1 /* 2 * Helper functions used by the EFI stub on multiple 3 * architectures. This should be #included by the EFI stub 4 * implementation files. 5 * 6 * Copyright 2011 Intel Corporation; author Matt Fleming 7 * 8 * This file is part of the Linux kernel, and is made available 9 * under the terms of the GNU General Public License version 2. 10 * 11 */ 12 13 #include <linux/efi.h> 14 #include <asm/efi.h> 15 16 #include "efistub.h" 17 18 #define EFI_READ_CHUNK_SIZE (1024 * 1024) 19 20 struct file_info { 21 efi_file_handle_t *handle; 22 u64 size; 23 }; 24 25 void efi_printk(efi_system_table_t *sys_table_arg, char *str) 26 { 27 char *s8; 28 29 for (s8 = str; *s8; s8++) { 30 efi_char16_t ch[2] = { 0 }; 31 32 ch[0] = *s8; 33 if (*s8 == '\n') { 34 efi_char16_t nl[2] = { '\r', 0 }; 35 efi_char16_printk(sys_table_arg, nl); 36 } 37 38 efi_char16_printk(sys_table_arg, ch); 39 } 40 } 41 42 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, 43 efi_memory_desc_t **map, 44 unsigned long *map_size, 45 unsigned long *desc_size, 46 u32 *desc_ver, 47 unsigned long *key_ptr) 48 { 49 efi_memory_desc_t *m = NULL; 50 efi_status_t status; 51 unsigned long key; 52 u32 desc_version; 53 54 *map_size = sizeof(*m) * 32; 55 again: 56 /* 57 * Add an additional efi_memory_desc_t because we're doing an 58 * allocation which may be in a new descriptor region. 59 */ 60 *map_size += sizeof(*m); 61 status = efi_call_early(allocate_pool, EFI_LOADER_DATA, 62 *map_size, (void **)&m); 63 if (status != EFI_SUCCESS) 64 goto fail; 65 66 *desc_size = 0; 67 key = 0; 68 status = efi_call_early(get_memory_map, map_size, m, 69 &key, desc_size, &desc_version); 70 if (status == EFI_BUFFER_TOO_SMALL) { 71 efi_call_early(free_pool, m); 72 goto again; 73 } 74 75 if (status != EFI_SUCCESS) 76 efi_call_early(free_pool, m); 77 78 if (key_ptr && status == EFI_SUCCESS) 79 *key_ptr = key; 80 if (desc_ver && status == EFI_SUCCESS) 81 *desc_ver = desc_version; 82 83 fail: 84 *map = m; 85 return status; 86 } 87 88 89 unsigned long __init get_dram_base(efi_system_table_t *sys_table_arg) 90 { 91 efi_status_t status; 92 unsigned long map_size; 93 unsigned long membase = EFI_ERROR; 94 struct efi_memory_map map; 95 efi_memory_desc_t *md; 96 97 status = efi_get_memory_map(sys_table_arg, (efi_memory_desc_t **)&map.map, 98 &map_size, &map.desc_size, NULL, NULL); 99 if (status != EFI_SUCCESS) 100 return membase; 101 102 map.map_end = map.map + map_size; 103 104 for_each_efi_memory_desc(&map, md) 105 if (md->attribute & EFI_MEMORY_WB) 106 if (membase > md->phys_addr) 107 membase = md->phys_addr; 108 109 efi_call_early(free_pool, map.map); 110 111 return membase; 112 } 113 114 /* 115 * Allocate at the highest possible address that is not above 'max'. 116 */ 117 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, 118 unsigned long size, unsigned long align, 119 unsigned long *addr, unsigned long max) 120 { 121 unsigned long map_size, desc_size; 122 efi_memory_desc_t *map; 123 efi_status_t status; 124 unsigned long nr_pages; 125 u64 max_addr = 0; 126 int i; 127 128 status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, 129 NULL, NULL); 130 if (status != EFI_SUCCESS) 131 goto fail; 132 133 /* 134 * Enforce minimum alignment that EFI requires when requesting 135 * a specific address. We are doing page-based allocations, 136 * so we must be aligned to a page. 137 */ 138 if (align < EFI_PAGE_SIZE) 139 align = EFI_PAGE_SIZE; 140 141 nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; 142 again: 143 for (i = 0; i < map_size / desc_size; i++) { 144 efi_memory_desc_t *desc; 145 unsigned long m = (unsigned long)map; 146 u64 start, end; 147 148 desc = (efi_memory_desc_t *)(m + (i * desc_size)); 149 if (desc->type != EFI_CONVENTIONAL_MEMORY) 150 continue; 151 152 if (desc->num_pages < nr_pages) 153 continue; 154 155 start = desc->phys_addr; 156 end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); 157 158 if ((start + size) > end || (start + size) > max) 159 continue; 160 161 if (end - size > max) 162 end = max; 163 164 if (round_down(end - size, align) < start) 165 continue; 166 167 start = round_down(end - size, align); 168 169 /* 170 * Don't allocate at 0x0. It will confuse code that 171 * checks pointers against NULL. 172 */ 173 if (start == 0x0) 174 continue; 175 176 if (start > max_addr) 177 max_addr = start; 178 } 179 180 if (!max_addr) 181 status = EFI_NOT_FOUND; 182 else { 183 status = efi_call_early(allocate_pages, 184 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, 185 nr_pages, &max_addr); 186 if (status != EFI_SUCCESS) { 187 max = max_addr; 188 max_addr = 0; 189 goto again; 190 } 191 192 *addr = max_addr; 193 } 194 195 efi_call_early(free_pool, map); 196 fail: 197 return status; 198 } 199 200 /* 201 * Allocate at the lowest possible address. 202 */ 203 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, 204 unsigned long size, unsigned long align, 205 unsigned long *addr) 206 { 207 unsigned long map_size, desc_size; 208 efi_memory_desc_t *map; 209 efi_status_t status; 210 unsigned long nr_pages; 211 int i; 212 213 status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, 214 NULL, NULL); 215 if (status != EFI_SUCCESS) 216 goto fail; 217 218 /* 219 * Enforce minimum alignment that EFI requires when requesting 220 * a specific address. We are doing page-based allocations, 221 * so we must be aligned to a page. 222 */ 223 if (align < EFI_PAGE_SIZE) 224 align = EFI_PAGE_SIZE; 225 226 nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; 227 for (i = 0; i < map_size / desc_size; i++) { 228 efi_memory_desc_t *desc; 229 unsigned long m = (unsigned long)map; 230 u64 start, end; 231 232 desc = (efi_memory_desc_t *)(m + (i * desc_size)); 233 234 if (desc->type != EFI_CONVENTIONAL_MEMORY) 235 continue; 236 237 if (desc->num_pages < nr_pages) 238 continue; 239 240 start = desc->phys_addr; 241 end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); 242 243 /* 244 * Don't allocate at 0x0. It will confuse code that 245 * checks pointers against NULL. Skip the first 8 246 * bytes so we start at a nice even number. 247 */ 248 if (start == 0x0) 249 start += 8; 250 251 start = round_up(start, align); 252 if ((start + size) > end) 253 continue; 254 255 status = efi_call_early(allocate_pages, 256 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, 257 nr_pages, &start); 258 if (status == EFI_SUCCESS) { 259 *addr = start; 260 break; 261 } 262 } 263 264 if (i == map_size / desc_size) 265 status = EFI_NOT_FOUND; 266 267 efi_call_early(free_pool, map); 268 fail: 269 return status; 270 } 271 272 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, 273 unsigned long addr) 274 { 275 unsigned long nr_pages; 276 277 if (!size) 278 return; 279 280 nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; 281 efi_call_early(free_pages, addr, nr_pages); 282 } 283 284 285 /* 286 * Check the cmdline for a LILO-style file= arguments. 287 * 288 * We only support loading a file from the same filesystem as 289 * the kernel image. 290 */ 291 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg, 292 efi_loaded_image_t *image, 293 char *cmd_line, char *option_string, 294 unsigned long max_addr, 295 unsigned long *load_addr, 296 unsigned long *load_size) 297 { 298 struct file_info *files; 299 unsigned long file_addr; 300 u64 file_size_total; 301 efi_file_handle_t *fh = NULL; 302 efi_status_t status; 303 int nr_files; 304 char *str; 305 int i, j, k; 306 307 file_addr = 0; 308 file_size_total = 0; 309 310 str = cmd_line; 311 312 j = 0; /* See close_handles */ 313 314 if (!load_addr || !load_size) 315 return EFI_INVALID_PARAMETER; 316 317 *load_addr = 0; 318 *load_size = 0; 319 320 if (!str || !*str) 321 return EFI_SUCCESS; 322 323 for (nr_files = 0; *str; nr_files++) { 324 str = strstr(str, option_string); 325 if (!str) 326 break; 327 328 str += strlen(option_string); 329 330 /* Skip any leading slashes */ 331 while (*str == '/' || *str == '\\') 332 str++; 333 334 while (*str && *str != ' ' && *str != '\n') 335 str++; 336 } 337 338 if (!nr_files) 339 return EFI_SUCCESS; 340 341 status = efi_call_early(allocate_pool, EFI_LOADER_DATA, 342 nr_files * sizeof(*files), (void **)&files); 343 if (status != EFI_SUCCESS) { 344 pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n"); 345 goto fail; 346 } 347 348 str = cmd_line; 349 for (i = 0; i < nr_files; i++) { 350 struct file_info *file; 351 efi_char16_t filename_16[256]; 352 efi_char16_t *p; 353 354 str = strstr(str, option_string); 355 if (!str) 356 break; 357 358 str += strlen(option_string); 359 360 file = &files[i]; 361 p = filename_16; 362 363 /* Skip any leading slashes */ 364 while (*str == '/' || *str == '\\') 365 str++; 366 367 while (*str && *str != ' ' && *str != '\n') { 368 if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) 369 break; 370 371 if (*str == '/') { 372 *p++ = '\\'; 373 str++; 374 } else { 375 *p++ = *str++; 376 } 377 } 378 379 *p = '\0'; 380 381 /* Only open the volume once. */ 382 if (!i) { 383 status = efi_open_volume(sys_table_arg, image, 384 (void **)&fh); 385 if (status != EFI_SUCCESS) 386 goto free_files; 387 } 388 389 status = efi_file_size(sys_table_arg, fh, filename_16, 390 (void **)&file->handle, &file->size); 391 if (status != EFI_SUCCESS) 392 goto close_handles; 393 394 file_size_total += file->size; 395 } 396 397 if (file_size_total) { 398 unsigned long addr; 399 400 /* 401 * Multiple files need to be at consecutive addresses in memory, 402 * so allocate enough memory for all the files. This is used 403 * for loading multiple files. 404 */ 405 status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000, 406 &file_addr, max_addr); 407 if (status != EFI_SUCCESS) { 408 pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n"); 409 goto close_handles; 410 } 411 412 /* We've run out of free low memory. */ 413 if (file_addr > max_addr) { 414 pr_efi_err(sys_table_arg, "We've run out of free low memory\n"); 415 status = EFI_INVALID_PARAMETER; 416 goto free_file_total; 417 } 418 419 addr = file_addr; 420 for (j = 0; j < nr_files; j++) { 421 unsigned long size; 422 423 size = files[j].size; 424 while (size) { 425 unsigned long chunksize; 426 if (size > EFI_READ_CHUNK_SIZE) 427 chunksize = EFI_READ_CHUNK_SIZE; 428 else 429 chunksize = size; 430 431 status = efi_file_read(files[j].handle, 432 &chunksize, 433 (void *)addr); 434 if (status != EFI_SUCCESS) { 435 pr_efi_err(sys_table_arg, "Failed to read file\n"); 436 goto free_file_total; 437 } 438 addr += chunksize; 439 size -= chunksize; 440 } 441 442 efi_file_close(files[j].handle); 443 } 444 445 } 446 447 efi_call_early(free_pool, files); 448 449 *load_addr = file_addr; 450 *load_size = file_size_total; 451 452 return status; 453 454 free_file_total: 455 efi_free(sys_table_arg, file_size_total, file_addr); 456 457 close_handles: 458 for (k = j; k < i; k++) 459 efi_file_close(files[k].handle); 460 free_files: 461 efi_call_early(free_pool, files); 462 fail: 463 *load_addr = 0; 464 *load_size = 0; 465 466 return status; 467 } 468 /* 469 * Relocate a kernel image, either compressed or uncompressed. 470 * In the ARM64 case, all kernel images are currently 471 * uncompressed, and as such when we relocate it we need to 472 * allocate additional space for the BSS segment. Any low 473 * memory that this function should avoid needs to be 474 * unavailable in the EFI memory map, as if the preferred 475 * address is not available the lowest available address will 476 * be used. 477 */ 478 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, 479 unsigned long *image_addr, 480 unsigned long image_size, 481 unsigned long alloc_size, 482 unsigned long preferred_addr, 483 unsigned long alignment) 484 { 485 unsigned long cur_image_addr; 486 unsigned long new_addr = 0; 487 efi_status_t status; 488 unsigned long nr_pages; 489 efi_physical_addr_t efi_addr = preferred_addr; 490 491 if (!image_addr || !image_size || !alloc_size) 492 return EFI_INVALID_PARAMETER; 493 if (alloc_size < image_size) 494 return EFI_INVALID_PARAMETER; 495 496 cur_image_addr = *image_addr; 497 498 /* 499 * The EFI firmware loader could have placed the kernel image 500 * anywhere in memory, but the kernel has restrictions on the 501 * max physical address it can run at. Some architectures 502 * also have a prefered address, so first try to relocate 503 * to the preferred address. If that fails, allocate as low 504 * as possible while respecting the required alignment. 505 */ 506 nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; 507 status = efi_call_early(allocate_pages, 508 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, 509 nr_pages, &efi_addr); 510 new_addr = efi_addr; 511 /* 512 * If preferred address allocation failed allocate as low as 513 * possible. 514 */ 515 if (status != EFI_SUCCESS) { 516 status = efi_low_alloc(sys_table_arg, alloc_size, alignment, 517 &new_addr); 518 } 519 if (status != EFI_SUCCESS) { 520 pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n"); 521 return status; 522 } 523 524 /* 525 * We know source/dest won't overlap since both memory ranges 526 * have been allocated by UEFI, so we can safely use memcpy. 527 */ 528 memcpy((void *)new_addr, (void *)cur_image_addr, image_size); 529 530 /* Return the new address of the relocated image. */ 531 *image_addr = new_addr; 532 533 return status; 534 } 535 536 /* 537 * Get the number of UTF-8 bytes corresponding to an UTF-16 character. 538 * This overestimates for surrogates, but that is okay. 539 */ 540 static int efi_utf8_bytes(u16 c) 541 { 542 return 1 + (c >= 0x80) + (c >= 0x800); 543 } 544 545 /* 546 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. 547 */ 548 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) 549 { 550 unsigned int c; 551 552 while (n--) { 553 c = *src++; 554 if (n && c >= 0xd800 && c <= 0xdbff && 555 *src >= 0xdc00 && *src <= 0xdfff) { 556 c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); 557 src++; 558 n--; 559 } 560 if (c >= 0xd800 && c <= 0xdfff) 561 c = 0xfffd; /* Unmatched surrogate */ 562 if (c < 0x80) { 563 *dst++ = c; 564 continue; 565 } 566 if (c < 0x800) { 567 *dst++ = 0xc0 + (c >> 6); 568 goto t1; 569 } 570 if (c < 0x10000) { 571 *dst++ = 0xe0 + (c >> 12); 572 goto t2; 573 } 574 *dst++ = 0xf0 + (c >> 18); 575 *dst++ = 0x80 + ((c >> 12) & 0x3f); 576 t2: 577 *dst++ = 0x80 + ((c >> 6) & 0x3f); 578 t1: 579 *dst++ = 0x80 + (c & 0x3f); 580 } 581 582 return dst; 583 } 584 585 /* 586 * Convert the unicode UEFI command line to ASCII to pass to kernel. 587 * Size of memory allocated return in *cmd_line_len. 588 * Returns NULL on error. 589 */ 590 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, 591 efi_loaded_image_t *image, 592 int *cmd_line_len) 593 { 594 const u16 *s2; 595 u8 *s1 = NULL; 596 unsigned long cmdline_addr = 0; 597 int load_options_chars = image->load_options_size / 2; /* UTF-16 */ 598 const u16 *options = image->load_options; 599 int options_bytes = 0; /* UTF-8 bytes */ 600 int options_chars = 0; /* UTF-16 chars */ 601 efi_status_t status; 602 u16 zero = 0; 603 604 if (options) { 605 s2 = options; 606 while (*s2 && *s2 != '\n' 607 && options_chars < load_options_chars) { 608 options_bytes += efi_utf8_bytes(*s2++); 609 options_chars++; 610 } 611 } 612 613 if (!options_chars) { 614 /* No command line options, so return empty string*/ 615 options = &zero; 616 } 617 618 options_bytes++; /* NUL termination */ 619 620 status = efi_low_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr); 621 if (status != EFI_SUCCESS) 622 return NULL; 623 624 s1 = (u8 *)cmdline_addr; 625 s2 = (const u16 *)options; 626 627 s1 = efi_utf16_to_utf8(s1, s2, options_chars); 628 *s1 = '\0'; 629 630 *cmd_line_len = options_bytes; 631 return (char *)cmdline_addr; 632 } 633