xref: /openbmc/linux/drivers/firmware/efi/libstub/fdt.c (revision 4f6cce39)
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16 
17 #include "efistub.h"
18 
19 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 			       unsigned long orig_fdt_size,
21 			       void *fdt, int new_fdt_size, char *cmdline_ptr,
22 			       u64 initrd_addr, u64 initrd_size)
23 {
24 	int node, num_rsv;
25 	int status;
26 	u32 fdt_val32;
27 	u64 fdt_val64;
28 
29 	/* Do some checks on provided FDT, if it exists*/
30 	if (orig_fdt) {
31 		if (fdt_check_header(orig_fdt)) {
32 			pr_efi_err(sys_table, "Device Tree header not valid!\n");
33 			return EFI_LOAD_ERROR;
34 		}
35 		/*
36 		 * We don't get the size of the FDT if we get if from a
37 		 * configuration table.
38 		 */
39 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
40 			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
41 			return EFI_LOAD_ERROR;
42 		}
43 	}
44 
45 	if (orig_fdt)
46 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
47 	else
48 		status = fdt_create_empty_tree(fdt, new_fdt_size);
49 
50 	if (status != 0)
51 		goto fdt_set_fail;
52 
53 	/*
54 	 * Delete all memory reserve map entries. When booting via UEFI,
55 	 * kernel will use the UEFI memory map to find reserved regions.
56 	 */
57 	num_rsv = fdt_num_mem_rsv(fdt);
58 	while (num_rsv-- > 0)
59 		fdt_del_mem_rsv(fdt, num_rsv);
60 
61 	node = fdt_subnode_offset(fdt, 0, "chosen");
62 	if (node < 0) {
63 		node = fdt_add_subnode(fdt, 0, "chosen");
64 		if (node < 0) {
65 			status = node; /* node is error code when negative */
66 			goto fdt_set_fail;
67 		}
68 	}
69 
70 	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
71 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
72 				     strlen(cmdline_ptr) + 1);
73 		if (status)
74 			goto fdt_set_fail;
75 	}
76 
77 	/* Set initrd address/end in device tree, if present */
78 	if (initrd_size != 0) {
79 		u64 initrd_image_end;
80 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
81 
82 		status = fdt_setprop(fdt, node, "linux,initrd-start",
83 				     &initrd_image_start, sizeof(u64));
84 		if (status)
85 			goto fdt_set_fail;
86 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
87 		status = fdt_setprop(fdt, node, "linux,initrd-end",
88 				     &initrd_image_end, sizeof(u64));
89 		if (status)
90 			goto fdt_set_fail;
91 	}
92 
93 	/* Add FDT entries for EFI runtime services in chosen node. */
94 	node = fdt_subnode_offset(fdt, 0, "chosen");
95 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
96 	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
97 			     &fdt_val64, sizeof(fdt_val64));
98 	if (status)
99 		goto fdt_set_fail;
100 
101 	fdt_val64 = U64_MAX; /* placeholder */
102 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
103 			     &fdt_val64,  sizeof(fdt_val64));
104 	if (status)
105 		goto fdt_set_fail;
106 
107 	fdt_val32 = U32_MAX; /* placeholder */
108 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
109 			     &fdt_val32,  sizeof(fdt_val32));
110 	if (status)
111 		goto fdt_set_fail;
112 
113 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
114 			     &fdt_val32, sizeof(fdt_val32));
115 	if (status)
116 		goto fdt_set_fail;
117 
118 	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
119 			     &fdt_val32, sizeof(fdt_val32));
120 	if (status)
121 		goto fdt_set_fail;
122 
123 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
124 		efi_status_t efi_status;
125 
126 		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
127 						  (u8 *)&fdt_val64);
128 		if (efi_status == EFI_SUCCESS) {
129 			status = fdt_setprop(fdt, node, "kaslr-seed",
130 					     &fdt_val64, sizeof(fdt_val64));
131 			if (status)
132 				goto fdt_set_fail;
133 		} else if (efi_status != EFI_NOT_FOUND) {
134 			return efi_status;
135 		}
136 	}
137 	return EFI_SUCCESS;
138 
139 fdt_set_fail:
140 	if (status == -FDT_ERR_NOSPACE)
141 		return EFI_BUFFER_TOO_SMALL;
142 
143 	return EFI_LOAD_ERROR;
144 }
145 
146 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
147 {
148 	int node = fdt_path_offset(fdt, "/chosen");
149 	u64 fdt_val64;
150 	u32 fdt_val32;
151 	int err;
152 
153 	if (node < 0)
154 		return EFI_LOAD_ERROR;
155 
156 	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
157 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
158 				  &fdt_val64, sizeof(fdt_val64));
159 	if (err)
160 		return EFI_LOAD_ERROR;
161 
162 	fdt_val32 = cpu_to_fdt32(*map->map_size);
163 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
164 				  &fdt_val32, sizeof(fdt_val32));
165 	if (err)
166 		return EFI_LOAD_ERROR;
167 
168 	fdt_val32 = cpu_to_fdt32(*map->desc_size);
169 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
170 				  &fdt_val32, sizeof(fdt_val32));
171 	if (err)
172 		return EFI_LOAD_ERROR;
173 
174 	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
175 	err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
176 				  &fdt_val32, sizeof(fdt_val32));
177 	if (err)
178 		return EFI_LOAD_ERROR;
179 
180 	return EFI_SUCCESS;
181 }
182 
183 #ifndef EFI_FDT_ALIGN
184 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
185 #endif
186 
187 struct exit_boot_struct {
188 	efi_memory_desc_t *runtime_map;
189 	int *runtime_entry_count;
190 	void *new_fdt_addr;
191 };
192 
193 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
194 				   struct efi_boot_memmap *map,
195 				   void *priv)
196 {
197 	struct exit_boot_struct *p = priv;
198 	/*
199 	 * Update the memory map with virtual addresses. The function will also
200 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
201 	 * entries so that we can pass it straight to SetVirtualAddressMap()
202 	 */
203 	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
204 			p->runtime_map, p->runtime_entry_count);
205 
206 	return update_fdt_memmap(p->new_fdt_addr, map);
207 }
208 
209 /*
210  * Allocate memory for a new FDT, then add EFI, commandline, and
211  * initrd related fields to the FDT.  This routine increases the
212  * FDT allocation size until the allocated memory is large
213  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
214  * which are fixed at 4K bytes, so in most cases the first
215  * allocation should succeed.
216  * EFI boot services are exited at the end of this function.
217  * There must be no allocations between the get_memory_map()
218  * call and the exit_boot_services() call, so the exiting of
219  * boot services is very tightly tied to the creation of the FDT
220  * with the final memory map in it.
221  */
222 
223 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
224 					    void *handle,
225 					    unsigned long *new_fdt_addr,
226 					    unsigned long max_addr,
227 					    u64 initrd_addr, u64 initrd_size,
228 					    char *cmdline_ptr,
229 					    unsigned long fdt_addr,
230 					    unsigned long fdt_size)
231 {
232 	unsigned long map_size, desc_size, buff_size;
233 	u32 desc_ver;
234 	unsigned long mmap_key;
235 	efi_memory_desc_t *memory_map, *runtime_map;
236 	unsigned long new_fdt_size;
237 	efi_status_t status;
238 	int runtime_entry_count = 0;
239 	struct efi_boot_memmap map;
240 	struct exit_boot_struct priv;
241 
242 	map.map =	&runtime_map;
243 	map.map_size =	&map_size;
244 	map.desc_size =	&desc_size;
245 	map.desc_ver =	&desc_ver;
246 	map.key_ptr =	&mmap_key;
247 	map.buff_size =	&buff_size;
248 
249 	/*
250 	 * Get a copy of the current memory map that we will use to prepare
251 	 * the input for SetVirtualAddressMap(). We don't have to worry about
252 	 * subsequent allocations adding entries, since they could not affect
253 	 * the number of EFI_MEMORY_RUNTIME regions.
254 	 */
255 	status = efi_get_memory_map(sys_table, &map);
256 	if (status != EFI_SUCCESS) {
257 		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
258 		return status;
259 	}
260 
261 	pr_efi(sys_table,
262 	       "Exiting boot services and installing virtual address map...\n");
263 
264 	map.map = &memory_map;
265 	/*
266 	 * Estimate size of new FDT, and allocate memory for it. We
267 	 * will allocate a bigger buffer if this ends up being too
268 	 * small, so a rough guess is OK here.
269 	 */
270 	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
271 	while (1) {
272 		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
273 					new_fdt_addr, max_addr);
274 		if (status != EFI_SUCCESS) {
275 			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
276 			goto fail;
277 		}
278 
279 		status = update_fdt(sys_table,
280 				    (void *)fdt_addr, fdt_size,
281 				    (void *)*new_fdt_addr, new_fdt_size,
282 				    cmdline_ptr, initrd_addr, initrd_size);
283 
284 		/* Succeeding the first time is the expected case. */
285 		if (status == EFI_SUCCESS)
286 			break;
287 
288 		if (status == EFI_BUFFER_TOO_SMALL) {
289 			/*
290 			 * We need to allocate more space for the new
291 			 * device tree, so free existing buffer that is
292 			 * too small.
293 			 */
294 			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
295 			new_fdt_size += EFI_PAGE_SIZE;
296 		} else {
297 			pr_efi_err(sys_table, "Unable to construct new device tree.\n");
298 			goto fail_free_new_fdt;
299 		}
300 	}
301 
302 	priv.runtime_map = runtime_map;
303 	priv.runtime_entry_count = &runtime_entry_count;
304 	priv.new_fdt_addr = (void *)*new_fdt_addr;
305 	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
306 					exit_boot_func);
307 
308 	if (status == EFI_SUCCESS) {
309 		efi_set_virtual_address_map_t *svam;
310 
311 		/* Install the new virtual address map */
312 		svam = sys_table->runtime->set_virtual_address_map;
313 		status = svam(runtime_entry_count * desc_size, desc_size,
314 			      desc_ver, runtime_map);
315 
316 		/*
317 		 * We are beyond the point of no return here, so if the call to
318 		 * SetVirtualAddressMap() failed, we need to signal that to the
319 		 * incoming kernel but proceed normally otherwise.
320 		 */
321 		if (status != EFI_SUCCESS) {
322 			int l;
323 
324 			/*
325 			 * Set the virtual address field of all
326 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
327 			 * the incoming kernel that no virtual translation has
328 			 * been installed.
329 			 */
330 			for (l = 0; l < map_size; l += desc_size) {
331 				efi_memory_desc_t *p = (void *)memory_map + l;
332 
333 				if (p->attribute & EFI_MEMORY_RUNTIME)
334 					p->virt_addr = 0;
335 			}
336 		}
337 		return EFI_SUCCESS;
338 	}
339 
340 	pr_efi_err(sys_table, "Exit boot services failed.\n");
341 
342 fail_free_new_fdt:
343 	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
344 
345 fail:
346 	sys_table->boottime->free_pool(runtime_map);
347 	return EFI_LOAD_ERROR;
348 }
349 
350 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
351 {
352 	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
353 	efi_config_table_t *tables;
354 	void *fdt;
355 	int i;
356 
357 	tables = (efi_config_table_t *) sys_table->tables;
358 	fdt = NULL;
359 
360 	for (i = 0; i < sys_table->nr_tables; i++)
361 		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
362 			fdt = (void *) tables[i].table;
363 			if (fdt_check_header(fdt) != 0) {
364 				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
365 				return NULL;
366 			}
367 			*fdt_size = fdt_totalsize(fdt);
368 			break;
369 	 }
370 
371 	return fdt;
372 }
373