1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <asm/efi.h>
14 
15 #include "efistub.h"
16 
17 /*
18  * This is the base address at which to start allocating virtual memory ranges
19  * for UEFI Runtime Services.
20  *
21  * For ARM/ARM64:
22  * This is in the low TTBR0 range so that we can use
23  * any allocation we choose, and eliminate the risk of a conflict after kexec.
24  * The value chosen is the largest non-zero power of 2 suitable for this purpose
25  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
26  * be mapped efficiently.
27  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
28  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
29  * entire footprint of the UEFI runtime services memory regions)
30  *
31  * For RISC-V:
32  * There is no specific reason for which, this address (512MB) can't be used
33  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
34  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
35  * as well to minimize the code churn.
36  */
37 #define EFI_RT_VIRTUAL_BASE	SZ_512M
38 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
39 
40 #ifdef CONFIG_ARM64
41 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
42 #elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH)
43 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_MIN
44 #else /* Only if TASK_SIZE is a constant */
45 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
46 #endif
47 
48 /*
49  * Some architectures map the EFI regions into the kernel's linear map using a
50  * fixed offset.
51  */
52 #ifndef EFI_RT_VIRTUAL_OFFSET
53 #define EFI_RT_VIRTUAL_OFFSET	0
54 #endif
55 
56 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
57 static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
58 
59 const efi_system_table_t *efi_system_table;
60 
61 static struct screen_info *setup_graphics(void)
62 {
63 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
64 	efi_status_t status;
65 	unsigned long size;
66 	void **gop_handle = NULL;
67 	struct screen_info *si = NULL;
68 
69 	size = 0;
70 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
71 			     &gop_proto, NULL, &size, gop_handle);
72 	if (status == EFI_BUFFER_TOO_SMALL) {
73 		si = alloc_screen_info();
74 		if (!si)
75 			return NULL;
76 		status = efi_setup_gop(si, &gop_proto, size);
77 		if (status != EFI_SUCCESS) {
78 			free_screen_info(si);
79 			return NULL;
80 		}
81 	}
82 	return si;
83 }
84 
85 static void install_memreserve_table(void)
86 {
87 	struct linux_efi_memreserve *rsv;
88 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
89 	efi_status_t status;
90 
91 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
92 			     (void **)&rsv);
93 	if (status != EFI_SUCCESS) {
94 		efi_err("Failed to allocate memreserve entry!\n");
95 		return;
96 	}
97 
98 	rsv->next = 0;
99 	rsv->size = 0;
100 	atomic_set(&rsv->count, 0);
101 
102 	status = efi_bs_call(install_configuration_table,
103 			     &memreserve_table_guid, rsv);
104 	if (status != EFI_SUCCESS)
105 		efi_err("Failed to install memreserve config table!\n");
106 }
107 
108 static u32 get_supported_rt_services(void)
109 {
110 	const efi_rt_properties_table_t *rt_prop_table;
111 	u32 supported = EFI_RT_SUPPORTED_ALL;
112 
113 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
114 	if (rt_prop_table)
115 		supported &= rt_prop_table->runtime_services_supported;
116 
117 	return supported;
118 }
119 
120 /*
121  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
122  * that is described in the PE/COFF header.  Most of the code is the same
123  * for both archictectures, with the arch-specific code provided in the
124  * handle_kernel_image() function.
125  */
126 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
127 				   efi_system_table_t *sys_table_arg)
128 {
129 	efi_loaded_image_t *image;
130 	efi_status_t status;
131 	unsigned long image_addr;
132 	unsigned long image_size = 0;
133 	/* addr/point and size pairs for memory management*/
134 	char *cmdline_ptr = NULL;
135 	int cmdline_size = 0;
136 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
137 	unsigned long reserve_addr = 0;
138 	unsigned long reserve_size = 0;
139 	struct screen_info *si;
140 	efi_properties_table_t *prop_tbl;
141 
142 	efi_system_table = sys_table_arg;
143 
144 	/* Check if we were booted by the EFI firmware */
145 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
146 		status = EFI_INVALID_PARAMETER;
147 		goto fail;
148 	}
149 
150 	status = check_platform_features();
151 	if (status != EFI_SUCCESS)
152 		goto fail;
153 
154 	/*
155 	 * Get a handle to the loaded image protocol.  This is used to get
156 	 * information about the running image, such as size and the command
157 	 * line.
158 	 */
159 	status = efi_system_table->boottime->handle_protocol(handle,
160 					&loaded_image_proto, (void *)&image);
161 	if (status != EFI_SUCCESS) {
162 		efi_err("Failed to get loaded image protocol\n");
163 		goto fail;
164 	}
165 
166 	/*
167 	 * Get the command line from EFI, using the LOADED_IMAGE
168 	 * protocol. We are going to copy the command line into the
169 	 * device tree, so this can be allocated anywhere.
170 	 */
171 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
172 	if (!cmdline_ptr) {
173 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
174 		status = EFI_OUT_OF_RESOURCES;
175 		goto fail;
176 	}
177 
178 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
179 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
180 	    cmdline_size == 0) {
181 		status = efi_parse_options(CONFIG_CMDLINE);
182 		if (status != EFI_SUCCESS) {
183 			efi_err("Failed to parse options\n");
184 			goto fail_free_cmdline;
185 		}
186 	}
187 
188 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
189 		status = efi_parse_options(cmdline_ptr);
190 		if (status != EFI_SUCCESS) {
191 			efi_err("Failed to parse options\n");
192 			goto fail_free_cmdline;
193 		}
194 	}
195 
196 	efi_info("Booting Linux Kernel...\n");
197 
198 	si = setup_graphics();
199 
200 	status = handle_kernel_image(&image_addr, &image_size,
201 				     &reserve_addr,
202 				     &reserve_size,
203 				     image, handle);
204 	if (status != EFI_SUCCESS) {
205 		efi_err("Failed to relocate kernel\n");
206 		goto fail_free_screeninfo;
207 	}
208 
209 	efi_retrieve_tpm2_eventlog();
210 
211 	/* Ask the firmware to clear memory on unclean shutdown */
212 	efi_enable_reset_attack_mitigation();
213 
214 	efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
215 			NULL);
216 
217 	efi_random_get_seed();
218 
219 	/*
220 	 * If the NX PE data feature is enabled in the properties table, we
221 	 * should take care not to create a virtual mapping that changes the
222 	 * relative placement of runtime services code and data regions, as
223 	 * they may belong to the same PE/COFF executable image in memory.
224 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
225 	 */
226 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
227 	flat_va_mapping |= prop_tbl &&
228 			   (prop_tbl->memory_protection_attribute &
229 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
230 
231 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
232 	efi_novamap |= !(get_supported_rt_services() &
233 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
234 
235 	/* hibernation expects the runtime regions to stay in the same place */
236 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
237 		/*
238 		 * Randomize the base of the UEFI runtime services region.
239 		 * Preserve the 2 MB alignment of the region by taking a
240 		 * shift of 21 bit positions into account when scaling
241 		 * the headroom value using a 32-bit random value.
242 		 */
243 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
244 					    EFI_RT_VIRTUAL_BASE -
245 					    EFI_RT_VIRTUAL_SIZE;
246 		u32 rnd;
247 
248 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
249 		if (status == EFI_SUCCESS) {
250 			virtmap_base = EFI_RT_VIRTUAL_BASE +
251 				       (((headroom >> 21) * rnd) >> (32 - 21));
252 		}
253 	}
254 
255 	install_memreserve_table();
256 
257 	status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
258 
259 	efi_free(image_size, image_addr);
260 	efi_free(reserve_size, reserve_addr);
261 fail_free_screeninfo:
262 	free_screen_info(si);
263 fail_free_cmdline:
264 	efi_bs_call(free_pool, cmdline_ptr);
265 fail:
266 	return status;
267 }
268 
269 /*
270  * efi_allocate_virtmap() - create a pool allocation for the virtmap
271  *
272  * Create an allocation that is of sufficient size to hold all the memory
273  * descriptors that will be passed to SetVirtualAddressMap() to inform the
274  * firmware about the virtual mapping that will be used under the OS to call
275  * into the firmware.
276  */
277 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
278 			       unsigned long *desc_size, u32 *desc_ver)
279 {
280 	unsigned long size, mmap_key;
281 	efi_status_t status;
282 
283 	/*
284 	 * Use the size of the current memory map as an upper bound for the
285 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
286 	 * cover all EFI_MEMORY_RUNTIME regions.
287 	 */
288 	size = 0;
289 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
290 			     desc_ver);
291 	if (status != EFI_BUFFER_TOO_SMALL)
292 		return EFI_LOAD_ERROR;
293 
294 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
295 			   (void **)virtmap);
296 }
297 
298 /*
299  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
300  *
301  * This function populates the virt_addr fields of all memory region descriptors
302  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
303  * are also copied to @runtime_map, and their total count is returned in @count.
304  */
305 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
306 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
307 		     int *count)
308 {
309 	u64 efi_virt_base = virtmap_base;
310 	efi_memory_desc_t *in, *out = runtime_map;
311 	int l;
312 
313 	*count = 0;
314 
315 	for (l = 0; l < map_size; l += desc_size) {
316 		u64 paddr, size;
317 
318 		in = (void *)memory_map + l;
319 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
320 			continue;
321 
322 		paddr = in->phys_addr;
323 		size = in->num_pages * EFI_PAGE_SIZE;
324 
325 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
326 		if (efi_novamap) {
327 			continue;
328 		}
329 
330 		/*
331 		 * Make the mapping compatible with 64k pages: this allows
332 		 * a 4k page size kernel to kexec a 64k page size kernel and
333 		 * vice versa.
334 		 */
335 		if (!flat_va_mapping) {
336 
337 			paddr = round_down(in->phys_addr, SZ_64K);
338 			size += in->phys_addr - paddr;
339 
340 			/*
341 			 * Avoid wasting memory on PTEs by choosing a virtual
342 			 * base that is compatible with section mappings if this
343 			 * region has the appropriate size and physical
344 			 * alignment. (Sections are 2 MB on 4k granule kernels)
345 			 */
346 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
347 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
348 			else
349 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
350 
351 			in->virt_addr += efi_virt_base - paddr;
352 			efi_virt_base += size;
353 		}
354 
355 		memcpy(out, in, desc_size);
356 		out = (void *)out + desc_size;
357 		++*count;
358 	}
359 }
360