1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <asm/efi.h>
14 
15 #include "efistub.h"
16 
17 /*
18  * This is the base address at which to start allocating virtual memory ranges
19  * for UEFI Runtime Services.
20  *
21  * For ARM/ARM64:
22  * This is in the low TTBR0 range so that we can use
23  * any allocation we choose, and eliminate the risk of a conflict after kexec.
24  * The value chosen is the largest non-zero power of 2 suitable for this purpose
25  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
26  * be mapped efficiently.
27  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
28  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
29  * entire footprint of the UEFI runtime services memory regions)
30  *
31  * For RISC-V:
32  * There is no specific reason for which, this address (512MB) can't be used
33  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
34  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
35  * as well to minimize the code churn.
36  */
37 #define EFI_RT_VIRTUAL_BASE	SZ_512M
38 
39 /*
40  * Some architectures map the EFI regions into the kernel's linear map using a
41  * fixed offset.
42  */
43 #ifndef EFI_RT_VIRTUAL_OFFSET
44 #define EFI_RT_VIRTUAL_OFFSET	0
45 #endif
46 
47 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
48 static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
49 
50 static struct screen_info *setup_graphics(void)
51 {
52 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
53 	efi_status_t status;
54 	unsigned long size;
55 	void **gop_handle = NULL;
56 	struct screen_info *si = NULL;
57 
58 	size = 0;
59 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
60 			     &gop_proto, NULL, &size, gop_handle);
61 	if (status == EFI_BUFFER_TOO_SMALL) {
62 		si = alloc_screen_info();
63 		if (!si)
64 			return NULL;
65 		status = efi_setup_gop(si, &gop_proto, size);
66 		if (status != EFI_SUCCESS) {
67 			free_screen_info(si);
68 			return NULL;
69 		}
70 	}
71 	return si;
72 }
73 
74 static void install_memreserve_table(void)
75 {
76 	struct linux_efi_memreserve *rsv;
77 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
78 	efi_status_t status;
79 
80 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
81 			     (void **)&rsv);
82 	if (status != EFI_SUCCESS) {
83 		efi_err("Failed to allocate memreserve entry!\n");
84 		return;
85 	}
86 
87 	rsv->next = 0;
88 	rsv->size = 0;
89 	atomic_set(&rsv->count, 0);
90 
91 	status = efi_bs_call(install_configuration_table,
92 			     &memreserve_table_guid, rsv);
93 	if (status != EFI_SUCCESS)
94 		efi_err("Failed to install memreserve config table!\n");
95 }
96 
97 static u32 get_supported_rt_services(void)
98 {
99 	const efi_rt_properties_table_t *rt_prop_table;
100 	u32 supported = EFI_RT_SUPPORTED_ALL;
101 
102 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
103 	if (rt_prop_table)
104 		supported &= rt_prop_table->runtime_services_supported;
105 
106 	return supported;
107 }
108 
109 /*
110  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
111  * that is described in the PE/COFF header.  Most of the code is the same
112  * for both archictectures, with the arch-specific code provided in the
113  * handle_kernel_image() function.
114  */
115 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
116 				   efi_system_table_t *sys_table_arg)
117 {
118 	efi_loaded_image_t *image;
119 	efi_status_t status;
120 	unsigned long image_addr;
121 	unsigned long image_size = 0;
122 	/* addr/point and size pairs for memory management*/
123 	char *cmdline_ptr = NULL;
124 	int cmdline_size = 0;
125 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
126 	unsigned long reserve_addr = 0;
127 	unsigned long reserve_size = 0;
128 	struct screen_info *si;
129 
130 	efi_system_table = sys_table_arg;
131 
132 	/* Check if we were booted by the EFI firmware */
133 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
134 		status = EFI_INVALID_PARAMETER;
135 		goto fail;
136 	}
137 
138 	status = check_platform_features();
139 	if (status != EFI_SUCCESS)
140 		goto fail;
141 
142 	/*
143 	 * Get a handle to the loaded image protocol.  This is used to get
144 	 * information about the running image, such as size and the command
145 	 * line.
146 	 */
147 	status = efi_bs_call(handle_protocol, handle, &loaded_image_proto,
148 			     (void *)&image);
149 	if (status != EFI_SUCCESS) {
150 		efi_err("Failed to get loaded image protocol\n");
151 		goto fail;
152 	}
153 
154 	/*
155 	 * Get the command line from EFI, using the LOADED_IMAGE
156 	 * protocol. We are going to copy the command line into the
157 	 * device tree, so this can be allocated anywhere.
158 	 */
159 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
160 	if (!cmdline_ptr) {
161 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
162 		status = EFI_OUT_OF_RESOURCES;
163 		goto fail;
164 	}
165 
166 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
167 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
168 	    cmdline_size == 0) {
169 		status = efi_parse_options(CONFIG_CMDLINE);
170 		if (status != EFI_SUCCESS) {
171 			efi_err("Failed to parse options\n");
172 			goto fail_free_cmdline;
173 		}
174 	}
175 
176 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
177 		status = efi_parse_options(cmdline_ptr);
178 		if (status != EFI_SUCCESS) {
179 			efi_err("Failed to parse options\n");
180 			goto fail_free_cmdline;
181 		}
182 	}
183 
184 	efi_info("Booting Linux Kernel...\n");
185 
186 	si = setup_graphics();
187 
188 	status = handle_kernel_image(&image_addr, &image_size,
189 				     &reserve_addr,
190 				     &reserve_size,
191 				     image, handle);
192 	if (status != EFI_SUCCESS) {
193 		efi_err("Failed to relocate kernel\n");
194 		goto fail_free_screeninfo;
195 	}
196 
197 	efi_retrieve_tpm2_eventlog();
198 
199 	/* Ask the firmware to clear memory on unclean shutdown */
200 	efi_enable_reset_attack_mitigation();
201 
202 	efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
203 			NULL);
204 
205 	efi_random_get_seed();
206 
207 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
208 	efi_novamap |= !(get_supported_rt_services() &
209 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
210 
211 	install_memreserve_table();
212 
213 	status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
214 
215 	efi_free(image_size, image_addr);
216 	efi_free(reserve_size, reserve_addr);
217 fail_free_screeninfo:
218 	free_screen_info(si);
219 fail_free_cmdline:
220 	efi_bs_call(free_pool, cmdline_ptr);
221 fail:
222 	return status;
223 }
224 
225 /*
226  * efi_allocate_virtmap() - create a pool allocation for the virtmap
227  *
228  * Create an allocation that is of sufficient size to hold all the memory
229  * descriptors that will be passed to SetVirtualAddressMap() to inform the
230  * firmware about the virtual mapping that will be used under the OS to call
231  * into the firmware.
232  */
233 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
234 			       unsigned long *desc_size, u32 *desc_ver)
235 {
236 	unsigned long size, mmap_key;
237 	efi_status_t status;
238 
239 	/*
240 	 * Use the size of the current memory map as an upper bound for the
241 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
242 	 * cover all EFI_MEMORY_RUNTIME regions.
243 	 */
244 	size = 0;
245 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
246 			     desc_ver);
247 	if (status != EFI_BUFFER_TOO_SMALL)
248 		return EFI_LOAD_ERROR;
249 
250 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
251 			   (void **)virtmap);
252 }
253 
254 /*
255  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
256  *
257  * This function populates the virt_addr fields of all memory region descriptors
258  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
259  * are also copied to @runtime_map, and their total count is returned in @count.
260  */
261 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
262 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
263 		     int *count)
264 {
265 	u64 efi_virt_base = virtmap_base;
266 	efi_memory_desc_t *in, *out = runtime_map;
267 	int l;
268 
269 	*count = 0;
270 
271 	for (l = 0; l < map_size; l += desc_size) {
272 		u64 paddr, size;
273 
274 		in = (void *)memory_map + l;
275 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
276 			continue;
277 
278 		paddr = in->phys_addr;
279 		size = in->num_pages * EFI_PAGE_SIZE;
280 
281 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
282 		if (efi_novamap) {
283 			continue;
284 		}
285 
286 		/*
287 		 * Make the mapping compatible with 64k pages: this allows
288 		 * a 4k page size kernel to kexec a 64k page size kernel and
289 		 * vice versa.
290 		 */
291 		if (!flat_va_mapping) {
292 
293 			paddr = round_down(in->phys_addr, SZ_64K);
294 			size += in->phys_addr - paddr;
295 
296 			/*
297 			 * Avoid wasting memory on PTEs by choosing a virtual
298 			 * base that is compatible with section mappings if this
299 			 * region has the appropriate size and physical
300 			 * alignment. (Sections are 2 MB on 4k granule kernels)
301 			 */
302 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
303 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
304 			else
305 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
306 
307 			in->virt_addr += efi_virt_base - paddr;
308 			efi_virt_base += size;
309 		}
310 
311 		memcpy(out, in, desc_size);
312 		out = (void *)out + desc_size;
313 		++*count;
314 	}
315 }
316