1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Helper functions used by the EFI stub on multiple 4 * architectures. This should be #included by the EFI stub 5 * implementation files. 6 * 7 * Copyright 2011 Intel Corporation; author Matt Fleming 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/ctype.h> 13 #include <linux/efi.h> 14 #include <linux/kernel.h> 15 #include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */ 16 #include <asm/efi.h> 17 #include <asm/setup.h> 18 19 #include "efistub.h" 20 21 bool efi_nochunk; 22 bool efi_nokaslr; 23 bool efi_noinitrd; 24 int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 25 bool efi_novamap; 26 27 static bool efi_nosoftreserve; 28 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); 29 30 bool __pure __efi_soft_reserve_enabled(void) 31 { 32 return !efi_nosoftreserve; 33 } 34 35 /** 36 * efi_char16_puts() - Write a UCS-2 encoded string to the console 37 * @str: UCS-2 encoded string 38 */ 39 void efi_char16_puts(efi_char16_t *str) 40 { 41 efi_call_proto(efi_table_attr(efi_system_table, con_out), 42 output_string, str); 43 } 44 45 static 46 u32 utf8_to_utf32(const u8 **s8) 47 { 48 u32 c32; 49 u8 c0, cx; 50 size_t clen, i; 51 52 c0 = cx = *(*s8)++; 53 /* 54 * The position of the most-significant 0 bit gives us the length of 55 * a multi-octet encoding. 56 */ 57 for (clen = 0; cx & 0x80; ++clen) 58 cx <<= 1; 59 /* 60 * If the 0 bit is in position 8, this is a valid single-octet 61 * encoding. If the 0 bit is in position 7 or positions 1-3, the 62 * encoding is invalid. 63 * In either case, we just return the first octet. 64 */ 65 if (clen < 2 || clen > 4) 66 return c0; 67 /* Get the bits from the first octet. */ 68 c32 = cx >> clen--; 69 for (i = 0; i < clen; ++i) { 70 /* Trailing octets must have 10 in most significant bits. */ 71 cx = (*s8)[i] ^ 0x80; 72 if (cx & 0xc0) 73 return c0; 74 c32 = (c32 << 6) | cx; 75 } 76 /* 77 * Check for validity: 78 * - The character must be in the Unicode range. 79 * - It must not be a surrogate. 80 * - It must be encoded using the correct number of octets. 81 */ 82 if (c32 > 0x10ffff || 83 (c32 & 0xf800) == 0xd800 || 84 clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000)) 85 return c0; 86 *s8 += clen; 87 return c32; 88 } 89 90 /** 91 * efi_puts() - Write a UTF-8 encoded string to the console 92 * @str: UTF-8 encoded string 93 */ 94 void efi_puts(const char *str) 95 { 96 efi_char16_t buf[128]; 97 size_t pos = 0, lim = ARRAY_SIZE(buf); 98 const u8 *s8 = (const u8 *)str; 99 u32 c32; 100 101 while (*s8) { 102 if (*s8 == '\n') 103 buf[pos++] = L'\r'; 104 c32 = utf8_to_utf32(&s8); 105 if (c32 < 0x10000) { 106 /* Characters in plane 0 use a single word. */ 107 buf[pos++] = c32; 108 } else { 109 /* 110 * Characters in other planes encode into a surrogate 111 * pair. 112 */ 113 buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10); 114 buf[pos++] = 0xdc00 + (c32 & 0x3ff); 115 } 116 if (*s8 == '\0' || pos >= lim - 2) { 117 buf[pos] = L'\0'; 118 efi_char16_puts(buf); 119 pos = 0; 120 } 121 } 122 } 123 124 /** 125 * efi_printk() - Print a kernel message 126 * @fmt: format string 127 * 128 * The first letter of the format string is used to determine the logging level 129 * of the message. If the level is less then the current EFI logging level, the 130 * message is suppressed. The message will be truncated to 255 bytes. 131 * 132 * Return: number of printed characters 133 */ 134 int efi_printk(const char *fmt, ...) 135 { 136 char printf_buf[256]; 137 va_list args; 138 int printed; 139 int loglevel = printk_get_level(fmt); 140 141 switch (loglevel) { 142 case '0' ... '9': 143 loglevel -= '0'; 144 break; 145 default: 146 /* 147 * Use loglevel -1 for cases where we just want to print to 148 * the screen. 149 */ 150 loglevel = -1; 151 break; 152 } 153 154 if (loglevel >= efi_loglevel) 155 return 0; 156 157 if (loglevel >= 0) 158 efi_puts("EFI stub: "); 159 160 fmt = printk_skip_level(fmt); 161 162 va_start(args, fmt); 163 printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args); 164 va_end(args); 165 166 efi_puts(printf_buf); 167 if (printed >= sizeof(printf_buf)) { 168 efi_puts("[Message truncated]\n"); 169 return -1; 170 } 171 172 return printed; 173 } 174 175 /** 176 * efi_parse_options() - Parse EFI command line options 177 * @cmdline: kernel command line 178 * 179 * Parse the ASCII string @cmdline for EFI options, denoted by the efi= 180 * option, e.g. efi=nochunk. 181 * 182 * It should be noted that efi= is parsed in two very different 183 * environments, first in the early boot environment of the EFI boot 184 * stub, and subsequently during the kernel boot. 185 * 186 * Return: status code 187 */ 188 efi_status_t efi_parse_options(char const *cmdline) 189 { 190 size_t len = strlen(cmdline) + 1; 191 efi_status_t status; 192 char *str, *buf; 193 194 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); 195 if (status != EFI_SUCCESS) 196 return status; 197 198 str = skip_spaces(memcpy(buf, cmdline, len)); 199 200 while (*str) { 201 char *param, *val; 202 203 str = next_arg(str, ¶m, &val); 204 205 if (!strcmp(param, "nokaslr")) { 206 efi_nokaslr = true; 207 } else if (!strcmp(param, "quiet")) { 208 efi_loglevel = CONSOLE_LOGLEVEL_QUIET; 209 } else if (!strcmp(param, "noinitrd")) { 210 efi_noinitrd = true; 211 } else if (!strcmp(param, "efi") && val) { 212 efi_nochunk = parse_option_str(val, "nochunk"); 213 efi_novamap = parse_option_str(val, "novamap"); 214 215 efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && 216 parse_option_str(val, "nosoftreserve"); 217 218 if (parse_option_str(val, "disable_early_pci_dma")) 219 efi_disable_pci_dma = true; 220 if (parse_option_str(val, "no_disable_early_pci_dma")) 221 efi_disable_pci_dma = false; 222 if (parse_option_str(val, "debug")) 223 efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; 224 } else if (!strcmp(param, "video") && 225 val && strstarts(val, "efifb:")) { 226 efi_parse_option_graphics(val + strlen("efifb:")); 227 } 228 } 229 efi_bs_call(free_pool, buf); 230 return EFI_SUCCESS; 231 } 232 233 /* 234 * Convert the unicode UEFI command line to ASCII to pass to kernel. 235 * Size of memory allocated return in *cmd_line_len. 236 * Returns NULL on error. 237 */ 238 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) 239 { 240 const u16 *s2; 241 unsigned long cmdline_addr = 0; 242 int options_chars = efi_table_attr(image, load_options_size) / 2; 243 const u16 *options = efi_table_attr(image, load_options); 244 int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ 245 bool in_quote = false; 246 efi_status_t status; 247 248 if (options) { 249 s2 = options; 250 while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { 251 u16 c = *s2++; 252 253 if (c < 0x80) { 254 if (c == L'\0' || c == L'\n') 255 break; 256 if (c == L'"') 257 in_quote = !in_quote; 258 else if (!in_quote && isspace((char)c)) 259 safe_options_bytes = options_bytes; 260 261 options_bytes++; 262 continue; 263 } 264 265 /* 266 * Get the number of UTF-8 bytes corresponding to a 267 * UTF-16 character. 268 * The first part handles everything in the BMP. 269 */ 270 options_bytes += 2 + (c >= 0x800); 271 /* 272 * Add one more byte for valid surrogate pairs. Invalid 273 * surrogates will be replaced with 0xfffd and take up 274 * only 3 bytes. 275 */ 276 if ((c & 0xfc00) == 0xd800) { 277 /* 278 * If the very last word is a high surrogate, 279 * we must ignore it since we can't access the 280 * low surrogate. 281 */ 282 if (!options_chars) { 283 options_bytes -= 3; 284 } else if ((*s2 & 0xfc00) == 0xdc00) { 285 options_bytes++; 286 options_chars--; 287 s2++; 288 } 289 } 290 } 291 if (options_bytes >= COMMAND_LINE_SIZE) { 292 options_bytes = safe_options_bytes; 293 efi_err("Command line is too long: truncated to %d bytes\n", 294 options_bytes); 295 } 296 } 297 298 options_bytes++; /* NUL termination */ 299 300 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, 301 (void **)&cmdline_addr); 302 if (status != EFI_SUCCESS) 303 return NULL; 304 305 snprintf((char *)cmdline_addr, options_bytes, "%.*ls", 306 options_bytes - 1, options); 307 308 *cmd_line_len = options_bytes; 309 return (char *)cmdline_addr; 310 } 311 312 /** 313 * efi_exit_boot_services() - Exit boot services 314 * @handle: handle of the exiting image 315 * @map: pointer to receive the memory map 316 * @priv: argument to be passed to @priv_func 317 * @priv_func: function to process the memory map before exiting boot services 318 * 319 * Handle calling ExitBootServices according to the requirements set out by the 320 * spec. Obtains the current memory map, and returns that info after calling 321 * ExitBootServices. The client must specify a function to perform any 322 * processing of the memory map data prior to ExitBootServices. A client 323 * specific structure may be passed to the function via priv. The client 324 * function may be called multiple times. 325 * 326 * Return: status code 327 */ 328 efi_status_t efi_exit_boot_services(void *handle, 329 struct efi_boot_memmap *map, 330 void *priv, 331 efi_exit_boot_map_processing priv_func) 332 { 333 efi_status_t status; 334 335 status = efi_get_memory_map(map); 336 337 if (status != EFI_SUCCESS) 338 goto fail; 339 340 status = priv_func(map, priv); 341 if (status != EFI_SUCCESS) 342 goto free_map; 343 344 if (efi_disable_pci_dma) 345 efi_pci_disable_bridge_busmaster(); 346 347 status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); 348 349 if (status == EFI_INVALID_PARAMETER) { 350 /* 351 * The memory map changed between efi_get_memory_map() and 352 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: 353 * EFI_BOOT_SERVICES.ExitBootServices we need to get the 354 * updated map, and try again. The spec implies one retry 355 * should be sufficent, which is confirmed against the EDK2 356 * implementation. Per the spec, we can only invoke 357 * get_memory_map() and exit_boot_services() - we cannot alloc 358 * so efi_get_memory_map() cannot be used, and we must reuse 359 * the buffer. For all practical purposes, the headroom in the 360 * buffer should account for any changes in the map so the call 361 * to get_memory_map() is expected to succeed here. 362 */ 363 *map->map_size = *map->buff_size; 364 status = efi_bs_call(get_memory_map, 365 map->map_size, 366 *map->map, 367 map->key_ptr, 368 map->desc_size, 369 map->desc_ver); 370 371 /* exit_boot_services() was called, thus cannot free */ 372 if (status != EFI_SUCCESS) 373 goto fail; 374 375 status = priv_func(map, priv); 376 /* exit_boot_services() was called, thus cannot free */ 377 if (status != EFI_SUCCESS) 378 goto fail; 379 380 status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); 381 } 382 383 /* exit_boot_services() was called, thus cannot free */ 384 if (status != EFI_SUCCESS) 385 goto fail; 386 387 return EFI_SUCCESS; 388 389 free_map: 390 efi_bs_call(free_pool, *map->map); 391 fail: 392 return status; 393 } 394 395 /** 396 * get_efi_config_table() - retrieve UEFI configuration table 397 * @guid: GUID of the configuration table to be retrieved 398 * Return: pointer to the configuration table or NULL 399 */ 400 void *get_efi_config_table(efi_guid_t guid) 401 { 402 unsigned long tables = efi_table_attr(efi_system_table, tables); 403 int nr_tables = efi_table_attr(efi_system_table, nr_tables); 404 int i; 405 406 for (i = 0; i < nr_tables; i++) { 407 efi_config_table_t *t = (void *)tables; 408 409 if (efi_guidcmp(t->guid, guid) == 0) 410 return efi_table_attr(t, table); 411 412 tables += efi_is_native() ? sizeof(efi_config_table_t) 413 : sizeof(efi_config_table_32_t); 414 } 415 return NULL; 416 } 417 418 /* 419 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way 420 * for the firmware or bootloader to expose the initrd data directly to the stub 421 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is 422 * very easy to implement. It is a simple Linux initrd specific conduit between 423 * kernel and firmware, allowing us to put the EFI stub (being part of the 424 * kernel) in charge of where and when to load the initrd, while leaving it up 425 * to the firmware to decide whether it needs to expose its filesystem hierarchy 426 * via EFI protocols. 427 */ 428 static const struct { 429 struct efi_vendor_dev_path vendor; 430 struct efi_generic_dev_path end; 431 } __packed initrd_dev_path = { 432 { 433 { 434 EFI_DEV_MEDIA, 435 EFI_DEV_MEDIA_VENDOR, 436 sizeof(struct efi_vendor_dev_path), 437 }, 438 LINUX_EFI_INITRD_MEDIA_GUID 439 }, { 440 EFI_DEV_END_PATH, 441 EFI_DEV_END_ENTIRE, 442 sizeof(struct efi_generic_dev_path) 443 } 444 }; 445 446 /** 447 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path 448 * @load_addr: pointer to store the address where the initrd was loaded 449 * @load_size: pointer to store the size of the loaded initrd 450 * @max: upper limit for the initrd memory allocation 451 * 452 * Return: 453 * * %EFI_SUCCESS if the initrd was loaded successfully, in which 454 * case @load_addr and @load_size are assigned accordingly 455 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path 456 * * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL 457 * * %EFI_OUT_OF_RESOURCES if memory allocation failed 458 * * %EFI_LOAD_ERROR in all other cases 459 */ 460 static 461 efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr, 462 unsigned long *load_size, 463 unsigned long max) 464 { 465 efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; 466 efi_device_path_protocol_t *dp; 467 efi_load_file2_protocol_t *lf2; 468 unsigned long initrd_addr; 469 unsigned long initrd_size; 470 efi_handle_t handle; 471 efi_status_t status; 472 473 dp = (efi_device_path_protocol_t *)&initrd_dev_path; 474 status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); 475 if (status != EFI_SUCCESS) 476 return status; 477 478 status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, 479 (void **)&lf2); 480 if (status != EFI_SUCCESS) 481 return status; 482 483 status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL); 484 if (status != EFI_BUFFER_TOO_SMALL) 485 return EFI_LOAD_ERROR; 486 487 status = efi_allocate_pages(initrd_size, &initrd_addr, max); 488 if (status != EFI_SUCCESS) 489 return status; 490 491 status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, 492 (void *)initrd_addr); 493 if (status != EFI_SUCCESS) { 494 efi_free(initrd_size, initrd_addr); 495 return EFI_LOAD_ERROR; 496 } 497 498 *load_addr = initrd_addr; 499 *load_size = initrd_size; 500 return EFI_SUCCESS; 501 } 502 503 static 504 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, 505 unsigned long *load_addr, 506 unsigned long *load_size, 507 unsigned long soft_limit, 508 unsigned long hard_limit) 509 { 510 if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || 511 (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) { 512 *load_addr = *load_size = 0; 513 return EFI_SUCCESS; 514 } 515 516 return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, 517 soft_limit, hard_limit, 518 load_addr, load_size); 519 } 520 521 /** 522 * efi_load_initrd() - Load initial RAM disk 523 * @image: EFI loaded image protocol 524 * @load_addr: pointer to loaded initrd 525 * @load_size: size of loaded initrd 526 * @soft_limit: preferred size of allocated memory for loading the initrd 527 * @hard_limit: minimum size of allocated memory 528 * 529 * Return: status code 530 */ 531 efi_status_t efi_load_initrd(efi_loaded_image_t *image, 532 unsigned long *load_addr, 533 unsigned long *load_size, 534 unsigned long soft_limit, 535 unsigned long hard_limit) 536 { 537 efi_status_t status; 538 539 if (!load_addr || !load_size) 540 return EFI_INVALID_PARAMETER; 541 542 status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit); 543 if (status == EFI_SUCCESS) { 544 efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); 545 } else if (status == EFI_NOT_FOUND) { 546 status = efi_load_initrd_cmdline(image, load_addr, load_size, 547 soft_limit, hard_limit); 548 if (status == EFI_SUCCESS && *load_size > 0) 549 efi_info("Loaded initrd from command line option\n"); 550 } 551 552 return status; 553 } 554 555 /** 556 * efi_wait_for_key() - Wait for key stroke 557 * @usec: number of microseconds to wait for key stroke 558 * @key: key entered 559 * 560 * Wait for up to @usec microseconds for a key stroke. 561 * 562 * Return: status code, EFI_SUCCESS if key received 563 */ 564 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) 565 { 566 efi_event_t events[2], timer; 567 unsigned long index; 568 efi_simple_text_input_protocol_t *con_in; 569 efi_status_t status; 570 571 con_in = efi_table_attr(efi_system_table, con_in); 572 if (!con_in) 573 return EFI_UNSUPPORTED; 574 efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); 575 576 status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); 577 if (status != EFI_SUCCESS) 578 return status; 579 580 status = efi_bs_call(set_timer, timer, EfiTimerRelative, 581 EFI_100NSEC_PER_USEC * usec); 582 if (status != EFI_SUCCESS) 583 return status; 584 efi_set_event_at(events, 1, timer); 585 586 status = efi_bs_call(wait_for_event, 2, events, &index); 587 if (status == EFI_SUCCESS) { 588 if (index == 0) 589 status = efi_call_proto(con_in, read_keystroke, key); 590 else 591 status = EFI_TIMEOUT; 592 } 593 594 efi_bs_call(close_event, timer); 595 596 return status; 597 } 598