1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE	SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
31 
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
36 #endif
37 
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40 
41 const efi_system_table_t *efi_system_table;
42 
43 static struct screen_info *setup_graphics(void)
44 {
45 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 	efi_status_t status;
47 	unsigned long size;
48 	void **gop_handle = NULL;
49 	struct screen_info *si = NULL;
50 
51 	size = 0;
52 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 			     &gop_proto, NULL, &size, gop_handle);
54 	if (status == EFI_BUFFER_TOO_SMALL) {
55 		si = alloc_screen_info();
56 		if (!si)
57 			return NULL;
58 		status = efi_setup_gop(si, &gop_proto, size);
59 		if (status != EFI_SUCCESS) {
60 			free_screen_info(si);
61 			return NULL;
62 		}
63 	}
64 	return si;
65 }
66 
67 static void install_memreserve_table(void)
68 {
69 	struct linux_efi_memreserve *rsv;
70 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
71 	efi_status_t status;
72 
73 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
74 			     (void **)&rsv);
75 	if (status != EFI_SUCCESS) {
76 		efi_err("Failed to allocate memreserve entry!\n");
77 		return;
78 	}
79 
80 	rsv->next = 0;
81 	rsv->size = 0;
82 	atomic_set(&rsv->count, 0);
83 
84 	status = efi_bs_call(install_configuration_table,
85 			     &memreserve_table_guid, rsv);
86 	if (status != EFI_SUCCESS)
87 		efi_err("Failed to install memreserve config table!\n");
88 }
89 
90 static unsigned long get_dram_base(void)
91 {
92 	efi_status_t status;
93 	unsigned long map_size, buff_size;
94 	unsigned long membase  = EFI_ERROR;
95 	struct efi_memory_map map;
96 	efi_memory_desc_t *md;
97 	struct efi_boot_memmap boot_map;
98 
99 	boot_map.map		= (efi_memory_desc_t **)&map.map;
100 	boot_map.map_size	= &map_size;
101 	boot_map.desc_size	= &map.desc_size;
102 	boot_map.desc_ver	= NULL;
103 	boot_map.key_ptr	= NULL;
104 	boot_map.buff_size	= &buff_size;
105 
106 	status = efi_get_memory_map(&boot_map);
107 	if (status != EFI_SUCCESS)
108 		return membase;
109 
110 	map.map_end = map.map + map_size;
111 
112 	for_each_efi_memory_desc_in_map(&map, md) {
113 		if (md->attribute & EFI_MEMORY_WB) {
114 			if (membase > md->phys_addr)
115 				membase = md->phys_addr;
116 		}
117 	}
118 
119 	efi_bs_call(free_pool, map.map);
120 
121 	return membase;
122 }
123 
124 /*
125  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
126  * that is described in the PE/COFF header.  Most of the code is the same
127  * for both archictectures, with the arch-specific code provided in the
128  * handle_kernel_image() function.
129  */
130 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
131 				   efi_system_table_t *sys_table_arg)
132 {
133 	efi_loaded_image_t *image;
134 	efi_status_t status;
135 	unsigned long image_addr;
136 	unsigned long image_size = 0;
137 	unsigned long dram_base;
138 	/* addr/point and size pairs for memory management*/
139 	unsigned long initrd_addr = 0;
140 	unsigned long initrd_size = 0;
141 	unsigned long fdt_addr = 0;  /* Original DTB */
142 	unsigned long fdt_size = 0;
143 	char *cmdline_ptr = NULL;
144 	int cmdline_size = 0;
145 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
146 	unsigned long reserve_addr = 0;
147 	unsigned long reserve_size = 0;
148 	enum efi_secureboot_mode secure_boot;
149 	struct screen_info *si;
150 	efi_properties_table_t *prop_tbl;
151 	unsigned long max_addr;
152 
153 	efi_system_table = sys_table_arg;
154 
155 	/* Check if we were booted by the EFI firmware */
156 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
157 		status = EFI_INVALID_PARAMETER;
158 		goto fail;
159 	}
160 
161 	status = check_platform_features();
162 	if (status != EFI_SUCCESS)
163 		goto fail;
164 
165 	/*
166 	 * Get a handle to the loaded image protocol.  This is used to get
167 	 * information about the running image, such as size and the command
168 	 * line.
169 	 */
170 	status = efi_system_table->boottime->handle_protocol(handle,
171 					&loaded_image_proto, (void *)&image);
172 	if (status != EFI_SUCCESS) {
173 		efi_err("Failed to get loaded image protocol\n");
174 		goto fail;
175 	}
176 
177 	dram_base = get_dram_base();
178 	if (dram_base == EFI_ERROR) {
179 		efi_err("Failed to find DRAM base\n");
180 		status = EFI_LOAD_ERROR;
181 		goto fail;
182 	}
183 
184 	/*
185 	 * Get the command line from EFI, using the LOADED_IMAGE
186 	 * protocol. We are going to copy the command line into the
187 	 * device tree, so this can be allocated anywhere.
188 	 */
189 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
190 	if (!cmdline_ptr) {
191 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
192 		status = EFI_OUT_OF_RESOURCES;
193 		goto fail;
194 	}
195 
196 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
197 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
198 	    cmdline_size == 0) {
199 		status = efi_parse_options(CONFIG_CMDLINE);
200 		if (status != EFI_SUCCESS) {
201 			efi_err("Failed to parse options\n");
202 			goto fail_free_cmdline;
203 		}
204 	}
205 
206 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
207 		status = efi_parse_options(cmdline_ptr);
208 		if (status != EFI_SUCCESS) {
209 			efi_err("Failed to parse options\n");
210 			goto fail_free_cmdline;
211 		}
212 	}
213 
214 	efi_info("Booting Linux Kernel...\n");
215 
216 	si = setup_graphics();
217 
218 	status = handle_kernel_image(&image_addr, &image_size,
219 				     &reserve_addr,
220 				     &reserve_size,
221 				     dram_base, image);
222 	if (status != EFI_SUCCESS) {
223 		efi_err("Failed to relocate kernel\n");
224 		goto fail_free_screeninfo;
225 	}
226 
227 	efi_retrieve_tpm2_eventlog();
228 
229 	/* Ask the firmware to clear memory on unclean shutdown */
230 	efi_enable_reset_attack_mitigation();
231 
232 	secure_boot = efi_get_secureboot();
233 
234 	/*
235 	 * Unauthenticated device tree data is a security hazard, so ignore
236 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
237 	 * boot is enabled if we can't determine its state.
238 	 */
239 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
240 	     secure_boot != efi_secureboot_mode_disabled) {
241 		if (strstr(cmdline_ptr, "dtb="))
242 			efi_err("Ignoring DTB from command line.\n");
243 	} else {
244 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
245 
246 		if (status != EFI_SUCCESS) {
247 			efi_err("Failed to load device tree!\n");
248 			goto fail_free_image;
249 		}
250 	}
251 
252 	if (fdt_addr) {
253 		efi_info("Using DTB from command line\n");
254 	} else {
255 		/* Look for a device tree configuration table entry. */
256 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
257 		if (fdt_addr)
258 			efi_info("Using DTB from configuration table\n");
259 	}
260 
261 	if (!fdt_addr)
262 		efi_info("Generating empty DTB\n");
263 
264 	if (!efi_noinitrd) {
265 		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
266 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
267 					 ULONG_MAX, max_addr);
268 		if (status != EFI_SUCCESS)
269 			efi_err("Failed to load initrd!\n");
270 	}
271 
272 	efi_random_get_seed();
273 
274 	/*
275 	 * If the NX PE data feature is enabled in the properties table, we
276 	 * should take care not to create a virtual mapping that changes the
277 	 * relative placement of runtime services code and data regions, as
278 	 * they may belong to the same PE/COFF executable image in memory.
279 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
280 	 */
281 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
282 	flat_va_mapping = prop_tbl &&
283 			  (prop_tbl->memory_protection_attribute &
284 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
285 
286 	/* hibernation expects the runtime regions to stay in the same place */
287 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
288 		/*
289 		 * Randomize the base of the UEFI runtime services region.
290 		 * Preserve the 2 MB alignment of the region by taking a
291 		 * shift of 21 bit positions into account when scaling
292 		 * the headroom value using a 32-bit random value.
293 		 */
294 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
295 					    EFI_RT_VIRTUAL_BASE -
296 					    EFI_RT_VIRTUAL_SIZE;
297 		u32 rnd;
298 
299 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
300 		if (status == EFI_SUCCESS) {
301 			virtmap_base = EFI_RT_VIRTUAL_BASE +
302 				       (((headroom >> 21) * rnd) >> (32 - 21));
303 		}
304 	}
305 
306 	install_memreserve_table();
307 
308 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
309 						efi_get_max_fdt_addr(dram_base),
310 						initrd_addr, initrd_size,
311 						cmdline_ptr, fdt_addr, fdt_size);
312 	if (status != EFI_SUCCESS)
313 		goto fail_free_initrd;
314 
315 	if (IS_ENABLED(CONFIG_ARM))
316 		efi_handle_post_ebs_state();
317 
318 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
319 	/* not reached */
320 
321 fail_free_initrd:
322 	efi_err("Failed to update FDT and exit boot services\n");
323 
324 	efi_free(initrd_size, initrd_addr);
325 	efi_free(fdt_size, fdt_addr);
326 
327 fail_free_image:
328 	efi_free(image_size, image_addr);
329 	efi_free(reserve_size, reserve_addr);
330 fail_free_screeninfo:
331 	free_screen_info(si);
332 fail_free_cmdline:
333 	efi_bs_call(free_pool, cmdline_ptr);
334 fail:
335 	return status;
336 }
337 
338 /*
339  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
340  *
341  * This function populates the virt_addr fields of all memory region descriptors
342  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
343  * are also copied to @runtime_map, and their total count is returned in @count.
344  */
345 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
346 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
347 		     int *count)
348 {
349 	u64 efi_virt_base = virtmap_base;
350 	efi_memory_desc_t *in, *out = runtime_map;
351 	int l;
352 
353 	for (l = 0; l < map_size; l += desc_size) {
354 		u64 paddr, size;
355 
356 		in = (void *)memory_map + l;
357 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
358 			continue;
359 
360 		paddr = in->phys_addr;
361 		size = in->num_pages * EFI_PAGE_SIZE;
362 
363 		in->virt_addr = in->phys_addr;
364 		if (efi_novamap) {
365 			continue;
366 		}
367 
368 		/*
369 		 * Make the mapping compatible with 64k pages: this allows
370 		 * a 4k page size kernel to kexec a 64k page size kernel and
371 		 * vice versa.
372 		 */
373 		if (!flat_va_mapping) {
374 
375 			paddr = round_down(in->phys_addr, SZ_64K);
376 			size += in->phys_addr - paddr;
377 
378 			/*
379 			 * Avoid wasting memory on PTEs by choosing a virtual
380 			 * base that is compatible with section mappings if this
381 			 * region has the appropriate size and physical
382 			 * alignment. (Sections are 2 MB on 4k granule kernels)
383 			 */
384 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
385 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
386 			else
387 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
388 
389 			in->virt_addr += efi_virt_base - paddr;
390 			efi_virt_base += size;
391 		}
392 
393 		memcpy(out, in, desc_size);
394 		out = (void *)out + desc_size;
395 		++*count;
396 	}
397 }
398