1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services.
21  *
22  * For ARM/ARM64:
23  * This is in the low TTBR0 range so that we can use
24  * any allocation we choose, and eliminate the risk of a conflict after kexec.
25  * The value chosen is the largest non-zero power of 2 suitable for this purpose
26  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27  * be mapped efficiently.
28  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30  * entire footprint of the UEFI runtime services memory regions)
31  *
32  * For RISC-V:
33  * There is no specific reason for which, this address (512MB) can't be used
34  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
35  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
36  * as well to minimize the code churn.
37  */
38 #define EFI_RT_VIRTUAL_BASE	SZ_512M
39 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
40 
41 #ifdef CONFIG_ARM64
42 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
43 #elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH)
44 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_MIN
45 #else /* Only if TASK_SIZE is a constant */
46 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
47 #endif
48 
49 /*
50  * Some architectures map the EFI regions into the kernel's linear map using a
51  * fixed offset.
52  */
53 #ifndef EFI_RT_VIRTUAL_OFFSET
54 #define EFI_RT_VIRTUAL_OFFSET	0
55 #endif
56 
57 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
58 static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
59 
60 const efi_system_table_t *efi_system_table;
61 
62 static struct screen_info *setup_graphics(void)
63 {
64 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
65 	efi_status_t status;
66 	unsigned long size;
67 	void **gop_handle = NULL;
68 	struct screen_info *si = NULL;
69 
70 	size = 0;
71 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
72 			     &gop_proto, NULL, &size, gop_handle);
73 	if (status == EFI_BUFFER_TOO_SMALL) {
74 		si = alloc_screen_info();
75 		if (!si)
76 			return NULL;
77 		status = efi_setup_gop(si, &gop_proto, size);
78 		if (status != EFI_SUCCESS) {
79 			free_screen_info(si);
80 			return NULL;
81 		}
82 	}
83 	return si;
84 }
85 
86 static void install_memreserve_table(void)
87 {
88 	struct linux_efi_memreserve *rsv;
89 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
90 	efi_status_t status;
91 
92 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
93 			     (void **)&rsv);
94 	if (status != EFI_SUCCESS) {
95 		efi_err("Failed to allocate memreserve entry!\n");
96 		return;
97 	}
98 
99 	rsv->next = 0;
100 	rsv->size = 0;
101 	atomic_set(&rsv->count, 0);
102 
103 	status = efi_bs_call(install_configuration_table,
104 			     &memreserve_table_guid, rsv);
105 	if (status != EFI_SUCCESS)
106 		efi_err("Failed to install memreserve config table!\n");
107 }
108 
109 static u32 get_supported_rt_services(void)
110 {
111 	const efi_rt_properties_table_t *rt_prop_table;
112 	u32 supported = EFI_RT_SUPPORTED_ALL;
113 
114 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
115 	if (rt_prop_table)
116 		supported &= rt_prop_table->runtime_services_supported;
117 
118 	return supported;
119 }
120 
121 /*
122  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
123  * that is described in the PE/COFF header.  Most of the code is the same
124  * for both archictectures, with the arch-specific code provided in the
125  * handle_kernel_image() function.
126  */
127 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
128 				   efi_system_table_t *sys_table_arg)
129 {
130 	efi_loaded_image_t *image;
131 	efi_status_t status;
132 	unsigned long image_addr;
133 	unsigned long image_size = 0;
134 	/* addr/point and size pairs for memory management*/
135 	unsigned long fdt_addr = 0;  /* Original DTB */
136 	unsigned long fdt_size = 0;
137 	char *cmdline_ptr = NULL;
138 	int cmdline_size = 0;
139 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
140 	unsigned long reserve_addr = 0;
141 	unsigned long reserve_size = 0;
142 	enum efi_secureboot_mode secure_boot;
143 	struct screen_info *si;
144 	efi_properties_table_t *prop_tbl;
145 
146 	efi_system_table = sys_table_arg;
147 
148 	/* Check if we were booted by the EFI firmware */
149 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
150 		status = EFI_INVALID_PARAMETER;
151 		goto fail;
152 	}
153 
154 	status = check_platform_features();
155 	if (status != EFI_SUCCESS)
156 		goto fail;
157 
158 	/*
159 	 * Get a handle to the loaded image protocol.  This is used to get
160 	 * information about the running image, such as size and the command
161 	 * line.
162 	 */
163 	status = efi_system_table->boottime->handle_protocol(handle,
164 					&loaded_image_proto, (void *)&image);
165 	if (status != EFI_SUCCESS) {
166 		efi_err("Failed to get loaded image protocol\n");
167 		goto fail;
168 	}
169 
170 	/*
171 	 * Get the command line from EFI, using the LOADED_IMAGE
172 	 * protocol. We are going to copy the command line into the
173 	 * device tree, so this can be allocated anywhere.
174 	 */
175 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
176 	if (!cmdline_ptr) {
177 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
178 		status = EFI_OUT_OF_RESOURCES;
179 		goto fail;
180 	}
181 
182 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
183 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
184 	    cmdline_size == 0) {
185 		status = efi_parse_options(CONFIG_CMDLINE);
186 		if (status != EFI_SUCCESS) {
187 			efi_err("Failed to parse options\n");
188 			goto fail_free_cmdline;
189 		}
190 	}
191 
192 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
193 		status = efi_parse_options(cmdline_ptr);
194 		if (status != EFI_SUCCESS) {
195 			efi_err("Failed to parse options\n");
196 			goto fail_free_cmdline;
197 		}
198 	}
199 
200 	efi_info("Booting Linux Kernel...\n");
201 
202 	si = setup_graphics();
203 
204 	status = handle_kernel_image(&image_addr, &image_size,
205 				     &reserve_addr,
206 				     &reserve_size,
207 				     image, handle);
208 	if (status != EFI_SUCCESS) {
209 		efi_err("Failed to relocate kernel\n");
210 		goto fail_free_screeninfo;
211 	}
212 
213 	efi_retrieve_tpm2_eventlog();
214 
215 	/* Ask the firmware to clear memory on unclean shutdown */
216 	efi_enable_reset_attack_mitigation();
217 
218 	secure_boot = efi_get_secureboot();
219 
220 	/*
221 	 * Unauthenticated device tree data is a security hazard, so ignore
222 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
223 	 * boot is enabled if we can't determine its state.
224 	 */
225 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
226 	     secure_boot != efi_secureboot_mode_disabled) {
227 		if (strstr(cmdline_ptr, "dtb="))
228 			efi_err("Ignoring DTB from command line.\n");
229 	} else {
230 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
231 
232 		if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
233 			efi_err("Failed to load device tree!\n");
234 			goto fail_free_image;
235 		}
236 	}
237 
238 	if (fdt_addr) {
239 		efi_info("Using DTB from command line\n");
240 	} else {
241 		/* Look for a device tree configuration table entry. */
242 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
243 		if (fdt_addr)
244 			efi_info("Using DTB from configuration table\n");
245 	}
246 
247 	if (!fdt_addr)
248 		efi_info("Generating empty DTB\n");
249 
250 	efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
251 			NULL);
252 
253 	efi_random_get_seed();
254 
255 	/*
256 	 * If the NX PE data feature is enabled in the properties table, we
257 	 * should take care not to create a virtual mapping that changes the
258 	 * relative placement of runtime services code and data regions, as
259 	 * they may belong to the same PE/COFF executable image in memory.
260 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
261 	 */
262 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
263 	flat_va_mapping |= prop_tbl &&
264 			   (prop_tbl->memory_protection_attribute &
265 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
266 
267 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
268 	efi_novamap |= !(get_supported_rt_services() &
269 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
270 
271 	/* hibernation expects the runtime regions to stay in the same place */
272 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
273 		/*
274 		 * Randomize the base of the UEFI runtime services region.
275 		 * Preserve the 2 MB alignment of the region by taking a
276 		 * shift of 21 bit positions into account when scaling
277 		 * the headroom value using a 32-bit random value.
278 		 */
279 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
280 					    EFI_RT_VIRTUAL_BASE -
281 					    EFI_RT_VIRTUAL_SIZE;
282 		u32 rnd;
283 
284 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
285 		if (status == EFI_SUCCESS) {
286 			virtmap_base = EFI_RT_VIRTUAL_BASE +
287 				       (((headroom >> 21) * rnd) >> (32 - 21));
288 		}
289 	}
290 
291 	install_memreserve_table();
292 
293 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr, cmdline_ptr,
294 						fdt_addr, fdt_size);
295 	if (status != EFI_SUCCESS)
296 		goto fail_free_fdt;
297 
298 	if (IS_ENABLED(CONFIG_ARM))
299 		efi_handle_post_ebs_state();
300 
301 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
302 	/* not reached */
303 
304 fail_free_fdt:
305 	efi_err("Failed to update FDT and exit boot services\n");
306 
307 	efi_free(fdt_size, fdt_addr);
308 
309 fail_free_image:
310 	efi_free(image_size, image_addr);
311 	efi_free(reserve_size, reserve_addr);
312 fail_free_screeninfo:
313 	free_screen_info(si);
314 fail_free_cmdline:
315 	efi_bs_call(free_pool, cmdline_ptr);
316 fail:
317 	return status;
318 }
319 
320 /*
321  * efi_allocate_virtmap() - create a pool allocation for the virtmap
322  *
323  * Create an allocation that is of sufficient size to hold all the memory
324  * descriptors that will be passed to SetVirtualAddressMap() to inform the
325  * firmware about the virtual mapping that will be used under the OS to call
326  * into the firmware.
327  */
328 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
329 			       unsigned long *desc_size, u32 *desc_ver)
330 {
331 	unsigned long size, mmap_key;
332 	efi_status_t status;
333 
334 	/*
335 	 * Use the size of the current memory map as an upper bound for the
336 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
337 	 * cover all EFI_MEMORY_RUNTIME regions.
338 	 */
339 	size = 0;
340 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
341 			     desc_ver);
342 	if (status != EFI_BUFFER_TOO_SMALL)
343 		return EFI_LOAD_ERROR;
344 
345 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
346 			   (void **)virtmap);
347 }
348 
349 /*
350  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
351  *
352  * This function populates the virt_addr fields of all memory region descriptors
353  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
354  * are also copied to @runtime_map, and their total count is returned in @count.
355  */
356 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
357 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
358 		     int *count)
359 {
360 	u64 efi_virt_base = virtmap_base;
361 	efi_memory_desc_t *in, *out = runtime_map;
362 	int l;
363 
364 	*count = 0;
365 
366 	for (l = 0; l < map_size; l += desc_size) {
367 		u64 paddr, size;
368 
369 		in = (void *)memory_map + l;
370 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
371 			continue;
372 
373 		paddr = in->phys_addr;
374 		size = in->num_pages * EFI_PAGE_SIZE;
375 
376 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
377 		if (efi_novamap) {
378 			continue;
379 		}
380 
381 		/*
382 		 * Make the mapping compatible with 64k pages: this allows
383 		 * a 4k page size kernel to kexec a 64k page size kernel and
384 		 * vice versa.
385 		 */
386 		if (!flat_va_mapping) {
387 
388 			paddr = round_down(in->phys_addr, SZ_64K);
389 			size += in->phys_addr - paddr;
390 
391 			/*
392 			 * Avoid wasting memory on PTEs by choosing a virtual
393 			 * base that is compatible with section mappings if this
394 			 * region has the appropriate size and physical
395 			 * alignment. (Sections are 2 MB on 4k granule kernels)
396 			 */
397 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
398 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
399 			else
400 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
401 
402 			in->virt_addr += efi_virt_base - paddr;
403 			efi_virt_base += size;
404 		}
405 
406 		memcpy(out, in, desc_size);
407 		out = (void *)out + desc_size;
408 		++*count;
409 	}
410 }
411