1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <asm/efi.h>
14 
15 #include "efistub.h"
16 
17 /*
18  * This is the base address at which to start allocating virtual memory ranges
19  * for UEFI Runtime Services.
20  *
21  * For ARM/ARM64:
22  * This is in the low TTBR0 range so that we can use
23  * any allocation we choose, and eliminate the risk of a conflict after kexec.
24  * The value chosen is the largest non-zero power of 2 suitable for this purpose
25  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
26  * be mapped efficiently.
27  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
28  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
29  * entire footprint of the UEFI runtime services memory regions)
30  *
31  * For RISC-V:
32  * There is no specific reason for which, this address (512MB) can't be used
33  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
34  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
35  * as well to minimize the code churn.
36  */
37 #define EFI_RT_VIRTUAL_BASE	SZ_512M
38 
39 /*
40  * Some architectures map the EFI regions into the kernel's linear map using a
41  * fixed offset.
42  */
43 #ifndef EFI_RT_VIRTUAL_OFFSET
44 #define EFI_RT_VIRTUAL_OFFSET	0
45 #endif
46 
47 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
48 static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
49 
50 static struct screen_info *setup_graphics(void)
51 {
52 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
53 	efi_status_t status;
54 	unsigned long size;
55 	void **gop_handle = NULL;
56 	struct screen_info *si = NULL;
57 
58 	size = 0;
59 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
60 			     &gop_proto, NULL, &size, gop_handle);
61 	if (status == EFI_BUFFER_TOO_SMALL) {
62 		si = alloc_screen_info();
63 		if (!si)
64 			return NULL;
65 		status = efi_setup_gop(si, &gop_proto, size);
66 		if (status != EFI_SUCCESS) {
67 			free_screen_info(si);
68 			return NULL;
69 		}
70 	}
71 	return si;
72 }
73 
74 static void install_memreserve_table(void)
75 {
76 	struct linux_efi_memreserve *rsv;
77 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
78 	efi_status_t status;
79 
80 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
81 			     (void **)&rsv);
82 	if (status != EFI_SUCCESS) {
83 		efi_err("Failed to allocate memreserve entry!\n");
84 		return;
85 	}
86 
87 	rsv->next = 0;
88 	rsv->size = 0;
89 	atomic_set(&rsv->count, 0);
90 
91 	status = efi_bs_call(install_configuration_table,
92 			     &memreserve_table_guid, rsv);
93 	if (status != EFI_SUCCESS)
94 		efi_err("Failed to install memreserve config table!\n");
95 }
96 
97 static u32 get_supported_rt_services(void)
98 {
99 	const efi_rt_properties_table_t *rt_prop_table;
100 	u32 supported = EFI_RT_SUPPORTED_ALL;
101 
102 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
103 	if (rt_prop_table)
104 		supported &= rt_prop_table->runtime_services_supported;
105 
106 	return supported;
107 }
108 
109 /*
110  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
111  * that is described in the PE/COFF header.  Most of the code is the same
112  * for both archictectures, with the arch-specific code provided in the
113  * handle_kernel_image() function.
114  */
115 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
116 				   efi_system_table_t *sys_table_arg)
117 {
118 	efi_loaded_image_t *image;
119 	efi_status_t status;
120 	unsigned long image_addr;
121 	unsigned long image_size = 0;
122 	/* addr/point and size pairs for memory management*/
123 	char *cmdline_ptr = NULL;
124 	int cmdline_size = 0;
125 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
126 	unsigned long reserve_addr = 0;
127 	unsigned long reserve_size = 0;
128 	struct screen_info *si;
129 	efi_properties_table_t *prop_tbl;
130 
131 	efi_system_table = sys_table_arg;
132 
133 	/* Check if we were booted by the EFI firmware */
134 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
135 		status = EFI_INVALID_PARAMETER;
136 		goto fail;
137 	}
138 
139 	status = check_platform_features();
140 	if (status != EFI_SUCCESS)
141 		goto fail;
142 
143 	/*
144 	 * Get a handle to the loaded image protocol.  This is used to get
145 	 * information about the running image, such as size and the command
146 	 * line.
147 	 */
148 	status = efi_bs_call(handle_protocol, handle, &loaded_image_proto,
149 			     (void *)&image);
150 	if (status != EFI_SUCCESS) {
151 		efi_err("Failed to get loaded image protocol\n");
152 		goto fail;
153 	}
154 
155 	/*
156 	 * Get the command line from EFI, using the LOADED_IMAGE
157 	 * protocol. We are going to copy the command line into the
158 	 * device tree, so this can be allocated anywhere.
159 	 */
160 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
161 	if (!cmdline_ptr) {
162 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
163 		status = EFI_OUT_OF_RESOURCES;
164 		goto fail;
165 	}
166 
167 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
168 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
169 	    cmdline_size == 0) {
170 		status = efi_parse_options(CONFIG_CMDLINE);
171 		if (status != EFI_SUCCESS) {
172 			efi_err("Failed to parse options\n");
173 			goto fail_free_cmdline;
174 		}
175 	}
176 
177 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
178 		status = efi_parse_options(cmdline_ptr);
179 		if (status != EFI_SUCCESS) {
180 			efi_err("Failed to parse options\n");
181 			goto fail_free_cmdline;
182 		}
183 	}
184 
185 	efi_info("Booting Linux Kernel...\n");
186 
187 	si = setup_graphics();
188 
189 	status = handle_kernel_image(&image_addr, &image_size,
190 				     &reserve_addr,
191 				     &reserve_size,
192 				     image, handle);
193 	if (status != EFI_SUCCESS) {
194 		efi_err("Failed to relocate kernel\n");
195 		goto fail_free_screeninfo;
196 	}
197 
198 	efi_retrieve_tpm2_eventlog();
199 
200 	/* Ask the firmware to clear memory on unclean shutdown */
201 	efi_enable_reset_attack_mitigation();
202 
203 	efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
204 			NULL);
205 
206 	efi_random_get_seed();
207 
208 	/*
209 	 * If the NX PE data feature is enabled in the properties table, we
210 	 * should take care not to create a virtual mapping that changes the
211 	 * relative placement of runtime services code and data regions, as
212 	 * they may belong to the same PE/COFF executable image in memory.
213 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
214 	 */
215 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
216 	flat_va_mapping |= prop_tbl &&
217 			   (prop_tbl->memory_protection_attribute &
218 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
219 
220 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
221 	efi_novamap |= !(get_supported_rt_services() &
222 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
223 
224 	install_memreserve_table();
225 
226 	status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
227 
228 	efi_free(image_size, image_addr);
229 	efi_free(reserve_size, reserve_addr);
230 fail_free_screeninfo:
231 	free_screen_info(si);
232 fail_free_cmdline:
233 	efi_bs_call(free_pool, cmdline_ptr);
234 fail:
235 	return status;
236 }
237 
238 /*
239  * efi_allocate_virtmap() - create a pool allocation for the virtmap
240  *
241  * Create an allocation that is of sufficient size to hold all the memory
242  * descriptors that will be passed to SetVirtualAddressMap() to inform the
243  * firmware about the virtual mapping that will be used under the OS to call
244  * into the firmware.
245  */
246 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
247 			       unsigned long *desc_size, u32 *desc_ver)
248 {
249 	unsigned long size, mmap_key;
250 	efi_status_t status;
251 
252 	/*
253 	 * Use the size of the current memory map as an upper bound for the
254 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
255 	 * cover all EFI_MEMORY_RUNTIME regions.
256 	 */
257 	size = 0;
258 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
259 			     desc_ver);
260 	if (status != EFI_BUFFER_TOO_SMALL)
261 		return EFI_LOAD_ERROR;
262 
263 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
264 			   (void **)virtmap);
265 }
266 
267 /*
268  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
269  *
270  * This function populates the virt_addr fields of all memory region descriptors
271  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
272  * are also copied to @runtime_map, and their total count is returned in @count.
273  */
274 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
275 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
276 		     int *count)
277 {
278 	u64 efi_virt_base = virtmap_base;
279 	efi_memory_desc_t *in, *out = runtime_map;
280 	int l;
281 
282 	*count = 0;
283 
284 	for (l = 0; l < map_size; l += desc_size) {
285 		u64 paddr, size;
286 
287 		in = (void *)memory_map + l;
288 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
289 			continue;
290 
291 		paddr = in->phys_addr;
292 		size = in->num_pages * EFI_PAGE_SIZE;
293 
294 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
295 		if (efi_novamap) {
296 			continue;
297 		}
298 
299 		/*
300 		 * Make the mapping compatible with 64k pages: this allows
301 		 * a 4k page size kernel to kexec a 64k page size kernel and
302 		 * vice versa.
303 		 */
304 		if (!flat_va_mapping) {
305 
306 			paddr = round_down(in->phys_addr, SZ_64K);
307 			size += in->phys_addr - paddr;
308 
309 			/*
310 			 * Avoid wasting memory on PTEs by choosing a virtual
311 			 * base that is compatible with section mappings if this
312 			 * region has the appropriate size and physical
313 			 * alignment. (Sections are 2 MB on 4k granule kernels)
314 			 */
315 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
316 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
317 			else
318 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
319 
320 			in->virt_addr += efi_virt_base - paddr;
321 			efi_virt_base += size;
322 		}
323 
324 		memcpy(out, in, desc_size);
325 		out = (void *)out + desc_size;
326 		++*count;
327 	}
328 }
329