1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE	SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
31 
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
36 #endif
37 
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40 
41 const efi_system_table_t *efi_system_table;
42 
43 static struct screen_info *setup_graphics(void)
44 {
45 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 	efi_status_t status;
47 	unsigned long size;
48 	void **gop_handle = NULL;
49 	struct screen_info *si = NULL;
50 
51 	size = 0;
52 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 			     &gop_proto, NULL, &size, gop_handle);
54 	if (status == EFI_BUFFER_TOO_SMALL) {
55 		si = alloc_screen_info();
56 		if (!si)
57 			return NULL;
58 		efi_setup_gop(si, &gop_proto, size);
59 	}
60 	return si;
61 }
62 
63 static void install_memreserve_table(void)
64 {
65 	struct linux_efi_memreserve *rsv;
66 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
67 	efi_status_t status;
68 
69 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
70 			     (void **)&rsv);
71 	if (status != EFI_SUCCESS) {
72 		efi_err("Failed to allocate memreserve entry!\n");
73 		return;
74 	}
75 
76 	rsv->next = 0;
77 	rsv->size = 0;
78 	atomic_set(&rsv->count, 0);
79 
80 	status = efi_bs_call(install_configuration_table,
81 			     &memreserve_table_guid, rsv);
82 	if (status != EFI_SUCCESS)
83 		efi_err("Failed to install memreserve config table!\n");
84 }
85 
86 static unsigned long get_dram_base(void)
87 {
88 	efi_status_t status;
89 	unsigned long map_size, buff_size;
90 	unsigned long membase  = EFI_ERROR;
91 	struct efi_memory_map map;
92 	efi_memory_desc_t *md;
93 	struct efi_boot_memmap boot_map;
94 
95 	boot_map.map		= (efi_memory_desc_t **)&map.map;
96 	boot_map.map_size	= &map_size;
97 	boot_map.desc_size	= &map.desc_size;
98 	boot_map.desc_ver	= NULL;
99 	boot_map.key_ptr	= NULL;
100 	boot_map.buff_size	= &buff_size;
101 
102 	status = efi_get_memory_map(&boot_map);
103 	if (status != EFI_SUCCESS)
104 		return membase;
105 
106 	map.map_end = map.map + map_size;
107 
108 	for_each_efi_memory_desc_in_map(&map, md) {
109 		if (md->attribute & EFI_MEMORY_WB) {
110 			if (membase > md->phys_addr)
111 				membase = md->phys_addr;
112 		}
113 	}
114 
115 	efi_bs_call(free_pool, map.map);
116 
117 	return membase;
118 }
119 
120 /*
121  * This function handles the architcture specific differences between arm and
122  * arm64 regarding where the kernel image must be loaded and any memory that
123  * must be reserved. On failure it is required to free all
124  * all allocations it has made.
125  */
126 efi_status_t handle_kernel_image(unsigned long *image_addr,
127 				 unsigned long *image_size,
128 				 unsigned long *reserve_addr,
129 				 unsigned long *reserve_size,
130 				 unsigned long dram_base,
131 				 efi_loaded_image_t *image);
132 
133 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
134 					    unsigned long fdt_addr,
135 					    unsigned long fdt_size);
136 
137 /*
138  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
139  * that is described in the PE/COFF header.  Most of the code is the same
140  * for both archictectures, with the arch-specific code provided in the
141  * handle_kernel_image() function.
142  */
143 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
144 				   efi_system_table_t *sys_table_arg)
145 {
146 	efi_loaded_image_t *image;
147 	efi_status_t status;
148 	unsigned long image_addr;
149 	unsigned long image_size = 0;
150 	unsigned long dram_base;
151 	/* addr/point and size pairs for memory management*/
152 	unsigned long initrd_addr = 0;
153 	unsigned long initrd_size = 0;
154 	unsigned long fdt_addr = 0;  /* Original DTB */
155 	unsigned long fdt_size = 0;
156 	char *cmdline_ptr = NULL;
157 	int cmdline_size = 0;
158 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
159 	unsigned long reserve_addr = 0;
160 	unsigned long reserve_size = 0;
161 	enum efi_secureboot_mode secure_boot;
162 	struct screen_info *si;
163 	efi_properties_table_t *prop_tbl;
164 	unsigned long max_addr;
165 
166 	efi_system_table = sys_table_arg;
167 
168 	/* Check if we were booted by the EFI firmware */
169 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
170 		status = EFI_INVALID_PARAMETER;
171 		goto fail;
172 	}
173 
174 	status = check_platform_features();
175 	if (status != EFI_SUCCESS)
176 		goto fail;
177 
178 	/*
179 	 * Get a handle to the loaded image protocol.  This is used to get
180 	 * information about the running image, such as size and the command
181 	 * line.
182 	 */
183 	status = efi_system_table->boottime->handle_protocol(handle,
184 					&loaded_image_proto, (void *)&image);
185 	if (status != EFI_SUCCESS) {
186 		efi_err("Failed to get loaded image protocol\n");
187 		goto fail;
188 	}
189 
190 	dram_base = get_dram_base();
191 	if (dram_base == EFI_ERROR) {
192 		efi_err("Failed to find DRAM base\n");
193 		status = EFI_LOAD_ERROR;
194 		goto fail;
195 	}
196 
197 	/*
198 	 * Get the command line from EFI, using the LOADED_IMAGE
199 	 * protocol. We are going to copy the command line into the
200 	 * device tree, so this can be allocated anywhere.
201 	 */
202 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
203 	if (!cmdline_ptr) {
204 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
205 		status = EFI_OUT_OF_RESOURCES;
206 		goto fail;
207 	}
208 
209 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
210 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
211 	    cmdline_size == 0) {
212 		status = efi_parse_options(CONFIG_CMDLINE);
213 		if (status != EFI_SUCCESS) {
214 			efi_err("Failed to parse options\n");
215 			goto fail_free_cmdline;
216 		}
217 	}
218 
219 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
220 		status = efi_parse_options(cmdline_ptr);
221 		if (status != EFI_SUCCESS) {
222 			efi_err("Failed to parse options\n");
223 			goto fail_free_cmdline;
224 		}
225 	}
226 
227 	efi_info("Booting Linux Kernel...\n");
228 
229 	si = setup_graphics();
230 
231 	status = handle_kernel_image(&image_addr, &image_size,
232 				     &reserve_addr,
233 				     &reserve_size,
234 				     dram_base, image);
235 	if (status != EFI_SUCCESS) {
236 		efi_err("Failed to relocate kernel\n");
237 		goto fail_free_screeninfo;
238 	}
239 
240 	efi_retrieve_tpm2_eventlog();
241 
242 	/* Ask the firmware to clear memory on unclean shutdown */
243 	efi_enable_reset_attack_mitigation();
244 
245 	secure_boot = efi_get_secureboot();
246 
247 	/*
248 	 * Unauthenticated device tree data is a security hazard, so ignore
249 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
250 	 * boot is enabled if we can't determine its state.
251 	 */
252 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
253 	     secure_boot != efi_secureboot_mode_disabled) {
254 		if (strstr(cmdline_ptr, "dtb="))
255 			efi_err("Ignoring DTB from command line.\n");
256 	} else {
257 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
258 
259 		if (status != EFI_SUCCESS) {
260 			efi_err("Failed to load device tree!\n");
261 			goto fail_free_image;
262 		}
263 	}
264 
265 	if (fdt_addr) {
266 		efi_info("Using DTB from command line\n");
267 	} else {
268 		/* Look for a device tree configuration table entry. */
269 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
270 		if (fdt_addr)
271 			efi_info("Using DTB from configuration table\n");
272 	}
273 
274 	if (!fdt_addr)
275 		efi_info("Generating empty DTB\n");
276 
277 	if (!efi_noinitrd) {
278 		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
279 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
280 					 ULONG_MAX, max_addr);
281 		if (status != EFI_SUCCESS)
282 			efi_err("Failed to load initrd!\n");
283 	}
284 
285 	efi_random_get_seed();
286 
287 	/*
288 	 * If the NX PE data feature is enabled in the properties table, we
289 	 * should take care not to create a virtual mapping that changes the
290 	 * relative placement of runtime services code and data regions, as
291 	 * they may belong to the same PE/COFF executable image in memory.
292 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
293 	 */
294 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
295 	flat_va_mapping = prop_tbl &&
296 			  (prop_tbl->memory_protection_attribute &
297 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
298 
299 	/* hibernation expects the runtime regions to stay in the same place */
300 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
301 		/*
302 		 * Randomize the base of the UEFI runtime services region.
303 		 * Preserve the 2 MB alignment of the region by taking a
304 		 * shift of 21 bit positions into account when scaling
305 		 * the headroom value using a 32-bit random value.
306 		 */
307 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
308 					    EFI_RT_VIRTUAL_BASE -
309 					    EFI_RT_VIRTUAL_SIZE;
310 		u32 rnd;
311 
312 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
313 		if (status == EFI_SUCCESS) {
314 			virtmap_base = EFI_RT_VIRTUAL_BASE +
315 				       (((headroom >> 21) * rnd) >> (32 - 21));
316 		}
317 	}
318 
319 	install_memreserve_table();
320 
321 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
322 						efi_get_max_fdt_addr(dram_base),
323 						initrd_addr, initrd_size,
324 						cmdline_ptr, fdt_addr, fdt_size);
325 	if (status != EFI_SUCCESS)
326 		goto fail_free_initrd;
327 
328 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
329 	/* not reached */
330 
331 fail_free_initrd:
332 	efi_err("Failed to update FDT and exit boot services\n");
333 
334 	efi_free(initrd_size, initrd_addr);
335 	efi_free(fdt_size, fdt_addr);
336 
337 fail_free_image:
338 	efi_free(image_size, image_addr);
339 	efi_free(reserve_size, reserve_addr);
340 fail_free_screeninfo:
341 	free_screen_info(si);
342 fail_free_cmdline:
343 	efi_bs_call(free_pool, cmdline_ptr);
344 fail:
345 	return status;
346 }
347 
348 /*
349  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
350  *
351  * This function populates the virt_addr fields of all memory region descriptors
352  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
353  * are also copied to @runtime_map, and their total count is returned in @count.
354  */
355 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
356 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
357 		     int *count)
358 {
359 	u64 efi_virt_base = virtmap_base;
360 	efi_memory_desc_t *in, *out = runtime_map;
361 	int l;
362 
363 	for (l = 0; l < map_size; l += desc_size) {
364 		u64 paddr, size;
365 
366 		in = (void *)memory_map + l;
367 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
368 			continue;
369 
370 		paddr = in->phys_addr;
371 		size = in->num_pages * EFI_PAGE_SIZE;
372 
373 		in->virt_addr = in->phys_addr;
374 		if (efi_novamap) {
375 			continue;
376 		}
377 
378 		/*
379 		 * Make the mapping compatible with 64k pages: this allows
380 		 * a 4k page size kernel to kexec a 64k page size kernel and
381 		 * vice versa.
382 		 */
383 		if (!flat_va_mapping) {
384 
385 			paddr = round_down(in->phys_addr, SZ_64K);
386 			size += in->phys_addr - paddr;
387 
388 			/*
389 			 * Avoid wasting memory on PTEs by choosing a virtual
390 			 * base that is compatible with section mappings if this
391 			 * region has the appropriate size and physical
392 			 * alignment. (Sections are 2 MB on 4k granule kernels)
393 			 */
394 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
395 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
396 			else
397 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
398 
399 			in->virt_addr += efi_virt_base - paddr;
400 			efi_virt_base += size;
401 		}
402 
403 		memcpy(out, in, desc_size);
404 		out = (void *)out + desc_size;
405 		++*count;
406 	}
407 }
408