FDT back to its minimum size */
163 	fdt_pack(fdt);
164 
165 	return EFI_SUCCESS;
166 
167 fdt_set_fail:
168 	if (status == -FDT_ERR_NOSPACE)
169 		return EFI_BUFFER_TOO_SMALL;
170 
171 	return EFI_LOAD_ERROR;
172 }
173 
174 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
175 {
176 	int node = fdt_path_offset(fdt, "/chosen");
177 	u64 fdt_val64;
178 	u32 fdt_val32;
179 	int err;
180 
181 	if (node < 0)
182 		return EFI_LOAD_ERROR;
183 
184 	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
185 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
186 				  &fdt_val64, sizeof(fdt_val64));
187 	if (err)
188 		return EFI_LOAD_ERROR;
189 
190 	fdt_val32 = cpu_to_fdt32(*map->map_size);
191 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
192 				  &fdt_val32, sizeof(fdt_val32));
193 	if (err)
194 		return EFI_LOAD_ERROR;
195 
196 	fdt_val32 = cpu_to_fdt32(*map->desc_size);
197 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
198 				  &fdt_val32, sizeof(fdt_val32));
199 	if (err)
200 		return EFI_LOAD_ERROR;
201 
202 	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
203 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
204 				  &fdt_val32, sizeof(fdt_val32));
205 	if (err)
206 		return EFI_LOAD_ERROR;
207 
208 	return EFI_SUCCESS;
209 }
210 
211 #ifndef EFI_FDT_ALIGN
212 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
213 #endif
214 
215 struct exit_boot_struct {
216 	efi_memory_desc_t *runtime_map;
217 	int *runtime_entry_count;
218 	void *new_fdt_addr;
219 };
220 
221 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
222 				   struct efi_boot_memmap *map,
223 				   void *priv)
224 {
225 	struct exit_boot_struct *p = priv;
226 	/*
227 	 * Update the memory map with virtual addresses. The function will also
228 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
229 	 * entries so that we can pass it straight to SetVirtualAddressMap()
230 	 */
231 	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
232 			p->runtime_map, p->runtime_entry_count);
233 
234 	return update_fdt_memmap(p->new_fdt_addr, map);
235 }
236 
237 #ifndef MAX_FDT_SIZE
238 #define MAX_FDT_SIZE	SZ_2M
239 #endif
240 
241 /*
242  * Allocate memory for a new FDT, then add EFI, commandline, and
243  * initrd related fields to the FDT.  This routine increases the
244  * FDT allocation size until the allocated memory is large
245  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
246  * which are fixed at 4K bytes, so in most cases the first
247  * allocation should succeed.
248  * EFI boot services are exited at the end of this function.
249  * There must be no allocations between the get_memory_map()
250  * call and the exit_boot_services() call, so the exiting of
251  * boot services is very tightly tied to the creation of the FDT
252  * with the final memory map in it.
253  */
254 
255 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
256 					    void *handle,
257 					    unsigned long *new_fdt_addr,
258 					    unsigned long max_addr,
259 					    u64 initrd_addr, u64 initrd_size,
260 					    char *cmdline_ptr,
261 					    unsigned long fdt_addr,
262 					    unsigned long fdt_size)
263 {
264 	unsigned long map_size, desc_size, buff_size;
265 	u32 desc_ver;
266 	unsigned long mmap_key;
267 	efi_memory_desc_t *memory_map, *runtime_map;
268 	efi_status_t status;
269 	int runtime_entry_count = 0;
270 	struct efi_boot_memmap map;
271 	struct exit_boot_struct priv;
272 
273 	map.map =	&runtime_map;
274 	map.map_size =	&map_size;
275 	map.desc_size =	&desc_size;
276 	map.desc_ver =	&desc_ver;
277 	map.key_ptr =	&mmap_key;
278 	map.buff_size =	&buff_size;
279 
280 	/*
281 	 * Get a copy of the current memory map that we will use to prepare
282 	 * the input for SetVirtualAddressMap(). We don't have to worry about
283 	 * subsequent allocations adding entries, since they could not affect
284 	 * the number of EFI_MEMORY_RUNTIME regions.
285 	 */
286 	status = efi_get_memory_map(sys_table, &map);
287 	if (status != EFI_SUCCESS) {
288 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
289 		return status;
290 	}
291 
292 	pr_efi(sys_table,
293 	       "Exiting boot services and installing virtual address map...\n");
294 
295 	map.map = &memory_map;
296 	status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
297 				new_fdt_addr, max_addr);
298 	if (status != EFI_SUCCESS) {
299 		pr_efi_err(sys_table,
300 			   "Unable to allocate memory for new device tree.\n");
301 		goto fail;
302 	}
303 
304 	/*
305 	 * Now that we have done our final memory allocation (and free)
306 	 * we can get the memory map key needed for exit_boot_services().
307 	 */
308 	status = efi_get_memory_map(sys_table, &map);
309 	if (status != EFI_SUCCESS)
310 		goto fail_free_new_fdt;
311 
312 	status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
313 			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
314 			    initrd_addr, initrd_size);
315 
316 	if (status != EFI_SUCCESS) {
317 		pr_efi_err(sys_table, "Unable to construct new device tree.\n");
318 		goto fail_free_new_fdt;
319 	}
320 
321 	priv.runtime_map = runtime_map;
322 	priv.runtime_entry_count = &runtime_entry_count;
323 	priv.new_fdt_addr = (void *)*new_fdt_addr;
324 	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
325 					exit_boot_func);
326 
327 	if (status == EFI_SUCCESS) {
328 		efi_set_virtual_address_map_t *svam;
329 
330 		/* Install the new virtual address map */
331 		svam = sys_table->runtime->set_virtual_address_map;
332 		status = svam(runtime_entry_count * desc_size, desc_size,
333 			      desc_ver, runtime_map);
334 
335 		/*
336 		 * We are beyond the point of no return here, so if the call to
337 		 * SetVirtualAddressMap() failed, we need to signal that to the
338 		 * incoming kernel but proceed normally otherwise.
339 		 */
340 		if (status != EFI_SUCCESS) {
341 			int l;
342 
343 			/*
344 			 * Set the virtual address field of all
345 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
346 			 * the incoming kernel that no virtual translation has
347 			 * been installed.
348 			 */
349 			for (l = 0; l < map_size; l += desc_size) {
350 				efi_memory_desc_t *p = (void *)memory_map + l;
351 
352 				if (p->attribute & EFI_MEMORY_RUNTIME)
353 					p->virt_addr = 0;
354 			}
355 		}
356 		return EFI_SUCCESS;
357 	}
358 
359 	pr_efi_err(sys_table, "Exit boot services failed.\n");
360 
361 fail_free_new_fdt:
362 	efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
363 
364 fail:
365 	sys_table->boottime->free_pool(runtime_map);
366 	return EFI_LOAD_ERROR;
367 }
368 
369 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
370 {
371 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
372 	efi_config_table_t *tables;
373 	int i;
374 
375 	tables = (efi_config_table_t *)sys_table->tables;
376 
377 	for (i = 0; i < sys_table->nr_tables; i++) {
378 		void *fdt;
379 
380 		if (efi_guidcmp(tables[i].guid, fdt_guid) != 0)
381 			continue;
382 
383 		fdt = (void *)tables[i].table;
384 		if (fdt_check_header(fdt) != 0) {
385 			pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
386 			return NULL;
387 		}
388 		*fdt_size = fdt_totalsize(fdt);
389 		return fdt;
390 	}
391 
392 	return NULL;
393 }
394