xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision 82d736ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FDT related Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2013 Linaro Limited; author Roy Franz
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
12 #include <asm/efi.h>
13 
14 #include "efistub.h"
15 
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
18 
19 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
20 {
21 	int offset;
22 
23 	offset = fdt_path_offset(fdt, "/");
24 	/* Set the #address-cells and #size-cells values for an empty tree */
25 
26 	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
28 }
29 
30 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
31 			       unsigned long orig_fdt_size,
32 			       void *fdt, int new_fdt_size, char *cmdline_ptr,
33 			       u64 initrd_addr, u64 initrd_size)
34 {
35 	int node, num_rsv;
36 	int status;
37 	u32 fdt_val32;
38 	u64 fdt_val64;
39 
40 	/* Do some checks on provided FDT, if it exists: */
41 	if (orig_fdt) {
42 		if (fdt_check_header(orig_fdt)) {
43 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
44 			return EFI_LOAD_ERROR;
45 		}
46 		/*
47 		 * We don't get the size of the FDT if we get if from a
48 		 * configuration table:
49 		 */
50 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
51 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
52 			return EFI_LOAD_ERROR;
53 		}
54 	}
55 
56 	if (orig_fdt) {
57 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
58 	} else {
59 		status = fdt_create_empty_tree(fdt, new_fdt_size);
60 		if (status == 0) {
61 			/*
62 			 * Any failure from the following function is
63 			 * non-critical:
64 			 */
65 			fdt_update_cell_size(sys_table, fdt);
66 		}
67 	}
68 
69 	if (status != 0)
70 		goto fdt_set_fail;
71 
72 	/*
73 	 * Delete all memory reserve map entries. When booting via UEFI,
74 	 * kernel will use the UEFI memory map to find reserved regions.
75 	 */
76 	num_rsv = fdt_num_mem_rsv(fdt);
77 	while (num_rsv-- > 0)
78 		fdt_del_mem_rsv(fdt, num_rsv);
79 
80 	node = fdt_subnode_offset(fdt, 0, "chosen");
81 	if (node < 0) {
82 		node = fdt_add_subnode(fdt, 0, "chosen");
83 		if (node < 0) {
84 			/* 'node' is an error code when negative: */
85 			status = node;
86 			goto fdt_set_fail;
87 		}
88 	}
89 
90 	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
91 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
92 				     strlen(cmdline_ptr) + 1);
93 		if (status)
94 			goto fdt_set_fail;
95 	}
96 
97 	/* Set initrd address/end in device tree, if present */
98 	if (initrd_size != 0) {
99 		u64 initrd_image_end;
100 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
101 
102 		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
103 		if (status)
104 			goto fdt_set_fail;
105 
106 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
107 		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
108 		if (status)
109 			goto fdt_set_fail;
110 	}
111 
112 	/* Add FDT entries for EFI runtime services in chosen node. */
113 	node = fdt_subnode_offset(fdt, 0, "chosen");
114 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
115 
116 	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
117 	if (status)
118 		goto fdt_set_fail;
119 
120 	fdt_val64 = U64_MAX; /* placeholder */
121 
122 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
123 	if (status)
124 		goto fdt_set_fail;
125 
126 	fdt_val32 = U32_MAX; /* placeholder */
127 
128 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
129 	if (status)
130 		goto fdt_set_fail;
131 
132 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
133 	if (status)
134 		goto fdt_set_fail;
135 
136 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
137 	if (status)
138 		goto fdt_set_fail;
139 
140 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
141 		efi_status_t efi_status;
142 
143 		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
144 						  (u8 *)&fdt_val64);
145 		if (efi_status == EFI_SUCCESS) {
146 			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
147 			if (status)
148 				goto fdt_set_fail;
149 		} else if (efi_status != EFI_NOT_FOUND) {
150 			return efi_status;
151 		}
152 	}
153 
154 	/* Shrink the FDT back to its minimum size: */
155 	fdt_pack(fdt);
156 
157 	return EFI_SUCCESS;
158 
159 fdt_set_fail:
160 	if (status == -FDT_ERR_NOSPACE)
161 		return EFI_BUFFER_TOO_SMALL;
162 
163 	return EFI_LOAD_ERROR;
164 }
165 
166 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
167 {
168 	int node = fdt_path_offset(fdt, "/chosen");
169 	u64 fdt_val64;
170 	u32 fdt_val32;
171 	int err;
172 
173 	if (node < 0)
174 		return EFI_LOAD_ERROR;
175 
176 	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
177 
178 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
179 	if (err)
180 		return EFI_LOAD_ERROR;
181 
182 	fdt_val32 = cpu_to_fdt32(*map->map_size);
183 
184 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
185 	if (err)
186 		return EFI_LOAD_ERROR;
187 
188 	fdt_val32 = cpu_to_fdt32(*map->desc_size);
189 
190 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
191 	if (err)
192 		return EFI_LOAD_ERROR;
193 
194 	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
195 
196 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
197 	if (err)
198 		return EFI_LOAD_ERROR;
199 
200 	return EFI_SUCCESS;
201 }
202 
203 #ifndef EFI_FDT_ALIGN
204 # define EFI_FDT_ALIGN EFI_PAGE_SIZE
205 #endif
206 
207 struct exit_boot_struct {
208 	efi_memory_desc_t	*runtime_map;
209 	int			*runtime_entry_count;
210 	void			*new_fdt_addr;
211 };
212 
213 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
214 				   struct efi_boot_memmap *map,
215 				   void *priv)
216 {
217 	struct exit_boot_struct *p = priv;
218 	/*
219 	 * Update the memory map with virtual addresses. The function will also
220 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
221 	 * entries so that we can pass it straight to SetVirtualAddressMap()
222 	 */
223 	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
224 			p->runtime_map, p->runtime_entry_count);
225 
226 	return update_fdt_memmap(p->new_fdt_addr, map);
227 }
228 
229 #ifndef MAX_FDT_SIZE
230 # define MAX_FDT_SIZE SZ_2M
231 #endif
232 
233 /*
234  * Allocate memory for a new FDT, then add EFI, commandline, and
235  * initrd related fields to the FDT.  This routine increases the
236  * FDT allocation size until the allocated memory is large
237  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
238  * which are fixed at 4K bytes, so in most cases the first
239  * allocation should succeed.
240  * EFI boot services are exited at the end of this function.
241  * There must be no allocations between the get_memory_map()
242  * call and the exit_boot_services() call, so the exiting of
243  * boot services is very tightly tied to the creation of the FDT
244  * with the final memory map in it.
245  */
246 
247 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
248 					    void *handle,
249 					    unsigned long *new_fdt_addr,
250 					    unsigned long max_addr,
251 					    u64 initrd_addr, u64 initrd_size,
252 					    char *cmdline_ptr,
253 					    unsigned long fdt_addr,
254 					    unsigned long fdt_size)
255 {
256 	unsigned long map_size, desc_size, buff_size;
257 	u32 desc_ver;
258 	unsigned long mmap_key;
259 	efi_memory_desc_t *memory_map, *runtime_map;
260 	efi_status_t status;
261 	int runtime_entry_count;
262 	struct efi_boot_memmap map;
263 	struct exit_boot_struct priv;
264 
265 	map.map		= &runtime_map;
266 	map.map_size	= &map_size;
267 	map.desc_size	= &desc_size;
268 	map.desc_ver	= &desc_ver;
269 	map.key_ptr	= &mmap_key;
270 	map.buff_size	= &buff_size;
271 
272 	/*
273 	 * Get a copy of the current memory map that we will use to prepare
274 	 * the input for SetVirtualAddressMap(). We don't have to worry about
275 	 * subsequent allocations adding entries, since they could not affect
276 	 * the number of EFI_MEMORY_RUNTIME regions.
277 	 */
278 	status = efi_get_memory_map(sys_table, &map);
279 	if (status != EFI_SUCCESS) {
280 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
281 		return status;
282 	}
283 
284 	pr_efi(sys_table, "Exiting boot services and installing virtual address map...\n");
285 
286 	map.map = &memory_map;
287 	status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
288 				new_fdt_addr, max_addr);
289 	if (status != EFI_SUCCESS) {
290 		pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
291 		goto fail;
292 	}
293 
294 	/*
295 	 * Now that we have done our final memory allocation (and free)
296 	 * we can get the memory map key needed for exit_boot_services().
297 	 */
298 	status = efi_get_memory_map(sys_table, &map);
299 	if (status != EFI_SUCCESS)
300 		goto fail_free_new_fdt;
301 
302 	status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
303 			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
304 			    initrd_addr, initrd_size);
305 
306 	if (status != EFI_SUCCESS) {
307 		pr_efi_err(sys_table, "Unable to construct new device tree.\n");
308 		goto fail_free_new_fdt;
309 	}
310 
311 	runtime_entry_count		= 0;
312 	priv.runtime_map		= runtime_map;
313 	priv.runtime_entry_count	= &runtime_entry_count;
314 	priv.new_fdt_addr		= (void *)*new_fdt_addr;
315 
316 	status = efi_exit_boot_services(sys_table, handle, &map, &priv, exit_boot_func);
317 
318 	if (status == EFI_SUCCESS) {
319 		efi_set_virtual_address_map_t *svam;
320 
321 		if (novamap())
322 			return EFI_SUCCESS;
323 
324 		/* Install the new virtual address map */
325 		svam = sys_table->runtime->set_virtual_address_map;
326 		status = svam(runtime_entry_count * desc_size, desc_size,
327 			      desc_ver, runtime_map);
328 
329 		/*
330 		 * We are beyond the point of no return here, so if the call to
331 		 * SetVirtualAddressMap() failed, we need to signal that to the
332 		 * incoming kernel but proceed normally otherwise.
333 		 */
334 		if (status != EFI_SUCCESS) {
335 			int l;
336 
337 			/*
338 			 * Set the virtual address field of all
339 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
340 			 * the incoming kernel that no virtual translation has
341 			 * been installed.
342 			 */
343 			for (l = 0; l < map_size; l += desc_size) {
344 				efi_memory_desc_t *p = (void *)memory_map + l;
345 
346 				if (p->attribute & EFI_MEMORY_RUNTIME)
347 					p->virt_addr = 0;
348 			}
349 		}
350 		return EFI_SUCCESS;
351 	}
352 
353 	pr_efi_err(sys_table, "Exit boot services failed.\n");
354 
355 fail_free_new_fdt:
356 	efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
357 
358 fail:
359 	sys_table->boottime->free_pool(runtime_map);
360 
361 	return EFI_LOAD_ERROR;
362 }
363 
364 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
365 {
366 	void *fdt;
367 
368 	fdt = get_efi_config_table(sys_table, DEVICE_TREE_GUID);
369 
370 	if (!fdt)
371 		return NULL;
372 
373 	if (fdt_check_header(fdt) != 0) {
374 		pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
375 		return NULL;
376 	}
377 	*fdt_size = fdt_totalsize(fdt);
378 	return fdt;
379 }
380