1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services.
21  *
22  * For ARM/ARM64:
23  * This is in the low TTBR0 range so that we can use
24  * any allocation we choose, and eliminate the risk of a conflict after kexec.
25  * The value chosen is the largest non-zero power of 2 suitable for this purpose
26  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27  * be mapped efficiently.
28  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30  * entire footprint of the UEFI runtime services memory regions)
31  *
32  * For RISC-V:
33  * There is no specific reason for which, this address (512MB) can't be used
34  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
35  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
36  * as well to minimize the code churn.
37  */
38 #define EFI_RT_VIRTUAL_BASE	SZ_512M
39 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
40 
41 #ifdef CONFIG_ARM64
42 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
43 #elif defined(CONFIG_RISCV)
44 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_MIN
45 #else
46 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
47 #endif
48 
49 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
50 static bool flat_va_mapping;
51 
52 const efi_system_table_t *efi_system_table;
53 
54 static struct screen_info *setup_graphics(void)
55 {
56 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
57 	efi_status_t status;
58 	unsigned long size;
59 	void **gop_handle = NULL;
60 	struct screen_info *si = NULL;
61 
62 	size = 0;
63 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
64 			     &gop_proto, NULL, &size, gop_handle);
65 	if (status == EFI_BUFFER_TOO_SMALL) {
66 		si = alloc_screen_info();
67 		if (!si)
68 			return NULL;
69 		status = efi_setup_gop(si, &gop_proto, size);
70 		if (status != EFI_SUCCESS) {
71 			free_screen_info(si);
72 			return NULL;
73 		}
74 	}
75 	return si;
76 }
77 
78 static void install_memreserve_table(void)
79 {
80 	struct linux_efi_memreserve *rsv;
81 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
82 	efi_status_t status;
83 
84 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
85 			     (void **)&rsv);
86 	if (status != EFI_SUCCESS) {
87 		efi_err("Failed to allocate memreserve entry!\n");
88 		return;
89 	}
90 
91 	rsv->next = 0;
92 	rsv->size = 0;
93 	atomic_set(&rsv->count, 0);
94 
95 	status = efi_bs_call(install_configuration_table,
96 			     &memreserve_table_guid, rsv);
97 	if (status != EFI_SUCCESS)
98 		efi_err("Failed to install memreserve config table!\n");
99 }
100 
101 static u32 get_supported_rt_services(void)
102 {
103 	const efi_rt_properties_table_t *rt_prop_table;
104 	u32 supported = EFI_RT_SUPPORTED_ALL;
105 
106 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
107 	if (rt_prop_table)
108 		supported &= rt_prop_table->runtime_services_supported;
109 
110 	return supported;
111 }
112 
113 /*
114  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
115  * that is described in the PE/COFF header.  Most of the code is the same
116  * for both archictectures, with the arch-specific code provided in the
117  * handle_kernel_image() function.
118  */
119 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
120 				   efi_system_table_t *sys_table_arg)
121 {
122 	efi_loaded_image_t *image;
123 	efi_status_t status;
124 	unsigned long image_addr;
125 	unsigned long image_size = 0;
126 	/* addr/point and size pairs for memory management*/
127 	unsigned long initrd_addr = 0;
128 	unsigned long initrd_size = 0;
129 	unsigned long fdt_addr = 0;  /* Original DTB */
130 	unsigned long fdt_size = 0;
131 	char *cmdline_ptr = NULL;
132 	int cmdline_size = 0;
133 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
134 	unsigned long reserve_addr = 0;
135 	unsigned long reserve_size = 0;
136 	enum efi_secureboot_mode secure_boot;
137 	struct screen_info *si;
138 	efi_properties_table_t *prop_tbl;
139 	unsigned long max_addr;
140 
141 	efi_system_table = sys_table_arg;
142 
143 	/* Check if we were booted by the EFI firmware */
144 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
145 		status = EFI_INVALID_PARAMETER;
146 		goto fail;
147 	}
148 
149 	status = check_platform_features();
150 	if (status != EFI_SUCCESS)
151 		goto fail;
152 
153 	/*
154 	 * Get a handle to the loaded image protocol.  This is used to get
155 	 * information about the running image, such as size and the command
156 	 * line.
157 	 */
158 	status = efi_system_table->boottime->handle_protocol(handle,
159 					&loaded_image_proto, (void *)&image);
160 	if (status != EFI_SUCCESS) {
161 		efi_err("Failed to get loaded image protocol\n");
162 		goto fail;
163 	}
164 
165 	/*
166 	 * Get the command line from EFI, using the LOADED_IMAGE
167 	 * protocol. We are going to copy the command line into the
168 	 * device tree, so this can be allocated anywhere.
169 	 */
170 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
171 	if (!cmdline_ptr) {
172 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
173 		status = EFI_OUT_OF_RESOURCES;
174 		goto fail;
175 	}
176 
177 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
178 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
179 	    cmdline_size == 0) {
180 		status = efi_parse_options(CONFIG_CMDLINE);
181 		if (status != EFI_SUCCESS) {
182 			efi_err("Failed to parse options\n");
183 			goto fail_free_cmdline;
184 		}
185 	}
186 
187 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
188 		status = efi_parse_options(cmdline_ptr);
189 		if (status != EFI_SUCCESS) {
190 			efi_err("Failed to parse options\n");
191 			goto fail_free_cmdline;
192 		}
193 	}
194 
195 	efi_info("Booting Linux Kernel...\n");
196 
197 	si = setup_graphics();
198 
199 	status = handle_kernel_image(&image_addr, &image_size,
200 				     &reserve_addr,
201 				     &reserve_size,
202 				     image);
203 	if (status != EFI_SUCCESS) {
204 		efi_err("Failed to relocate kernel\n");
205 		goto fail_free_screeninfo;
206 	}
207 
208 	efi_retrieve_tpm2_eventlog();
209 
210 	/* Ask the firmware to clear memory on unclean shutdown */
211 	efi_enable_reset_attack_mitigation();
212 
213 	secure_boot = efi_get_secureboot();
214 
215 	/*
216 	 * Unauthenticated device tree data is a security hazard, so ignore
217 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
218 	 * boot is enabled if we can't determine its state.
219 	 */
220 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
221 	     secure_boot != efi_secureboot_mode_disabled) {
222 		if (strstr(cmdline_ptr, "dtb="))
223 			efi_err("Ignoring DTB from command line.\n");
224 	} else {
225 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
226 
227 		if (status != EFI_SUCCESS) {
228 			efi_err("Failed to load device tree!\n");
229 			goto fail_free_image;
230 		}
231 	}
232 
233 	if (fdt_addr) {
234 		efi_info("Using DTB from command line\n");
235 	} else {
236 		/* Look for a device tree configuration table entry. */
237 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
238 		if (fdt_addr)
239 			efi_info("Using DTB from configuration table\n");
240 	}
241 
242 	if (!fdt_addr)
243 		efi_info("Generating empty DTB\n");
244 
245 	if (!efi_noinitrd) {
246 		max_addr = efi_get_max_initrd_addr(image_addr);
247 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
248 					 ULONG_MAX, max_addr);
249 		if (status != EFI_SUCCESS)
250 			efi_err("Failed to load initrd!\n");
251 	}
252 
253 	efi_random_get_seed();
254 
255 	/*
256 	 * If the NX PE data feature is enabled in the properties table, we
257 	 * should take care not to create a virtual mapping that changes the
258 	 * relative placement of runtime services code and data regions, as
259 	 * they may belong to the same PE/COFF executable image in memory.
260 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
261 	 */
262 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
263 	flat_va_mapping = prop_tbl &&
264 			  (prop_tbl->memory_protection_attribute &
265 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
266 
267 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
268 	efi_novamap |= !(get_supported_rt_services() &
269 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
270 
271 	/* hibernation expects the runtime regions to stay in the same place */
272 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
273 		/*
274 		 * Randomize the base of the UEFI runtime services region.
275 		 * Preserve the 2 MB alignment of the region by taking a
276 		 * shift of 21 bit positions into account when scaling
277 		 * the headroom value using a 32-bit random value.
278 		 */
279 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
280 					    EFI_RT_VIRTUAL_BASE -
281 					    EFI_RT_VIRTUAL_SIZE;
282 		u32 rnd;
283 
284 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
285 		if (status == EFI_SUCCESS) {
286 			virtmap_base = EFI_RT_VIRTUAL_BASE +
287 				       (((headroom >> 21) * rnd) >> (32 - 21));
288 		}
289 	}
290 
291 	install_memreserve_table();
292 
293 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
294 						initrd_addr, initrd_size,
295 						cmdline_ptr, fdt_addr, fdt_size);
296 	if (status != EFI_SUCCESS)
297 		goto fail_free_initrd;
298 
299 	if (IS_ENABLED(CONFIG_ARM))
300 		efi_handle_post_ebs_state();
301 
302 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
303 	/* not reached */
304 
305 fail_free_initrd:
306 	efi_err("Failed to update FDT and exit boot services\n");
307 
308 	efi_free(initrd_size, initrd_addr);
309 	efi_free(fdt_size, fdt_addr);
310 
311 fail_free_image:
312 	efi_free(image_size, image_addr);
313 	efi_free(reserve_size, reserve_addr);
314 fail_free_screeninfo:
315 	free_screen_info(si);
316 fail_free_cmdline:
317 	efi_bs_call(free_pool, cmdline_ptr);
318 fail:
319 	return status;
320 }
321 
322 /*
323  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
324  *
325  * This function populates the virt_addr fields of all memory region descriptors
326  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
327  * are also copied to @runtime_map, and their total count is returned in @count.
328  */
329 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
330 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
331 		     int *count)
332 {
333 	u64 efi_virt_base = virtmap_base;
334 	efi_memory_desc_t *in, *out = runtime_map;
335 	int l;
336 
337 	for (l = 0; l < map_size; l += desc_size) {
338 		u64 paddr, size;
339 
340 		in = (void *)memory_map + l;
341 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
342 			continue;
343 
344 		paddr = in->phys_addr;
345 		size = in->num_pages * EFI_PAGE_SIZE;
346 
347 		in->virt_addr = in->phys_addr;
348 		if (efi_novamap) {
349 			continue;
350 		}
351 
352 		/*
353 		 * Make the mapping compatible with 64k pages: this allows
354 		 * a 4k page size kernel to kexec a 64k page size kernel and
355 		 * vice versa.
356 		 */
357 		if (!flat_va_mapping) {
358 
359 			paddr = round_down(in->phys_addr, SZ_64K);
360 			size += in->phys_addr - paddr;
361 
362 			/*
363 			 * Avoid wasting memory on PTEs by choosing a virtual
364 			 * base that is compatible with section mappings if this
365 			 * region has the appropriate size and physical
366 			 * alignment. (Sections are 2 MB on 4k granule kernels)
367 			 */
368 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
369 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
370 			else
371 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
372 
373 			in->virt_addr += efi_virt_base - paddr;
374 			efi_virt_base += size;
375 		}
376 
377 		memcpy(out, in, desc_size);
378 		out = (void *)out + desc_size;
379 		++*count;
380 	}
381 }
382