1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Helper functions used by the EFI stub on multiple 4 * architectures. This should be #included by the EFI stub 5 * implementation files. 6 * 7 * Copyright 2011 Intel Corporation; author Matt Fleming 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/ctype.h> 13 #include <linux/efi.h> 14 #include <linux/kernel.h> 15 #include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */ 16 #include <asm/efi.h> 17 #include <asm/setup.h> 18 19 #include "efistub.h" 20 21 bool efi_nochunk; 22 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE); 23 bool efi_noinitrd; 24 int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 25 bool efi_novamap; 26 27 static bool efi_nosoftreserve; 28 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); 29 30 bool __pure __efi_soft_reserve_enabled(void) 31 { 32 return !efi_nosoftreserve; 33 } 34 35 /** 36 * efi_char16_puts() - Write a UCS-2 encoded string to the console 37 * @str: UCS-2 encoded string 38 */ 39 void efi_char16_puts(efi_char16_t *str) 40 { 41 efi_call_proto(efi_table_attr(efi_system_table, con_out), 42 output_string, str); 43 } 44 45 static 46 u32 utf8_to_utf32(const u8 **s8) 47 { 48 u32 c32; 49 u8 c0, cx; 50 size_t clen, i; 51 52 c0 = cx = *(*s8)++; 53 /* 54 * The position of the most-significant 0 bit gives us the length of 55 * a multi-octet encoding. 56 */ 57 for (clen = 0; cx & 0x80; ++clen) 58 cx <<= 1; 59 /* 60 * If the 0 bit is in position 8, this is a valid single-octet 61 * encoding. If the 0 bit is in position 7 or positions 1-3, the 62 * encoding is invalid. 63 * In either case, we just return the first octet. 64 */ 65 if (clen < 2 || clen > 4) 66 return c0; 67 /* Get the bits from the first octet. */ 68 c32 = cx >> clen--; 69 for (i = 0; i < clen; ++i) { 70 /* Trailing octets must have 10 in most significant bits. */ 71 cx = (*s8)[i] ^ 0x80; 72 if (cx & 0xc0) 73 return c0; 74 c32 = (c32 << 6) | cx; 75 } 76 /* 77 * Check for validity: 78 * - The character must be in the Unicode range. 79 * - It must not be a surrogate. 80 * - It must be encoded using the correct number of octets. 81 */ 82 if (c32 > 0x10ffff || 83 (c32 & 0xf800) == 0xd800 || 84 clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000)) 85 return c0; 86 *s8 += clen; 87 return c32; 88 } 89 90 /** 91 * efi_puts() - Write a UTF-8 encoded string to the console 92 * @str: UTF-8 encoded string 93 */ 94 void efi_puts(const char *str) 95 { 96 efi_char16_t buf[128]; 97 size_t pos = 0, lim = ARRAY_SIZE(buf); 98 const u8 *s8 = (const u8 *)str; 99 u32 c32; 100 101 while (*s8) { 102 if (*s8 == '\n') 103 buf[pos++] = L'\r'; 104 c32 = utf8_to_utf32(&s8); 105 if (c32 < 0x10000) { 106 /* Characters in plane 0 use a single word. */ 107 buf[pos++] = c32; 108 } else { 109 /* 110 * Characters in other planes encode into a surrogate 111 * pair. 112 */ 113 buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10); 114 buf[pos++] = 0xdc00 + (c32 & 0x3ff); 115 } 116 if (*s8 == '\0' || pos >= lim - 2) { 117 buf[pos] = L'\0'; 118 efi_char16_puts(buf); 119 pos = 0; 120 } 121 } 122 } 123 124 /** 125 * efi_printk() - Print a kernel message 126 * @fmt: format string 127 * 128 * The first letter of the format string is used to determine the logging level 129 * of the message. If the level is less then the current EFI logging level, the 130 * message is suppressed. The message will be truncated to 255 bytes. 131 * 132 * Return: number of printed characters 133 */ 134 int efi_printk(const char *fmt, ...) 135 { 136 char printf_buf[256]; 137 va_list args; 138 int printed; 139 int loglevel = printk_get_level(fmt); 140 141 switch (loglevel) { 142 case '0' ... '9': 143 loglevel -= '0'; 144 break; 145 default: 146 /* 147 * Use loglevel -1 for cases where we just want to print to 148 * the screen. 149 */ 150 loglevel = -1; 151 break; 152 } 153 154 if (loglevel >= efi_loglevel) 155 return 0; 156 157 if (loglevel >= 0) 158 efi_puts("EFI stub: "); 159 160 fmt = printk_skip_level(fmt); 161 162 va_start(args, fmt); 163 printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args); 164 va_end(args); 165 166 efi_puts(printf_buf); 167 if (printed >= sizeof(printf_buf)) { 168 efi_puts("[Message truncated]\n"); 169 return -1; 170 } 171 172 return printed; 173 } 174 175 /** 176 * efi_parse_options() - Parse EFI command line options 177 * @cmdline: kernel command line 178 * 179 * Parse the ASCII string @cmdline for EFI options, denoted by the efi= 180 * option, e.g. efi=nochunk. 181 * 182 * It should be noted that efi= is parsed in two very different 183 * environments, first in the early boot environment of the EFI boot 184 * stub, and subsequently during the kernel boot. 185 * 186 * Return: status code 187 */ 188 efi_status_t efi_parse_options(char const *cmdline) 189 { 190 size_t len; 191 efi_status_t status; 192 char *str, *buf; 193 194 if (!cmdline) 195 return EFI_SUCCESS; 196 197 len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1; 198 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); 199 if (status != EFI_SUCCESS) 200 return status; 201 202 memcpy(buf, cmdline, len - 1); 203 buf[len - 1] = '\0'; 204 str = skip_spaces(buf); 205 206 while (*str) { 207 char *param, *val; 208 209 str = next_arg(str, ¶m, &val); 210 if (!val && !strcmp(param, "--")) 211 break; 212 213 if (!strcmp(param, "nokaslr")) { 214 efi_nokaslr = true; 215 } else if (!strcmp(param, "quiet")) { 216 efi_loglevel = CONSOLE_LOGLEVEL_QUIET; 217 } else if (!strcmp(param, "noinitrd")) { 218 efi_noinitrd = true; 219 } else if (!strcmp(param, "efi") && val) { 220 efi_nochunk = parse_option_str(val, "nochunk"); 221 efi_novamap = parse_option_str(val, "novamap"); 222 223 efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && 224 parse_option_str(val, "nosoftreserve"); 225 226 if (parse_option_str(val, "disable_early_pci_dma")) 227 efi_disable_pci_dma = true; 228 if (parse_option_str(val, "no_disable_early_pci_dma")) 229 efi_disable_pci_dma = false; 230 if (parse_option_str(val, "debug")) 231 efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; 232 } else if (!strcmp(param, "video") && 233 val && strstarts(val, "efifb:")) { 234 efi_parse_option_graphics(val + strlen("efifb:")); 235 } 236 } 237 efi_bs_call(free_pool, buf); 238 return EFI_SUCCESS; 239 } 240 241 /* 242 * Convert the unicode UEFI command line to ASCII to pass to kernel. 243 * Size of memory allocated return in *cmd_line_len. 244 * Returns NULL on error. 245 */ 246 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) 247 { 248 const u16 *s2; 249 unsigned long cmdline_addr = 0; 250 int options_chars = efi_table_attr(image, load_options_size) / 2; 251 const u16 *options = efi_table_attr(image, load_options); 252 int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ 253 bool in_quote = false; 254 efi_status_t status; 255 256 if (options) { 257 s2 = options; 258 while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { 259 u16 c = *s2++; 260 261 if (c < 0x80) { 262 if (c == L'\0' || c == L'\n') 263 break; 264 if (c == L'"') 265 in_quote = !in_quote; 266 else if (!in_quote && isspace((char)c)) 267 safe_options_bytes = options_bytes; 268 269 options_bytes++; 270 continue; 271 } 272 273 /* 274 * Get the number of UTF-8 bytes corresponding to a 275 * UTF-16 character. 276 * The first part handles everything in the BMP. 277 */ 278 options_bytes += 2 + (c >= 0x800); 279 /* 280 * Add one more byte for valid surrogate pairs. Invalid 281 * surrogates will be replaced with 0xfffd and take up 282 * only 3 bytes. 283 */ 284 if ((c & 0xfc00) == 0xd800) { 285 /* 286 * If the very last word is a high surrogate, 287 * we must ignore it since we can't access the 288 * low surrogate. 289 */ 290 if (!options_chars) { 291 options_bytes -= 3; 292 } else if ((*s2 & 0xfc00) == 0xdc00) { 293 options_bytes++; 294 options_chars--; 295 s2++; 296 } 297 } 298 } 299 if (options_bytes >= COMMAND_LINE_SIZE) { 300 options_bytes = safe_options_bytes; 301 efi_err("Command line is too long: truncated to %d bytes\n", 302 options_bytes); 303 } 304 } 305 306 options_bytes++; /* NUL termination */ 307 308 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, 309 (void **)&cmdline_addr); 310 if (status != EFI_SUCCESS) 311 return NULL; 312 313 snprintf((char *)cmdline_addr, options_bytes, "%.*ls", 314 options_bytes - 1, options); 315 316 *cmd_line_len = options_bytes; 317 return (char *)cmdline_addr; 318 } 319 320 /** 321 * efi_exit_boot_services() - Exit boot services 322 * @handle: handle of the exiting image 323 * @map: pointer to receive the memory map 324 * @priv: argument to be passed to @priv_func 325 * @priv_func: function to process the memory map before exiting boot services 326 * 327 * Handle calling ExitBootServices according to the requirements set out by the 328 * spec. Obtains the current memory map, and returns that info after calling 329 * ExitBootServices. The client must specify a function to perform any 330 * processing of the memory map data prior to ExitBootServices. A client 331 * specific structure may be passed to the function via priv. The client 332 * function may be called multiple times. 333 * 334 * Return: status code 335 */ 336 efi_status_t efi_exit_boot_services(void *handle, 337 struct efi_boot_memmap *map, 338 void *priv, 339 efi_exit_boot_map_processing priv_func) 340 { 341 efi_status_t status; 342 343 status = efi_get_memory_map(map); 344 345 if (status != EFI_SUCCESS) 346 goto fail; 347 348 status = priv_func(map, priv); 349 if (status != EFI_SUCCESS) 350 goto free_map; 351 352 if (efi_disable_pci_dma) 353 efi_pci_disable_bridge_busmaster(); 354 355 status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); 356 357 if (status == EFI_INVALID_PARAMETER) { 358 /* 359 * The memory map changed between efi_get_memory_map() and 360 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: 361 * EFI_BOOT_SERVICES.ExitBootServices we need to get the 362 * updated map, and try again. The spec implies one retry 363 * should be sufficent, which is confirmed against the EDK2 364 * implementation. Per the spec, we can only invoke 365 * get_memory_map() and exit_boot_services() - we cannot alloc 366 * so efi_get_memory_map() cannot be used, and we must reuse 367 * the buffer. For all practical purposes, the headroom in the 368 * buffer should account for any changes in the map so the call 369 * to get_memory_map() is expected to succeed here. 370 */ 371 *map->map_size = *map->buff_size; 372 status = efi_bs_call(get_memory_map, 373 map->map_size, 374 *map->map, 375 map->key_ptr, 376 map->desc_size, 377 map->desc_ver); 378 379 /* exit_boot_services() was called, thus cannot free */ 380 if (status != EFI_SUCCESS) 381 goto fail; 382 383 status = priv_func(map, priv); 384 /* exit_boot_services() was called, thus cannot free */ 385 if (status != EFI_SUCCESS) 386 goto fail; 387 388 status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); 389 } 390 391 /* exit_boot_services() was called, thus cannot free */ 392 if (status != EFI_SUCCESS) 393 goto fail; 394 395 return EFI_SUCCESS; 396 397 free_map: 398 efi_bs_call(free_pool, *map->map); 399 fail: 400 return status; 401 } 402 403 /** 404 * get_efi_config_table() - retrieve UEFI configuration table 405 * @guid: GUID of the configuration table to be retrieved 406 * Return: pointer to the configuration table or NULL 407 */ 408 void *get_efi_config_table(efi_guid_t guid) 409 { 410 unsigned long tables = efi_table_attr(efi_system_table, tables); 411 int nr_tables = efi_table_attr(efi_system_table, nr_tables); 412 int i; 413 414 for (i = 0; i < nr_tables; i++) { 415 efi_config_table_t *t = (void *)tables; 416 417 if (efi_guidcmp(t->guid, guid) == 0) 418 return efi_table_attr(t, table); 419 420 tables += efi_is_native() ? sizeof(efi_config_table_t) 421 : sizeof(efi_config_table_32_t); 422 } 423 return NULL; 424 } 425 426 /* 427 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way 428 * for the firmware or bootloader to expose the initrd data directly to the stub 429 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is 430 * very easy to implement. It is a simple Linux initrd specific conduit between 431 * kernel and firmware, allowing us to put the EFI stub (being part of the 432 * kernel) in charge of where and when to load the initrd, while leaving it up 433 * to the firmware to decide whether it needs to expose its filesystem hierarchy 434 * via EFI protocols. 435 */ 436 static const struct { 437 struct efi_vendor_dev_path vendor; 438 struct efi_generic_dev_path end; 439 } __packed initrd_dev_path = { 440 { 441 { 442 EFI_DEV_MEDIA, 443 EFI_DEV_MEDIA_VENDOR, 444 sizeof(struct efi_vendor_dev_path), 445 }, 446 LINUX_EFI_INITRD_MEDIA_GUID 447 }, { 448 EFI_DEV_END_PATH, 449 EFI_DEV_END_ENTIRE, 450 sizeof(struct efi_generic_dev_path) 451 } 452 }; 453 454 /** 455 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path 456 * @load_addr: pointer to store the address where the initrd was loaded 457 * @load_size: pointer to store the size of the loaded initrd 458 * @max: upper limit for the initrd memory allocation 459 * 460 * Return: 461 * * %EFI_SUCCESS if the initrd was loaded successfully, in which 462 * case @load_addr and @load_size are assigned accordingly 463 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path 464 * * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL 465 * * %EFI_OUT_OF_RESOURCES if memory allocation failed 466 * * %EFI_LOAD_ERROR in all other cases 467 */ 468 static 469 efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr, 470 unsigned long *load_size, 471 unsigned long max) 472 { 473 efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; 474 efi_device_path_protocol_t *dp; 475 efi_load_file2_protocol_t *lf2; 476 unsigned long initrd_addr; 477 unsigned long initrd_size; 478 efi_handle_t handle; 479 efi_status_t status; 480 481 dp = (efi_device_path_protocol_t *)&initrd_dev_path; 482 status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); 483 if (status != EFI_SUCCESS) 484 return status; 485 486 status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, 487 (void **)&lf2); 488 if (status != EFI_SUCCESS) 489 return status; 490 491 status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL); 492 if (status != EFI_BUFFER_TOO_SMALL) 493 return EFI_LOAD_ERROR; 494 495 status = efi_allocate_pages(initrd_size, &initrd_addr, max); 496 if (status != EFI_SUCCESS) 497 return status; 498 499 status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, 500 (void *)initrd_addr); 501 if (status != EFI_SUCCESS) { 502 efi_free(initrd_size, initrd_addr); 503 return EFI_LOAD_ERROR; 504 } 505 506 *load_addr = initrd_addr; 507 *load_size = initrd_size; 508 return EFI_SUCCESS; 509 } 510 511 static 512 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, 513 unsigned long *load_addr, 514 unsigned long *load_size, 515 unsigned long soft_limit, 516 unsigned long hard_limit) 517 { 518 if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || 519 (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) { 520 *load_addr = *load_size = 0; 521 return EFI_SUCCESS; 522 } 523 524 return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, 525 soft_limit, hard_limit, 526 load_addr, load_size); 527 } 528 529 /** 530 * efi_load_initrd() - Load initial RAM disk 531 * @image: EFI loaded image protocol 532 * @load_addr: pointer to loaded initrd 533 * @load_size: size of loaded initrd 534 * @soft_limit: preferred size of allocated memory for loading the initrd 535 * @hard_limit: minimum size of allocated memory 536 * 537 * Return: status code 538 */ 539 efi_status_t efi_load_initrd(efi_loaded_image_t *image, 540 unsigned long *load_addr, 541 unsigned long *load_size, 542 unsigned long soft_limit, 543 unsigned long hard_limit) 544 { 545 efi_status_t status; 546 547 if (!load_addr || !load_size) 548 return EFI_INVALID_PARAMETER; 549 550 status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit); 551 if (status == EFI_SUCCESS) { 552 efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); 553 } else if (status == EFI_NOT_FOUND) { 554 status = efi_load_initrd_cmdline(image, load_addr, load_size, 555 soft_limit, hard_limit); 556 if (status == EFI_SUCCESS && *load_size > 0) 557 efi_info("Loaded initrd from command line option\n"); 558 } 559 560 return status; 561 } 562 563 /** 564 * efi_wait_for_key() - Wait for key stroke 565 * @usec: number of microseconds to wait for key stroke 566 * @key: key entered 567 * 568 * Wait for up to @usec microseconds for a key stroke. 569 * 570 * Return: status code, EFI_SUCCESS if key received 571 */ 572 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) 573 { 574 efi_event_t events[2], timer; 575 unsigned long index; 576 efi_simple_text_input_protocol_t *con_in; 577 efi_status_t status; 578 579 con_in = efi_table_attr(efi_system_table, con_in); 580 if (!con_in) 581 return EFI_UNSUPPORTED; 582 efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); 583 584 status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); 585 if (status != EFI_SUCCESS) 586 return status; 587 588 status = efi_bs_call(set_timer, timer, EfiTimerRelative, 589 EFI_100NSEC_PER_USEC * usec); 590 if (status != EFI_SUCCESS) 591 return status; 592 efi_set_event_at(events, 1, timer); 593 594 status = efi_bs_call(wait_for_event, 2, events, &index); 595 if (status == EFI_SUCCESS) { 596 if (index == 0) 597 status = efi_call_proto(con_in, read_keystroke, key); 598 else 599 status = EFI_TIMEOUT; 600 } 601 602 efi_bs_call(close_event, timer); 603 604 return status; 605 } 606