1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE	SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
31 
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
36 #endif
37 
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40 
41 const efi_system_table_t *efi_system_table;
42 
43 static struct screen_info *setup_graphics(void)
44 {
45 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 	efi_status_t status;
47 	unsigned long size;
48 	void **gop_handle = NULL;
49 	struct screen_info *si = NULL;
50 
51 	size = 0;
52 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 			     &gop_proto, NULL, &size, gop_handle);
54 	if (status == EFI_BUFFER_TOO_SMALL) {
55 		si = alloc_screen_info();
56 		if (!si)
57 			return NULL;
58 		status = efi_setup_gop(si, &gop_proto, size);
59 		if (status != EFI_SUCCESS) {
60 			free_screen_info(si);
61 			return NULL;
62 		}
63 	}
64 	return si;
65 }
66 
67 static void install_memreserve_table(void)
68 {
69 	struct linux_efi_memreserve *rsv;
70 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
71 	efi_status_t status;
72 
73 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
74 			     (void **)&rsv);
75 	if (status != EFI_SUCCESS) {
76 		efi_err("Failed to allocate memreserve entry!\n");
77 		return;
78 	}
79 
80 	rsv->next = 0;
81 	rsv->size = 0;
82 	atomic_set(&rsv->count, 0);
83 
84 	status = efi_bs_call(install_configuration_table,
85 			     &memreserve_table_guid, rsv);
86 	if (status != EFI_SUCCESS)
87 		efi_err("Failed to install memreserve config table!\n");
88 }
89 
90 /*
91  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
92  * that is described in the PE/COFF header.  Most of the code is the same
93  * for both archictectures, with the arch-specific code provided in the
94  * handle_kernel_image() function.
95  */
96 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
97 				   efi_system_table_t *sys_table_arg)
98 {
99 	efi_loaded_image_t *image;
100 	efi_status_t status;
101 	unsigned long image_addr;
102 	unsigned long image_size = 0;
103 	/* addr/point and size pairs for memory management*/
104 	unsigned long initrd_addr = 0;
105 	unsigned long initrd_size = 0;
106 	unsigned long fdt_addr = 0;  /* Original DTB */
107 	unsigned long fdt_size = 0;
108 	char *cmdline_ptr = NULL;
109 	int cmdline_size = 0;
110 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
111 	unsigned long reserve_addr = 0;
112 	unsigned long reserve_size = 0;
113 	enum efi_secureboot_mode secure_boot;
114 	struct screen_info *si;
115 	efi_properties_table_t *prop_tbl;
116 	unsigned long max_addr;
117 
118 	efi_system_table = sys_table_arg;
119 
120 	/* Check if we were booted by the EFI firmware */
121 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
122 		status = EFI_INVALID_PARAMETER;
123 		goto fail;
124 	}
125 
126 	status = check_platform_features();
127 	if (status != EFI_SUCCESS)
128 		goto fail;
129 
130 	/*
131 	 * Get a handle to the loaded image protocol.  This is used to get
132 	 * information about the running image, such as size and the command
133 	 * line.
134 	 */
135 	status = efi_system_table->boottime->handle_protocol(handle,
136 					&loaded_image_proto, (void *)&image);
137 	if (status != EFI_SUCCESS) {
138 		efi_err("Failed to get loaded image protocol\n");
139 		goto fail;
140 	}
141 
142 	/*
143 	 * Get the command line from EFI, using the LOADED_IMAGE
144 	 * protocol. We are going to copy the command line into the
145 	 * device tree, so this can be allocated anywhere.
146 	 */
147 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
148 	if (!cmdline_ptr) {
149 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
150 		status = EFI_OUT_OF_RESOURCES;
151 		goto fail;
152 	}
153 
154 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
155 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
156 	    cmdline_size == 0) {
157 		status = efi_parse_options(CONFIG_CMDLINE);
158 		if (status != EFI_SUCCESS) {
159 			efi_err("Failed to parse options\n");
160 			goto fail_free_cmdline;
161 		}
162 	}
163 
164 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
165 		status = efi_parse_options(cmdline_ptr);
166 		if (status != EFI_SUCCESS) {
167 			efi_err("Failed to parse options\n");
168 			goto fail_free_cmdline;
169 		}
170 	}
171 
172 	efi_info("Booting Linux Kernel...\n");
173 
174 	si = setup_graphics();
175 
176 	status = handle_kernel_image(&image_addr, &image_size,
177 				     &reserve_addr,
178 				     &reserve_size,
179 				     image);
180 	if (status != EFI_SUCCESS) {
181 		efi_err("Failed to relocate kernel\n");
182 		goto fail_free_screeninfo;
183 	}
184 
185 	efi_retrieve_tpm2_eventlog();
186 
187 	/* Ask the firmware to clear memory on unclean shutdown */
188 	efi_enable_reset_attack_mitigation();
189 
190 	secure_boot = efi_get_secureboot();
191 
192 	/*
193 	 * Unauthenticated device tree data is a security hazard, so ignore
194 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
195 	 * boot is enabled if we can't determine its state.
196 	 */
197 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
198 	     secure_boot != efi_secureboot_mode_disabled) {
199 		if (strstr(cmdline_ptr, "dtb="))
200 			efi_err("Ignoring DTB from command line.\n");
201 	} else {
202 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
203 
204 		if (status != EFI_SUCCESS) {
205 			efi_err("Failed to load device tree!\n");
206 			goto fail_free_image;
207 		}
208 	}
209 
210 	if (fdt_addr) {
211 		efi_info("Using DTB from command line\n");
212 	} else {
213 		/* Look for a device tree configuration table entry. */
214 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
215 		if (fdt_addr)
216 			efi_info("Using DTB from configuration table\n");
217 	}
218 
219 	if (!fdt_addr)
220 		efi_info("Generating empty DTB\n");
221 
222 	if (!efi_noinitrd) {
223 		max_addr = efi_get_max_initrd_addr(image_addr);
224 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
225 					 ULONG_MAX, max_addr);
226 		if (status != EFI_SUCCESS)
227 			efi_err("Failed to load initrd!\n");
228 	}
229 
230 	efi_random_get_seed();
231 
232 	/*
233 	 * If the NX PE data feature is enabled in the properties table, we
234 	 * should take care not to create a virtual mapping that changes the
235 	 * relative placement of runtime services code and data regions, as
236 	 * they may belong to the same PE/COFF executable image in memory.
237 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
238 	 */
239 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
240 	flat_va_mapping = prop_tbl &&
241 			  (prop_tbl->memory_protection_attribute &
242 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
243 
244 	/* hibernation expects the runtime regions to stay in the same place */
245 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
246 		/*
247 		 * Randomize the base of the UEFI runtime services region.
248 		 * Preserve the 2 MB alignment of the region by taking a
249 		 * shift of 21 bit positions into account when scaling
250 		 * the headroom value using a 32-bit random value.
251 		 */
252 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
253 					    EFI_RT_VIRTUAL_BASE -
254 					    EFI_RT_VIRTUAL_SIZE;
255 		u32 rnd;
256 
257 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
258 		if (status == EFI_SUCCESS) {
259 			virtmap_base = EFI_RT_VIRTUAL_BASE +
260 				       (((headroom >> 21) * rnd) >> (32 - 21));
261 		}
262 	}
263 
264 	install_memreserve_table();
265 
266 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
267 						efi_get_max_fdt_addr(image_addr),
268 						initrd_addr, initrd_size,
269 						cmdline_ptr, fdt_addr, fdt_size);
270 	if (status != EFI_SUCCESS)
271 		goto fail_free_initrd;
272 
273 	if (IS_ENABLED(CONFIG_ARM))
274 		efi_handle_post_ebs_state();
275 
276 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
277 	/* not reached */
278 
279 fail_free_initrd:
280 	efi_err("Failed to update FDT and exit boot services\n");
281 
282 	efi_free(initrd_size, initrd_addr);
283 	efi_free(fdt_size, fdt_addr);
284 
285 fail_free_image:
286 	efi_free(image_size, image_addr);
287 	efi_free(reserve_size, reserve_addr);
288 fail_free_screeninfo:
289 	free_screen_info(si);
290 fail_free_cmdline:
291 	efi_bs_call(free_pool, cmdline_ptr);
292 fail:
293 	return status;
294 }
295 
296 /*
297  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
298  *
299  * This function populates the virt_addr fields of all memory region descriptors
300  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
301  * are also copied to @runtime_map, and their total count is returned in @count.
302  */
303 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
304 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
305 		     int *count)
306 {
307 	u64 efi_virt_base = virtmap_base;
308 	efi_memory_desc_t *in, *out = runtime_map;
309 	int l;
310 
311 	for (l = 0; l < map_size; l += desc_size) {
312 		u64 paddr, size;
313 
314 		in = (void *)memory_map + l;
315 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
316 			continue;
317 
318 		paddr = in->phys_addr;
319 		size = in->num_pages * EFI_PAGE_SIZE;
320 
321 		in->virt_addr = in->phys_addr;
322 		if (efi_novamap) {
323 			continue;
324 		}
325 
326 		/*
327 		 * Make the mapping compatible with 64k pages: this allows
328 		 * a 4k page size kernel to kexec a 64k page size kernel and
329 		 * vice versa.
330 		 */
331 		if (!flat_va_mapping) {
332 
333 			paddr = round_down(in->phys_addr, SZ_64K);
334 			size += in->phys_addr - paddr;
335 
336 			/*
337 			 * Avoid wasting memory on PTEs by choosing a virtual
338 			 * base that is compatible with section mappings if this
339 			 * region has the appropriate size and physical
340 			 * alignment. (Sections are 2 MB on 4k granule kernels)
341 			 */
342 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
343 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
344 			else
345 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
346 
347 			in->virt_addr += efi_virt_base - paddr;
348 			efi_virt_base += size;
349 		}
350 
351 		memcpy(out, in, desc_size);
352 		out = (void *)out + desc_size;
353 		++*count;
354 	}
355 }
356