1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Helper functions used by the EFI stub on multiple 4 * architectures. This should be #included by the EFI stub 5 * implementation files. 6 * 7 * Copyright 2011 Intel Corporation; author Matt Fleming 8 */ 9 10 #include <linux/stdarg.h> 11 12 #include <linux/ctype.h> 13 #include <linux/efi.h> 14 #include <linux/kernel.h> 15 #include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */ 16 #include <asm/efi.h> 17 #include <asm/setup.h> 18 19 #include "efistub.h" 20 21 bool efi_nochunk; 22 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE); 23 int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 24 bool efi_novamap; 25 26 static bool efi_noinitrd; 27 static bool efi_nosoftreserve; 28 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); 29 30 bool __pure __efi_soft_reserve_enabled(void) 31 { 32 return !efi_nosoftreserve; 33 } 34 35 /** 36 * efi_char16_puts() - Write a UCS-2 encoded string to the console 37 * @str: UCS-2 encoded string 38 */ 39 void efi_char16_puts(efi_char16_t *str) 40 { 41 efi_call_proto(efi_table_attr(efi_system_table, con_out), 42 output_string, str); 43 } 44 45 static 46 u32 utf8_to_utf32(const u8 **s8) 47 { 48 u32 c32; 49 u8 c0, cx; 50 size_t clen, i; 51 52 c0 = cx = *(*s8)++; 53 /* 54 * The position of the most-significant 0 bit gives us the length of 55 * a multi-octet encoding. 56 */ 57 for (clen = 0; cx & 0x80; ++clen) 58 cx <<= 1; 59 /* 60 * If the 0 bit is in position 8, this is a valid single-octet 61 * encoding. If the 0 bit is in position 7 or positions 1-3, the 62 * encoding is invalid. 63 * In either case, we just return the first octet. 64 */ 65 if (clen < 2 || clen > 4) 66 return c0; 67 /* Get the bits from the first octet. */ 68 c32 = cx >> clen--; 69 for (i = 0; i < clen; ++i) { 70 /* Trailing octets must have 10 in most significant bits. */ 71 cx = (*s8)[i] ^ 0x80; 72 if (cx & 0xc0) 73 return c0; 74 c32 = (c32 << 6) | cx; 75 } 76 /* 77 * Check for validity: 78 * - The character must be in the Unicode range. 79 * - It must not be a surrogate. 80 * - It must be encoded using the correct number of octets. 81 */ 82 if (c32 > 0x10ffff || 83 (c32 & 0xf800) == 0xd800 || 84 clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000)) 85 return c0; 86 *s8 += clen; 87 return c32; 88 } 89 90 /** 91 * efi_puts() - Write a UTF-8 encoded string to the console 92 * @str: UTF-8 encoded string 93 */ 94 void efi_puts(const char *str) 95 { 96 efi_char16_t buf[128]; 97 size_t pos = 0, lim = ARRAY_SIZE(buf); 98 const u8 *s8 = (const u8 *)str; 99 u32 c32; 100 101 while (*s8) { 102 if (*s8 == '\n') 103 buf[pos++] = L'\r'; 104 c32 = utf8_to_utf32(&s8); 105 if (c32 < 0x10000) { 106 /* Characters in plane 0 use a single word. */ 107 buf[pos++] = c32; 108 } else { 109 /* 110 * Characters in other planes encode into a surrogate 111 * pair. 112 */ 113 buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10); 114 buf[pos++] = 0xdc00 + (c32 & 0x3ff); 115 } 116 if (*s8 == '\0' || pos >= lim - 2) { 117 buf[pos] = L'\0'; 118 efi_char16_puts(buf); 119 pos = 0; 120 } 121 } 122 } 123 124 /** 125 * efi_printk() - Print a kernel message 126 * @fmt: format string 127 * 128 * The first letter of the format string is used to determine the logging level 129 * of the message. If the level is less then the current EFI logging level, the 130 * message is suppressed. The message will be truncated to 255 bytes. 131 * 132 * Return: number of printed characters 133 */ 134 int efi_printk(const char *fmt, ...) 135 { 136 char printf_buf[256]; 137 va_list args; 138 int printed; 139 int loglevel = printk_get_level(fmt); 140 141 switch (loglevel) { 142 case '0' ... '9': 143 loglevel -= '0'; 144 break; 145 default: 146 /* 147 * Use loglevel -1 for cases where we just want to print to 148 * the screen. 149 */ 150 loglevel = -1; 151 break; 152 } 153 154 if (loglevel >= efi_loglevel) 155 return 0; 156 157 if (loglevel >= 0) 158 efi_puts("EFI stub: "); 159 160 fmt = printk_skip_level(fmt); 161 162 va_start(args, fmt); 163 printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args); 164 va_end(args); 165 166 efi_puts(printf_buf); 167 if (printed >= sizeof(printf_buf)) { 168 efi_puts("[Message truncated]\n"); 169 return -1; 170 } 171 172 return printed; 173 } 174 175 /** 176 * efi_parse_options() - Parse EFI command line options 177 * @cmdline: kernel command line 178 * 179 * Parse the ASCII string @cmdline for EFI options, denoted by the efi= 180 * option, e.g. efi=nochunk. 181 * 182 * It should be noted that efi= is parsed in two very different 183 * environments, first in the early boot environment of the EFI boot 184 * stub, and subsequently during the kernel boot. 185 * 186 * Return: status code 187 */ 188 efi_status_t efi_parse_options(char const *cmdline) 189 { 190 size_t len; 191 efi_status_t status; 192 char *str, *buf; 193 194 if (!cmdline) 195 return EFI_SUCCESS; 196 197 len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1; 198 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); 199 if (status != EFI_SUCCESS) 200 return status; 201 202 memcpy(buf, cmdline, len - 1); 203 buf[len - 1] = '\0'; 204 str = skip_spaces(buf); 205 206 while (*str) { 207 char *param, *val; 208 209 str = next_arg(str, ¶m, &val); 210 if (!val && !strcmp(param, "--")) 211 break; 212 213 if (!strcmp(param, "nokaslr")) { 214 efi_nokaslr = true; 215 } else if (!strcmp(param, "quiet")) { 216 efi_loglevel = CONSOLE_LOGLEVEL_QUIET; 217 } else if (!strcmp(param, "noinitrd")) { 218 efi_noinitrd = true; 219 } else if (!strcmp(param, "efi") && val) { 220 efi_nochunk = parse_option_str(val, "nochunk"); 221 efi_novamap |= parse_option_str(val, "novamap"); 222 223 efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && 224 parse_option_str(val, "nosoftreserve"); 225 226 if (parse_option_str(val, "disable_early_pci_dma")) 227 efi_disable_pci_dma = true; 228 if (parse_option_str(val, "no_disable_early_pci_dma")) 229 efi_disable_pci_dma = false; 230 if (parse_option_str(val, "debug")) 231 efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; 232 } else if (!strcmp(param, "video") && 233 val && strstarts(val, "efifb:")) { 234 efi_parse_option_graphics(val + strlen("efifb:")); 235 } 236 } 237 efi_bs_call(free_pool, buf); 238 return EFI_SUCCESS; 239 } 240 241 /* 242 * The EFI_LOAD_OPTION descriptor has the following layout: 243 * u32 Attributes; 244 * u16 FilePathListLength; 245 * u16 Description[]; 246 * efi_device_path_protocol_t FilePathList[]; 247 * u8 OptionalData[]; 248 * 249 * This function validates and unpacks the variable-size data fields. 250 */ 251 static 252 bool efi_load_option_unpack(efi_load_option_unpacked_t *dest, 253 const efi_load_option_t *src, size_t size) 254 { 255 const void *pos; 256 u16 c; 257 efi_device_path_protocol_t header; 258 const efi_char16_t *description; 259 const efi_device_path_protocol_t *file_path_list; 260 261 if (size < offsetof(efi_load_option_t, variable_data)) 262 return false; 263 pos = src->variable_data; 264 size -= offsetof(efi_load_option_t, variable_data); 265 266 if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0) 267 return false; 268 269 /* Scan description. */ 270 description = pos; 271 do { 272 if (size < sizeof(c)) 273 return false; 274 c = *(const u16 *)pos; 275 pos += sizeof(c); 276 size -= sizeof(c); 277 } while (c != L'\0'); 278 279 /* Scan file_path_list. */ 280 file_path_list = pos; 281 do { 282 if (size < sizeof(header)) 283 return false; 284 header = *(const efi_device_path_protocol_t *)pos; 285 if (header.length < sizeof(header)) 286 return false; 287 if (size < header.length) 288 return false; 289 pos += header.length; 290 size -= header.length; 291 } while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) || 292 (header.sub_type != EFI_DEV_END_ENTIRE)); 293 if (pos != (const void *)file_path_list + src->file_path_list_length) 294 return false; 295 296 dest->attributes = src->attributes; 297 dest->file_path_list_length = src->file_path_list_length; 298 dest->description = description; 299 dest->file_path_list = file_path_list; 300 dest->optional_data_size = size; 301 dest->optional_data = size ? pos : NULL; 302 303 return true; 304 } 305 306 /* 307 * At least some versions of Dell firmware pass the entire contents of the 308 * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the 309 * OptionalData field. 310 * 311 * Detect this case and extract OptionalData. 312 */ 313 void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size) 314 { 315 const efi_load_option_t *load_option = *load_options; 316 efi_load_option_unpacked_t load_option_unpacked; 317 318 if (!IS_ENABLED(CONFIG_X86)) 319 return; 320 if (!load_option) 321 return; 322 if (*load_options_size < sizeof(*load_option)) 323 return; 324 if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0) 325 return; 326 327 if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size)) 328 return; 329 330 efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n"); 331 efi_warn_once(FW_BUG "Using OptionalData as a workaround\n"); 332 333 *load_options = load_option_unpacked.optional_data; 334 *load_options_size = load_option_unpacked.optional_data_size; 335 } 336 337 enum efistub_event { 338 EFISTUB_EVT_INITRD, 339 EFISTUB_EVT_LOAD_OPTIONS, 340 EFISTUB_EVT_COUNT, 341 }; 342 343 #define STR_WITH_SIZE(s) sizeof(s), s 344 345 static const struct { 346 u32 pcr_index; 347 u32 event_id; 348 u32 event_data_len; 349 u8 event_data[52]; 350 } events[] = { 351 [EFISTUB_EVT_INITRD] = { 352 9, 353 INITRD_EVENT_TAG_ID, 354 STR_WITH_SIZE("Linux initrd") 355 }, 356 [EFISTUB_EVT_LOAD_OPTIONS] = { 357 9, 358 LOAD_OPTIONS_EVENT_TAG_ID, 359 STR_WITH_SIZE("LOADED_IMAGE::LoadOptions") 360 }, 361 }; 362 363 static efi_status_t efi_measure_tagged_event(unsigned long load_addr, 364 unsigned long load_size, 365 enum efistub_event event) 366 { 367 efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID; 368 efi_tcg2_protocol_t *tcg2 = NULL; 369 efi_status_t status; 370 371 efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2); 372 if (tcg2) { 373 struct efi_measured_event { 374 efi_tcg2_event_t event_data; 375 efi_tcg2_tagged_event_t tagged_event; 376 u8 tagged_event_data[]; 377 } *evt; 378 int size = sizeof(*evt) + events[event].event_data_len; 379 380 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 381 (void **)&evt); 382 if (status != EFI_SUCCESS) 383 goto fail; 384 385 evt->event_data = (struct efi_tcg2_event){ 386 .event_size = size, 387 .event_header.header_size = sizeof(evt->event_data.event_header), 388 .event_header.header_version = EFI_TCG2_EVENT_HEADER_VERSION, 389 .event_header.pcr_index = events[event].pcr_index, 390 .event_header.event_type = EV_EVENT_TAG, 391 }; 392 393 evt->tagged_event = (struct efi_tcg2_tagged_event){ 394 .tagged_event_id = events[event].event_id, 395 .tagged_event_data_size = events[event].event_data_len, 396 }; 397 398 memcpy(evt->tagged_event_data, events[event].event_data, 399 events[event].event_data_len); 400 401 status = efi_call_proto(tcg2, hash_log_extend_event, 0, 402 load_addr, load_size, &evt->event_data); 403 efi_bs_call(free_pool, evt); 404 405 if (status != EFI_SUCCESS) 406 goto fail; 407 return EFI_SUCCESS; 408 } 409 410 return EFI_UNSUPPORTED; 411 fail: 412 efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status); 413 return status; 414 } 415 416 /* 417 * Convert the unicode UEFI command line to ASCII to pass to kernel. 418 * Size of memory allocated return in *cmd_line_len. 419 * Returns NULL on error. 420 */ 421 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) 422 { 423 const efi_char16_t *options = efi_table_attr(image, load_options); 424 u32 options_size = efi_table_attr(image, load_options_size); 425 int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ 426 unsigned long cmdline_addr = 0; 427 const efi_char16_t *s2; 428 bool in_quote = false; 429 efi_status_t status; 430 u32 options_chars; 431 432 if (options_size > 0) 433 efi_measure_tagged_event((unsigned long)options, options_size, 434 EFISTUB_EVT_LOAD_OPTIONS); 435 436 efi_apply_loadoptions_quirk((const void **)&options, &options_size); 437 options_chars = options_size / sizeof(efi_char16_t); 438 439 if (options) { 440 s2 = options; 441 while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { 442 efi_char16_t c = *s2++; 443 444 if (c < 0x80) { 445 if (c == L'\0' || c == L'\n') 446 break; 447 if (c == L'"') 448 in_quote = !in_quote; 449 else if (!in_quote && isspace((char)c)) 450 safe_options_bytes = options_bytes; 451 452 options_bytes++; 453 continue; 454 } 455 456 /* 457 * Get the number of UTF-8 bytes corresponding to a 458 * UTF-16 character. 459 * The first part handles everything in the BMP. 460 */ 461 options_bytes += 2 + (c >= 0x800); 462 /* 463 * Add one more byte for valid surrogate pairs. Invalid 464 * surrogates will be replaced with 0xfffd and take up 465 * only 3 bytes. 466 */ 467 if ((c & 0xfc00) == 0xd800) { 468 /* 469 * If the very last word is a high surrogate, 470 * we must ignore it since we can't access the 471 * low surrogate. 472 */ 473 if (!options_chars) { 474 options_bytes -= 3; 475 } else if ((*s2 & 0xfc00) == 0xdc00) { 476 options_bytes++; 477 options_chars--; 478 s2++; 479 } 480 } 481 } 482 if (options_bytes >= COMMAND_LINE_SIZE) { 483 options_bytes = safe_options_bytes; 484 efi_err("Command line is too long: truncated to %d bytes\n", 485 options_bytes); 486 } 487 } 488 489 options_bytes++; /* NUL termination */ 490 491 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, 492 (void **)&cmdline_addr); 493 if (status != EFI_SUCCESS) 494 return NULL; 495 496 snprintf((char *)cmdline_addr, options_bytes, "%.*ls", 497 options_bytes - 1, options); 498 499 *cmd_line_len = options_bytes; 500 return (char *)cmdline_addr; 501 } 502 503 /** 504 * efi_exit_boot_services() - Exit boot services 505 * @handle: handle of the exiting image 506 * @priv: argument to be passed to @priv_func 507 * @priv_func: function to process the memory map before exiting boot services 508 * 509 * Handle calling ExitBootServices according to the requirements set out by the 510 * spec. Obtains the current memory map, and returns that info after calling 511 * ExitBootServices. The client must specify a function to perform any 512 * processing of the memory map data prior to ExitBootServices. A client 513 * specific structure may be passed to the function via priv. The client 514 * function may be called multiple times. 515 * 516 * Return: status code 517 */ 518 efi_status_t efi_exit_boot_services(void *handle, void *priv, 519 efi_exit_boot_map_processing priv_func) 520 { 521 struct efi_boot_memmap *map; 522 efi_status_t status; 523 524 status = efi_get_memory_map(&map, true); 525 if (status != EFI_SUCCESS) 526 return status; 527 528 status = priv_func(map, priv); 529 if (status != EFI_SUCCESS) { 530 efi_bs_call(free_pool, map); 531 return status; 532 } 533 534 if (efi_disable_pci_dma) 535 efi_pci_disable_bridge_busmaster(); 536 537 status = efi_bs_call(exit_boot_services, handle, map->map_key); 538 539 if (status == EFI_INVALID_PARAMETER) { 540 /* 541 * The memory map changed between efi_get_memory_map() and 542 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: 543 * EFI_BOOT_SERVICES.ExitBootServices we need to get the 544 * updated map, and try again. The spec implies one retry 545 * should be sufficent, which is confirmed against the EDK2 546 * implementation. Per the spec, we can only invoke 547 * get_memory_map() and exit_boot_services() - we cannot alloc 548 * so efi_get_memory_map() cannot be used, and we must reuse 549 * the buffer. For all practical purposes, the headroom in the 550 * buffer should account for any changes in the map so the call 551 * to get_memory_map() is expected to succeed here. 552 */ 553 map->map_size = map->buff_size; 554 status = efi_bs_call(get_memory_map, 555 &map->map_size, 556 &map->map, 557 &map->map_key, 558 &map->desc_size, 559 &map->desc_ver); 560 561 /* exit_boot_services() was called, thus cannot free */ 562 if (status != EFI_SUCCESS) 563 return status; 564 565 status = priv_func(map, priv); 566 /* exit_boot_services() was called, thus cannot free */ 567 if (status != EFI_SUCCESS) 568 return status; 569 570 status = efi_bs_call(exit_boot_services, handle, map->map_key); 571 } 572 573 return status; 574 } 575 576 /** 577 * get_efi_config_table() - retrieve UEFI configuration table 578 * @guid: GUID of the configuration table to be retrieved 579 * Return: pointer to the configuration table or NULL 580 */ 581 void *get_efi_config_table(efi_guid_t guid) 582 { 583 unsigned long tables = efi_table_attr(efi_system_table, tables); 584 int nr_tables = efi_table_attr(efi_system_table, nr_tables); 585 int i; 586 587 for (i = 0; i < nr_tables; i++) { 588 efi_config_table_t *t = (void *)tables; 589 590 if (efi_guidcmp(t->guid, guid) == 0) 591 return efi_table_attr(t, table); 592 593 tables += efi_is_native() ? sizeof(efi_config_table_t) 594 : sizeof(efi_config_table_32_t); 595 } 596 return NULL; 597 } 598 599 /* 600 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way 601 * for the firmware or bootloader to expose the initrd data directly to the stub 602 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is 603 * very easy to implement. It is a simple Linux initrd specific conduit between 604 * kernel and firmware, allowing us to put the EFI stub (being part of the 605 * kernel) in charge of where and when to load the initrd, while leaving it up 606 * to the firmware to decide whether it needs to expose its filesystem hierarchy 607 * via EFI protocols. 608 */ 609 static const struct { 610 struct efi_vendor_dev_path vendor; 611 struct efi_generic_dev_path end; 612 } __packed initrd_dev_path = { 613 { 614 { 615 EFI_DEV_MEDIA, 616 EFI_DEV_MEDIA_VENDOR, 617 sizeof(struct efi_vendor_dev_path), 618 }, 619 LINUX_EFI_INITRD_MEDIA_GUID 620 }, { 621 EFI_DEV_END_PATH, 622 EFI_DEV_END_ENTIRE, 623 sizeof(struct efi_generic_dev_path) 624 } 625 }; 626 627 /** 628 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path 629 * @load_addr: pointer to store the address where the initrd was loaded 630 * @load_size: pointer to store the size of the loaded initrd 631 * @max: upper limit for the initrd memory allocation 632 * 633 * Return: 634 * * %EFI_SUCCESS if the initrd was loaded successfully, in which 635 * case @load_addr and @load_size are assigned accordingly 636 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path 637 * * %EFI_OUT_OF_RESOURCES if memory allocation failed 638 * * %EFI_LOAD_ERROR in all other cases 639 */ 640 static 641 efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd, 642 unsigned long max) 643 { 644 efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; 645 efi_device_path_protocol_t *dp; 646 efi_load_file2_protocol_t *lf2; 647 efi_handle_t handle; 648 efi_status_t status; 649 650 dp = (efi_device_path_protocol_t *)&initrd_dev_path; 651 status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); 652 if (status != EFI_SUCCESS) 653 return status; 654 655 status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, 656 (void **)&lf2); 657 if (status != EFI_SUCCESS) 658 return status; 659 660 initrd->size = 0; 661 status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL); 662 if (status != EFI_BUFFER_TOO_SMALL) 663 return EFI_LOAD_ERROR; 664 665 status = efi_allocate_pages(initrd->size, &initrd->base, max); 666 if (status != EFI_SUCCESS) 667 return status; 668 669 status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, 670 (void *)initrd->base); 671 if (status != EFI_SUCCESS) { 672 efi_free(initrd->size, initrd->base); 673 return EFI_LOAD_ERROR; 674 } 675 return EFI_SUCCESS; 676 } 677 678 static 679 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, 680 struct linux_efi_initrd *initrd, 681 unsigned long soft_limit, 682 unsigned long hard_limit) 683 { 684 if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || 685 (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) 686 return EFI_UNSUPPORTED; 687 688 return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, 689 soft_limit, hard_limit, 690 &initrd->base, &initrd->size); 691 } 692 693 /** 694 * efi_load_initrd() - Load initial RAM disk 695 * @image: EFI loaded image protocol 696 * @soft_limit: preferred address for loading the initrd 697 * @hard_limit: upper limit address for loading the initrd 698 * 699 * Return: status code 700 */ 701 efi_status_t efi_load_initrd(efi_loaded_image_t *image, 702 unsigned long soft_limit, 703 unsigned long hard_limit, 704 const struct linux_efi_initrd **out) 705 { 706 efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID; 707 efi_status_t status = EFI_SUCCESS; 708 struct linux_efi_initrd initrd, *tbl; 709 710 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd) 711 return EFI_SUCCESS; 712 713 status = efi_load_initrd_dev_path(&initrd, hard_limit); 714 if (status == EFI_SUCCESS) { 715 efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); 716 if (initrd.size > 0 && 717 efi_measure_tagged_event(initrd.base, initrd.size, 718 EFISTUB_EVT_INITRD) == EFI_SUCCESS) 719 efi_info("Measured initrd data into PCR 9\n"); 720 } else if (status == EFI_NOT_FOUND) { 721 status = efi_load_initrd_cmdline(image, &initrd, soft_limit, 722 hard_limit); 723 /* command line loader disabled or no initrd= passed? */ 724 if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY) 725 return EFI_SUCCESS; 726 if (status == EFI_SUCCESS) 727 efi_info("Loaded initrd from command line option\n"); 728 } 729 if (status != EFI_SUCCESS) 730 goto failed; 731 732 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd), 733 (void **)&tbl); 734 if (status != EFI_SUCCESS) 735 goto free_initrd; 736 737 *tbl = initrd; 738 status = efi_bs_call(install_configuration_table, &tbl_guid, tbl); 739 if (status != EFI_SUCCESS) 740 goto free_tbl; 741 742 if (out) 743 *out = tbl; 744 return EFI_SUCCESS; 745 746 free_tbl: 747 efi_bs_call(free_pool, tbl); 748 free_initrd: 749 efi_free(initrd.size, initrd.base); 750 failed: 751 efi_err("Failed to load initrd: 0x%lx\n", status); 752 return status; 753 } 754 755 /** 756 * efi_wait_for_key() - Wait for key stroke 757 * @usec: number of microseconds to wait for key stroke 758 * @key: key entered 759 * 760 * Wait for up to @usec microseconds for a key stroke. 761 * 762 * Return: status code, EFI_SUCCESS if key received 763 */ 764 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) 765 { 766 efi_event_t events[2], timer; 767 unsigned long index; 768 efi_simple_text_input_protocol_t *con_in; 769 efi_status_t status; 770 771 con_in = efi_table_attr(efi_system_table, con_in); 772 if (!con_in) 773 return EFI_UNSUPPORTED; 774 efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); 775 776 status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); 777 if (status != EFI_SUCCESS) 778 return status; 779 780 status = efi_bs_call(set_timer, timer, EfiTimerRelative, 781 EFI_100NSEC_PER_USEC * usec); 782 if (status != EFI_SUCCESS) 783 return status; 784 efi_set_event_at(events, 1, timer); 785 786 status = efi_bs_call(wait_for_event, 2, events, &index); 787 if (status == EFI_SUCCESS) { 788 if (index == 0) 789 status = efi_call_proto(con_in, read_keystroke, key); 790 else 791 status = EFI_TIMEOUT; 792 } 793 794 efi_bs_call(close_event, timer); 795 796 return status; 797 } 798