1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE	SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
31 
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
36 #endif
37 
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40 
41 const efi_system_table_t *efi_system_table;
42 
43 static struct screen_info *setup_graphics(void)
44 {
45 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 	efi_status_t status;
47 	unsigned long size;
48 	void **gop_handle = NULL;
49 	struct screen_info *si = NULL;
50 
51 	size = 0;
52 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 			     &gop_proto, NULL, &size, gop_handle);
54 	if (status == EFI_BUFFER_TOO_SMALL) {
55 		si = alloc_screen_info();
56 		if (!si)
57 			return NULL;
58 		efi_setup_gop(si, &gop_proto, size);
59 	}
60 	return si;
61 }
62 
63 static void install_memreserve_table(void)
64 {
65 	struct linux_efi_memreserve *rsv;
66 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
67 	efi_status_t status;
68 
69 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
70 			     (void **)&rsv);
71 	if (status != EFI_SUCCESS) {
72 		efi_err("Failed to allocate memreserve entry!\n");
73 		return;
74 	}
75 
76 	rsv->next = 0;
77 	rsv->size = 0;
78 	atomic_set(&rsv->count, 0);
79 
80 	status = efi_bs_call(install_configuration_table,
81 			     &memreserve_table_guid, rsv);
82 	if (status != EFI_SUCCESS)
83 		efi_err("Failed to install memreserve config table!\n");
84 }
85 
86 static unsigned long get_dram_base(void)
87 {
88 	efi_status_t status;
89 	unsigned long map_size, buff_size;
90 	unsigned long membase  = EFI_ERROR;
91 	struct efi_memory_map map;
92 	efi_memory_desc_t *md;
93 	struct efi_boot_memmap boot_map;
94 
95 	boot_map.map		= (efi_memory_desc_t **)&map.map;
96 	boot_map.map_size	= &map_size;
97 	boot_map.desc_size	= &map.desc_size;
98 	boot_map.desc_ver	= NULL;
99 	boot_map.key_ptr	= NULL;
100 	boot_map.buff_size	= &buff_size;
101 
102 	status = efi_get_memory_map(&boot_map);
103 	if (status != EFI_SUCCESS)
104 		return membase;
105 
106 	map.map_end = map.map + map_size;
107 
108 	for_each_efi_memory_desc_in_map(&map, md) {
109 		if (md->attribute & EFI_MEMORY_WB) {
110 			if (membase > md->phys_addr)
111 				membase = md->phys_addr;
112 		}
113 	}
114 
115 	efi_bs_call(free_pool, map.map);
116 
117 	return membase;
118 }
119 
120 /*
121  * This function handles the architcture specific differences between arm and
122  * arm64 regarding where the kernel image must be loaded and any memory that
123  * must be reserved. On failure it is required to free all
124  * all allocations it has made.
125  */
126 efi_status_t handle_kernel_image(unsigned long *image_addr,
127 				 unsigned long *image_size,
128 				 unsigned long *reserve_addr,
129 				 unsigned long *reserve_size,
130 				 unsigned long dram_base,
131 				 efi_loaded_image_t *image);
132 
133 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
134 					    unsigned long fdt_addr,
135 					    unsigned long fdt_size);
136 
137 /*
138  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
139  * that is described in the PE/COFF header.  Most of the code is the same
140  * for both archictectures, with the arch-specific code provided in the
141  * handle_kernel_image() function.
142  */
143 efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
144 {
145 	efi_loaded_image_t *image;
146 	efi_status_t status;
147 	unsigned long image_addr;
148 	unsigned long image_size = 0;
149 	unsigned long dram_base;
150 	/* addr/point and size pairs for memory management*/
151 	unsigned long initrd_addr = 0;
152 	unsigned long initrd_size = 0;
153 	unsigned long fdt_addr = 0;  /* Original DTB */
154 	unsigned long fdt_size = 0;
155 	char *cmdline_ptr = NULL;
156 	int cmdline_size = 0;
157 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
158 	unsigned long reserve_addr = 0;
159 	unsigned long reserve_size = 0;
160 	enum efi_secureboot_mode secure_boot;
161 	struct screen_info *si;
162 	efi_properties_table_t *prop_tbl;
163 	unsigned long max_addr;
164 
165 	efi_system_table = sys_table_arg;
166 
167 	/* Check if we were booted by the EFI firmware */
168 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
169 		status = EFI_INVALID_PARAMETER;
170 		goto fail;
171 	}
172 
173 	status = check_platform_features();
174 	if (status != EFI_SUCCESS)
175 		goto fail;
176 
177 	/*
178 	 * Get a handle to the loaded image protocol.  This is used to get
179 	 * information about the running image, such as size and the command
180 	 * line.
181 	 */
182 	status = efi_system_table->boottime->handle_protocol(handle,
183 					&loaded_image_proto, (void *)&image);
184 	if (status != EFI_SUCCESS) {
185 		efi_err("Failed to get loaded image protocol\n");
186 		goto fail;
187 	}
188 
189 	dram_base = get_dram_base();
190 	if (dram_base == EFI_ERROR) {
191 		efi_err("Failed to find DRAM base\n");
192 		status = EFI_LOAD_ERROR;
193 		goto fail;
194 	}
195 
196 	/*
197 	 * Get the command line from EFI, using the LOADED_IMAGE
198 	 * protocol. We are going to copy the command line into the
199 	 * device tree, so this can be allocated anywhere.
200 	 */
201 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX);
202 	if (!cmdline_ptr) {
203 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
204 		status = EFI_OUT_OF_RESOURCES;
205 		goto fail;
206 	}
207 
208 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
209 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
210 	    cmdline_size == 0) {
211 		status = efi_parse_options(CONFIG_CMDLINE);
212 		if (status != EFI_SUCCESS) {
213 			efi_err("Failed to parse options\n");
214 			goto fail_free_cmdline;
215 		}
216 	}
217 
218 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
219 		status = efi_parse_options(cmdline_ptr);
220 		if (status != EFI_SUCCESS) {
221 			efi_err("Failed to parse options\n");
222 			goto fail_free_cmdline;
223 		}
224 	}
225 
226 	efi_info("Booting Linux Kernel...\n");
227 
228 	si = setup_graphics();
229 
230 	status = handle_kernel_image(&image_addr, &image_size,
231 				     &reserve_addr,
232 				     &reserve_size,
233 				     dram_base, image);
234 	if (status != EFI_SUCCESS) {
235 		efi_err("Failed to relocate kernel\n");
236 		goto fail_free_screeninfo;
237 	}
238 
239 	efi_retrieve_tpm2_eventlog();
240 
241 	/* Ask the firmware to clear memory on unclean shutdown */
242 	efi_enable_reset_attack_mitigation();
243 
244 	secure_boot = efi_get_secureboot();
245 
246 	/*
247 	 * Unauthenticated device tree data is a security hazard, so ignore
248 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
249 	 * boot is enabled if we can't determine its state.
250 	 */
251 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
252 	     secure_boot != efi_secureboot_mode_disabled) {
253 		if (strstr(cmdline_ptr, "dtb="))
254 			efi_err("Ignoring DTB from command line.\n");
255 	} else {
256 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
257 
258 		if (status != EFI_SUCCESS) {
259 			efi_err("Failed to load device tree!\n");
260 			goto fail_free_image;
261 		}
262 	}
263 
264 	if (fdt_addr) {
265 		efi_info("Using DTB from command line\n");
266 	} else {
267 		/* Look for a device tree configuration table entry. */
268 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
269 		if (fdt_addr)
270 			efi_info("Using DTB from configuration table\n");
271 	}
272 
273 	if (!fdt_addr)
274 		efi_info("Generating empty DTB\n");
275 
276 	if (!efi_noinitrd) {
277 		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
278 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
279 					 ULONG_MAX, max_addr);
280 		if (status != EFI_SUCCESS)
281 			efi_err("Failed to load initrd!\n");
282 	}
283 
284 	efi_random_get_seed();
285 
286 	/*
287 	 * If the NX PE data feature is enabled in the properties table, we
288 	 * should take care not to create a virtual mapping that changes the
289 	 * relative placement of runtime services code and data regions, as
290 	 * they may belong to the same PE/COFF executable image in memory.
291 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
292 	 */
293 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
294 	flat_va_mapping = prop_tbl &&
295 			  (prop_tbl->memory_protection_attribute &
296 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
297 
298 	/* hibernation expects the runtime regions to stay in the same place */
299 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
300 		/*
301 		 * Randomize the base of the UEFI runtime services region.
302 		 * Preserve the 2 MB alignment of the region by taking a
303 		 * shift of 21 bit positions into account when scaling
304 		 * the headroom value using a 32-bit random value.
305 		 */
306 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
307 					    EFI_RT_VIRTUAL_BASE -
308 					    EFI_RT_VIRTUAL_SIZE;
309 		u32 rnd;
310 
311 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
312 		if (status == EFI_SUCCESS) {
313 			virtmap_base = EFI_RT_VIRTUAL_BASE +
314 				       (((headroom >> 21) * rnd) >> (32 - 21));
315 		}
316 	}
317 
318 	install_memreserve_table();
319 
320 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
321 						efi_get_max_fdt_addr(dram_base),
322 						initrd_addr, initrd_size,
323 						cmdline_ptr, fdt_addr, fdt_size);
324 	if (status != EFI_SUCCESS)
325 		goto fail_free_initrd;
326 
327 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
328 	/* not reached */
329 
330 fail_free_initrd:
331 	efi_err("Failed to update FDT and exit boot services\n");
332 
333 	efi_free(initrd_size, initrd_addr);
334 	efi_free(fdt_size, fdt_addr);
335 
336 fail_free_image:
337 	efi_free(image_size, image_addr);
338 	efi_free(reserve_size, reserve_addr);
339 fail_free_screeninfo:
340 	free_screen_info(si);
341 fail_free_cmdline:
342 	efi_free(cmdline_size, (unsigned long)cmdline_ptr);
343 fail:
344 	return status;
345 }
346 
347 /*
348  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
349  *
350  * This function populates the virt_addr fields of all memory region descriptors
351  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
352  * are also copied to @runtime_map, and their total count is returned in @count.
353  */
354 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
355 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
356 		     int *count)
357 {
358 	u64 efi_virt_base = virtmap_base;
359 	efi_memory_desc_t *in, *out = runtime_map;
360 	int l;
361 
362 	for (l = 0; l < map_size; l += desc_size) {
363 		u64 paddr, size;
364 
365 		in = (void *)memory_map + l;
366 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
367 			continue;
368 
369 		paddr = in->phys_addr;
370 		size = in->num_pages * EFI_PAGE_SIZE;
371 
372 		in->virt_addr = in->phys_addr;
373 		if (efi_novamap) {
374 			continue;
375 		}
376 
377 		/*
378 		 * Make the mapping compatible with 64k pages: this allows
379 		 * a 4k page size kernel to kexec a 64k page size kernel and
380 		 * vice versa.
381 		 */
382 		if (!flat_va_mapping) {
383 
384 			paddr = round_down(in->phys_addr, SZ_64K);
385 			size += in->phys_addr - paddr;
386 
387 			/*
388 			 * Avoid wasting memory on PTEs by choosing a virtual
389 			 * base that is compatible with section mappings if this
390 			 * region has the appropriate size and physical
391 			 * alignment. (Sections are 2 MB on 4k granule kernels)
392 			 */
393 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
394 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
395 			else
396 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
397 
398 			in->virt_addr += efi_virt_base - paddr;
399 			efi_virt_base += size;
400 		}
401 
402 		memcpy(out, in, desc_size);
403 		out = (void *)out + desc_size;
404 		++*count;
405 	}
406 }
407