xref: /openbmc/linux/drivers/firmware/efi/libstub/efi-stub-helper.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2011 Intel Corporation; author Matt Fleming
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * Some firmware implementations have problems reading files in one go.
20  * A read chunk size of 1MB seems to work for most platforms.
21  *
22  * Unfortunately, reading files in chunks triggers *other* bugs on some
23  * platforms, so we provide a way to disable this workaround, which can
24  * be done by passing "efi=nochunk" on the EFI boot stub command line.
25  *
26  * If you experience issues with initrd images being corrupt it's worth
27  * trying efi=nochunk, but chunking is enabled by default because there
28  * are far more machines that require the workaround than those that
29  * break with it enabled.
30  */
31 #define EFI_READ_CHUNK_SIZE	(1024 * 1024)
32 
33 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
34 
35 static int __section(.data) __nokaslr;
36 static int __section(.data) __quiet;
37 
38 int __pure nokaslr(void)
39 {
40 	return __nokaslr;
41 }
42 int __pure is_quiet(void)
43 {
44 	return __quiet;
45 }
46 
47 #define EFI_MMAP_NR_SLACK_SLOTS	8
48 
49 struct file_info {
50 	efi_file_handle_t *handle;
51 	u64 size;
52 };
53 
54 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
55 {
56 	char *s8;
57 
58 	for (s8 = str; *s8; s8++) {
59 		efi_char16_t ch[2] = { 0 };
60 
61 		ch[0] = *s8;
62 		if (*s8 == '\n') {
63 			efi_char16_t nl[2] = { '\r', 0 };
64 			efi_char16_printk(sys_table_arg, nl);
65 		}
66 
67 		efi_char16_printk(sys_table_arg, ch);
68 	}
69 }
70 
71 static inline bool mmap_has_headroom(unsigned long buff_size,
72 				     unsigned long map_size,
73 				     unsigned long desc_size)
74 {
75 	unsigned long slack = buff_size - map_size;
76 
77 	return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
78 }
79 
80 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
81 				struct efi_boot_memmap *map)
82 {
83 	efi_memory_desc_t *m = NULL;
84 	efi_status_t status;
85 	unsigned long key;
86 	u32 desc_version;
87 
88 	*map->desc_size =	sizeof(*m);
89 	*map->map_size =	*map->desc_size * 32;
90 	*map->buff_size =	*map->map_size;
91 again:
92 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
93 				*map->map_size, (void **)&m);
94 	if (status != EFI_SUCCESS)
95 		goto fail;
96 
97 	*map->desc_size = 0;
98 	key = 0;
99 	status = efi_call_early(get_memory_map, map->map_size, m,
100 				&key, map->desc_size, &desc_version);
101 	if (status == EFI_BUFFER_TOO_SMALL ||
102 	    !mmap_has_headroom(*map->buff_size, *map->map_size,
103 			       *map->desc_size)) {
104 		efi_call_early(free_pool, m);
105 		/*
106 		 * Make sure there is some entries of headroom so that the
107 		 * buffer can be reused for a new map after allocations are
108 		 * no longer permitted.  Its unlikely that the map will grow to
109 		 * exceed this headroom once we are ready to trigger
110 		 * ExitBootServices()
111 		 */
112 		*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
113 		*map->buff_size = *map->map_size;
114 		goto again;
115 	}
116 
117 	if (status != EFI_SUCCESS)
118 		efi_call_early(free_pool, m);
119 
120 	if (map->key_ptr && status == EFI_SUCCESS)
121 		*map->key_ptr = key;
122 	if (map->desc_ver && status == EFI_SUCCESS)
123 		*map->desc_ver = desc_version;
124 
125 fail:
126 	*map->map = m;
127 	return status;
128 }
129 
130 
131 unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
132 {
133 	efi_status_t status;
134 	unsigned long map_size, buff_size;
135 	unsigned long membase  = EFI_ERROR;
136 	struct efi_memory_map map;
137 	efi_memory_desc_t *md;
138 	struct efi_boot_memmap boot_map;
139 
140 	boot_map.map =		(efi_memory_desc_t **)&map.map;
141 	boot_map.map_size =	&map_size;
142 	boot_map.desc_size =	&map.desc_size;
143 	boot_map.desc_ver =	NULL;
144 	boot_map.key_ptr =	NULL;
145 	boot_map.buff_size =	&buff_size;
146 
147 	status = efi_get_memory_map(sys_table_arg, &boot_map);
148 	if (status != EFI_SUCCESS)
149 		return membase;
150 
151 	map.map_end = map.map + map_size;
152 
153 	for_each_efi_memory_desc_in_map(&map, md) {
154 		if (md->attribute & EFI_MEMORY_WB) {
155 			if (membase > md->phys_addr)
156 				membase = md->phys_addr;
157 		}
158 	}
159 
160 	efi_call_early(free_pool, map.map);
161 
162 	return membase;
163 }
164 
165 /*
166  * Allocate at the highest possible address that is not above 'max'.
167  */
168 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
169 			    unsigned long size, unsigned long align,
170 			    unsigned long *addr, unsigned long max)
171 {
172 	unsigned long map_size, desc_size, buff_size;
173 	efi_memory_desc_t *map;
174 	efi_status_t status;
175 	unsigned long nr_pages;
176 	u64 max_addr = 0;
177 	int i;
178 	struct efi_boot_memmap boot_map;
179 
180 	boot_map.map =		&map;
181 	boot_map.map_size =	&map_size;
182 	boot_map.desc_size =	&desc_size;
183 	boot_map.desc_ver =	NULL;
184 	boot_map.key_ptr =	NULL;
185 	boot_map.buff_size =	&buff_size;
186 
187 	status = efi_get_memory_map(sys_table_arg, &boot_map);
188 	if (status != EFI_SUCCESS)
189 		goto fail;
190 
191 	/*
192 	 * Enforce minimum alignment that EFI or Linux requires when
193 	 * requesting a specific address.  We are doing page-based (or
194 	 * larger) allocations, and both the address and size must meet
195 	 * alignment constraints.
196 	 */
197 	if (align < EFI_ALLOC_ALIGN)
198 		align = EFI_ALLOC_ALIGN;
199 
200 	size = round_up(size, EFI_ALLOC_ALIGN);
201 	nr_pages = size / EFI_PAGE_SIZE;
202 again:
203 	for (i = 0; i < map_size / desc_size; i++) {
204 		efi_memory_desc_t *desc;
205 		unsigned long m = (unsigned long)map;
206 		u64 start, end;
207 
208 		desc = efi_early_memdesc_ptr(m, desc_size, i);
209 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
210 			continue;
211 
212 		if (desc->num_pages < nr_pages)
213 			continue;
214 
215 		start = desc->phys_addr;
216 		end = start + desc->num_pages * EFI_PAGE_SIZE;
217 
218 		if (end > max)
219 			end = max;
220 
221 		if ((start + size) > end)
222 			continue;
223 
224 		if (round_down(end - size, align) < start)
225 			continue;
226 
227 		start = round_down(end - size, align);
228 
229 		/*
230 		 * Don't allocate at 0x0. It will confuse code that
231 		 * checks pointers against NULL.
232 		 */
233 		if (start == 0x0)
234 			continue;
235 
236 		if (start > max_addr)
237 			max_addr = start;
238 	}
239 
240 	if (!max_addr)
241 		status = EFI_NOT_FOUND;
242 	else {
243 		status = efi_call_early(allocate_pages,
244 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
245 					nr_pages, &max_addr);
246 		if (status != EFI_SUCCESS) {
247 			max = max_addr;
248 			max_addr = 0;
249 			goto again;
250 		}
251 
252 		*addr = max_addr;
253 	}
254 
255 	efi_call_early(free_pool, map);
256 fail:
257 	return status;
258 }
259 
260 /*
261  * Allocate at the lowest possible address.
262  */
263 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
264 			   unsigned long size, unsigned long align,
265 			   unsigned long *addr)
266 {
267 	unsigned long map_size, desc_size, buff_size;
268 	efi_memory_desc_t *map;
269 	efi_status_t status;
270 	unsigned long nr_pages;
271 	int i;
272 	struct efi_boot_memmap boot_map;
273 
274 	boot_map.map =		&map;
275 	boot_map.map_size =	&map_size;
276 	boot_map.desc_size =	&desc_size;
277 	boot_map.desc_ver =	NULL;
278 	boot_map.key_ptr =	NULL;
279 	boot_map.buff_size =	&buff_size;
280 
281 	status = efi_get_memory_map(sys_table_arg, &boot_map);
282 	if (status != EFI_SUCCESS)
283 		goto fail;
284 
285 	/*
286 	 * Enforce minimum alignment that EFI or Linux requires when
287 	 * requesting a specific address.  We are doing page-based (or
288 	 * larger) allocations, and both the address and size must meet
289 	 * alignment constraints.
290 	 */
291 	if (align < EFI_ALLOC_ALIGN)
292 		align = EFI_ALLOC_ALIGN;
293 
294 	size = round_up(size, EFI_ALLOC_ALIGN);
295 	nr_pages = size / EFI_PAGE_SIZE;
296 	for (i = 0; i < map_size / desc_size; i++) {
297 		efi_memory_desc_t *desc;
298 		unsigned long m = (unsigned long)map;
299 		u64 start, end;
300 
301 		desc = efi_early_memdesc_ptr(m, desc_size, i);
302 
303 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
304 			continue;
305 
306 		if (desc->num_pages < nr_pages)
307 			continue;
308 
309 		start = desc->phys_addr;
310 		end = start + desc->num_pages * EFI_PAGE_SIZE;
311 
312 		/*
313 		 * Don't allocate at 0x0. It will confuse code that
314 		 * checks pointers against NULL. Skip the first 8
315 		 * bytes so we start at a nice even number.
316 		 */
317 		if (start == 0x0)
318 			start += 8;
319 
320 		start = round_up(start, align);
321 		if ((start + size) > end)
322 			continue;
323 
324 		status = efi_call_early(allocate_pages,
325 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
326 					nr_pages, &start);
327 		if (status == EFI_SUCCESS) {
328 			*addr = start;
329 			break;
330 		}
331 	}
332 
333 	if (i == map_size / desc_size)
334 		status = EFI_NOT_FOUND;
335 
336 	efi_call_early(free_pool, map);
337 fail:
338 	return status;
339 }
340 
341 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
342 	      unsigned long addr)
343 {
344 	unsigned long nr_pages;
345 
346 	if (!size)
347 		return;
348 
349 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
350 	efi_call_early(free_pages, addr, nr_pages);
351 }
352 
353 static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
354 				  efi_char16_t *filename_16, void **handle,
355 				  u64 *file_sz)
356 {
357 	efi_file_handle_t *h, *fh = __fh;
358 	efi_file_info_t *info;
359 	efi_status_t status;
360 	efi_guid_t info_guid = EFI_FILE_INFO_ID;
361 	unsigned long info_sz;
362 
363 	status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16,
364 				EFI_FILE_MODE_READ, (u64)0);
365 	if (status != EFI_SUCCESS) {
366 		efi_printk(sys_table_arg, "Failed to open file: ");
367 		efi_char16_printk(sys_table_arg, filename_16);
368 		efi_printk(sys_table_arg, "\n");
369 		return status;
370 	}
371 
372 	*handle = h;
373 
374 	info_sz = 0;
375 	status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
376 				&info_sz, NULL);
377 	if (status != EFI_BUFFER_TOO_SMALL) {
378 		efi_printk(sys_table_arg, "Failed to get file info size\n");
379 		return status;
380 	}
381 
382 grow:
383 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
384 				info_sz, (void **)&info);
385 	if (status != EFI_SUCCESS) {
386 		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
387 		return status;
388 	}
389 
390 	status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
391 				&info_sz, info);
392 	if (status == EFI_BUFFER_TOO_SMALL) {
393 		efi_call_early(free_pool, info);
394 		goto grow;
395 	}
396 
397 	*file_sz = info->file_size;
398 	efi_call_early(free_pool, info);
399 
400 	if (status != EFI_SUCCESS)
401 		efi_printk(sys_table_arg, "Failed to get initrd info\n");
402 
403 	return status;
404 }
405 
406 static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr)
407 {
408 	return efi_call_proto(efi_file_handle, read, handle, size, addr);
409 }
410 
411 static efi_status_t efi_file_close(void *handle)
412 {
413 	return efi_call_proto(efi_file_handle, close, handle);
414 }
415 
416 static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
417 				    efi_loaded_image_t *image,
418 				    efi_file_handle_t **__fh)
419 {
420 	efi_file_io_interface_t *io;
421 	efi_file_handle_t *fh;
422 	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
423 	efi_status_t status;
424 	void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image,
425 							     device_handle,
426 							     image);
427 
428 	status = efi_call_early(handle_protocol, handle,
429 				&fs_proto, (void **)&io);
430 	if (status != EFI_SUCCESS) {
431 		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
432 		return status;
433 	}
434 
435 	status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh);
436 	if (status != EFI_SUCCESS)
437 		efi_printk(sys_table_arg, "Failed to open volume\n");
438 	else
439 		*__fh = fh;
440 
441 	return status;
442 }
443 
444 /*
445  * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
446  * option, e.g. efi=nochunk.
447  *
448  * It should be noted that efi= is parsed in two very different
449  * environments, first in the early boot environment of the EFI boot
450  * stub, and subsequently during the kernel boot.
451  */
452 efi_status_t efi_parse_options(char const *cmdline)
453 {
454 	char *str;
455 
456 	str = strstr(cmdline, "nokaslr");
457 	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
458 		__nokaslr = 1;
459 
460 	str = strstr(cmdline, "quiet");
461 	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
462 		__quiet = 1;
463 
464 	/*
465 	 * If no EFI parameters were specified on the cmdline we've got
466 	 * nothing to do.
467 	 */
468 	str = strstr(cmdline, "efi=");
469 	if (!str)
470 		return EFI_SUCCESS;
471 
472 	/* Skip ahead to first argument */
473 	str += strlen("efi=");
474 
475 	/*
476 	 * Remember, because efi= is also used by the kernel we need to
477 	 * skip over arguments we don't understand.
478 	 */
479 	while (*str && *str != ' ') {
480 		if (!strncmp(str, "nochunk", 7)) {
481 			str += strlen("nochunk");
482 			__chunk_size = -1UL;
483 		}
484 
485 		/* Group words together, delimited by "," */
486 		while (*str && *str != ' ' && *str != ',')
487 			str++;
488 
489 		if (*str == ',')
490 			str++;
491 	}
492 
493 	return EFI_SUCCESS;
494 }
495 
496 /*
497  * Check the cmdline for a LILO-style file= arguments.
498  *
499  * We only support loading a file from the same filesystem as
500  * the kernel image.
501  */
502 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
503 				  efi_loaded_image_t *image,
504 				  char *cmd_line, char *option_string,
505 				  unsigned long max_addr,
506 				  unsigned long *load_addr,
507 				  unsigned long *load_size)
508 {
509 	struct file_info *files;
510 	unsigned long file_addr;
511 	u64 file_size_total;
512 	efi_file_handle_t *fh = NULL;
513 	efi_status_t status;
514 	int nr_files;
515 	char *str;
516 	int i, j, k;
517 
518 	file_addr = 0;
519 	file_size_total = 0;
520 
521 	str = cmd_line;
522 
523 	j = 0;			/* See close_handles */
524 
525 	if (!load_addr || !load_size)
526 		return EFI_INVALID_PARAMETER;
527 
528 	*load_addr = 0;
529 	*load_size = 0;
530 
531 	if (!str || !*str)
532 		return EFI_SUCCESS;
533 
534 	for (nr_files = 0; *str; nr_files++) {
535 		str = strstr(str, option_string);
536 		if (!str)
537 			break;
538 
539 		str += strlen(option_string);
540 
541 		/* Skip any leading slashes */
542 		while (*str == '/' || *str == '\\')
543 			str++;
544 
545 		while (*str && *str != ' ' && *str != '\n')
546 			str++;
547 	}
548 
549 	if (!nr_files)
550 		return EFI_SUCCESS;
551 
552 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
553 				nr_files * sizeof(*files), (void **)&files);
554 	if (status != EFI_SUCCESS) {
555 		pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
556 		goto fail;
557 	}
558 
559 	str = cmd_line;
560 	for (i = 0; i < nr_files; i++) {
561 		struct file_info *file;
562 		efi_char16_t filename_16[256];
563 		efi_char16_t *p;
564 
565 		str = strstr(str, option_string);
566 		if (!str)
567 			break;
568 
569 		str += strlen(option_string);
570 
571 		file = &files[i];
572 		p = filename_16;
573 
574 		/* Skip any leading slashes */
575 		while (*str == '/' || *str == '\\')
576 			str++;
577 
578 		while (*str && *str != ' ' && *str != '\n') {
579 			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
580 				break;
581 
582 			if (*str == '/') {
583 				*p++ = '\\';
584 				str++;
585 			} else {
586 				*p++ = *str++;
587 			}
588 		}
589 
590 		*p = '\0';
591 
592 		/* Only open the volume once. */
593 		if (!i) {
594 			status = efi_open_volume(sys_table_arg, image, &fh);
595 			if (status != EFI_SUCCESS)
596 				goto free_files;
597 		}
598 
599 		status = efi_file_size(sys_table_arg, fh, filename_16,
600 				       (void **)&file->handle, &file->size);
601 		if (status != EFI_SUCCESS)
602 			goto close_handles;
603 
604 		file_size_total += file->size;
605 	}
606 
607 	if (file_size_total) {
608 		unsigned long addr;
609 
610 		/*
611 		 * Multiple files need to be at consecutive addresses in memory,
612 		 * so allocate enough memory for all the files.  This is used
613 		 * for loading multiple files.
614 		 */
615 		status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
616 				    &file_addr, max_addr);
617 		if (status != EFI_SUCCESS) {
618 			pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
619 			goto close_handles;
620 		}
621 
622 		/* We've run out of free low memory. */
623 		if (file_addr > max_addr) {
624 			pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
625 			status = EFI_INVALID_PARAMETER;
626 			goto free_file_total;
627 		}
628 
629 		addr = file_addr;
630 		for (j = 0; j < nr_files; j++) {
631 			unsigned long size;
632 
633 			size = files[j].size;
634 			while (size) {
635 				unsigned long chunksize;
636 
637 				if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
638 					chunksize = __chunk_size;
639 				else
640 					chunksize = size;
641 
642 				status = efi_file_read(files[j].handle,
643 						       &chunksize,
644 						       (void *)addr);
645 				if (status != EFI_SUCCESS) {
646 					pr_efi_err(sys_table_arg, "Failed to read file\n");
647 					goto free_file_total;
648 				}
649 				addr += chunksize;
650 				size -= chunksize;
651 			}
652 
653 			efi_file_close(files[j].handle);
654 		}
655 
656 	}
657 
658 	efi_call_early(free_pool, files);
659 
660 	*load_addr = file_addr;
661 	*load_size = file_size_total;
662 
663 	return status;
664 
665 free_file_total:
666 	efi_free(sys_table_arg, file_size_total, file_addr);
667 
668 close_handles:
669 	for (k = j; k < i; k++)
670 		efi_file_close(files[k].handle);
671 free_files:
672 	efi_call_early(free_pool, files);
673 fail:
674 	*load_addr = 0;
675 	*load_size = 0;
676 
677 	return status;
678 }
679 /*
680  * Relocate a kernel image, either compressed or uncompressed.
681  * In the ARM64 case, all kernel images are currently
682  * uncompressed, and as such when we relocate it we need to
683  * allocate additional space for the BSS segment. Any low
684  * memory that this function should avoid needs to be
685  * unavailable in the EFI memory map, as if the preferred
686  * address is not available the lowest available address will
687  * be used.
688  */
689 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
690 				 unsigned long *image_addr,
691 				 unsigned long image_size,
692 				 unsigned long alloc_size,
693 				 unsigned long preferred_addr,
694 				 unsigned long alignment)
695 {
696 	unsigned long cur_image_addr;
697 	unsigned long new_addr = 0;
698 	efi_status_t status;
699 	unsigned long nr_pages;
700 	efi_physical_addr_t efi_addr = preferred_addr;
701 
702 	if (!image_addr || !image_size || !alloc_size)
703 		return EFI_INVALID_PARAMETER;
704 	if (alloc_size < image_size)
705 		return EFI_INVALID_PARAMETER;
706 
707 	cur_image_addr = *image_addr;
708 
709 	/*
710 	 * The EFI firmware loader could have placed the kernel image
711 	 * anywhere in memory, but the kernel has restrictions on the
712 	 * max physical address it can run at.  Some architectures
713 	 * also have a prefered address, so first try to relocate
714 	 * to the preferred address.  If that fails, allocate as low
715 	 * as possible while respecting the required alignment.
716 	 */
717 	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
718 	status = efi_call_early(allocate_pages,
719 				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
720 				nr_pages, &efi_addr);
721 	new_addr = efi_addr;
722 	/*
723 	 * If preferred address allocation failed allocate as low as
724 	 * possible.
725 	 */
726 	if (status != EFI_SUCCESS) {
727 		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
728 				       &new_addr);
729 	}
730 	if (status != EFI_SUCCESS) {
731 		pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
732 		return status;
733 	}
734 
735 	/*
736 	 * We know source/dest won't overlap since both memory ranges
737 	 * have been allocated by UEFI, so we can safely use memcpy.
738 	 */
739 	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
740 
741 	/* Return the new address of the relocated image. */
742 	*image_addr = new_addr;
743 
744 	return status;
745 }
746 
747 /*
748  * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
749  * This overestimates for surrogates, but that is okay.
750  */
751 static int efi_utf8_bytes(u16 c)
752 {
753 	return 1 + (c >= 0x80) + (c >= 0x800);
754 }
755 
756 /*
757  * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
758  */
759 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
760 {
761 	unsigned int c;
762 
763 	while (n--) {
764 		c = *src++;
765 		if (n && c >= 0xd800 && c <= 0xdbff &&
766 		    *src >= 0xdc00 && *src <= 0xdfff) {
767 			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
768 			src++;
769 			n--;
770 		}
771 		if (c >= 0xd800 && c <= 0xdfff)
772 			c = 0xfffd; /* Unmatched surrogate */
773 		if (c < 0x80) {
774 			*dst++ = c;
775 			continue;
776 		}
777 		if (c < 0x800) {
778 			*dst++ = 0xc0 + (c >> 6);
779 			goto t1;
780 		}
781 		if (c < 0x10000) {
782 			*dst++ = 0xe0 + (c >> 12);
783 			goto t2;
784 		}
785 		*dst++ = 0xf0 + (c >> 18);
786 		*dst++ = 0x80 + ((c >> 12) & 0x3f);
787 	t2:
788 		*dst++ = 0x80 + ((c >> 6) & 0x3f);
789 	t1:
790 		*dst++ = 0x80 + (c & 0x3f);
791 	}
792 
793 	return dst;
794 }
795 
796 #ifndef MAX_CMDLINE_ADDRESS
797 #define MAX_CMDLINE_ADDRESS	ULONG_MAX
798 #endif
799 
800 /*
801  * Convert the unicode UEFI command line to ASCII to pass to kernel.
802  * Size of memory allocated return in *cmd_line_len.
803  * Returns NULL on error.
804  */
805 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
806 			  efi_loaded_image_t *image,
807 			  int *cmd_line_len)
808 {
809 	const u16 *s2;
810 	u8 *s1 = NULL;
811 	unsigned long cmdline_addr = 0;
812 	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
813 	const u16 *options = image->load_options;
814 	int options_bytes = 0;  /* UTF-8 bytes */
815 	int options_chars = 0;  /* UTF-16 chars */
816 	efi_status_t status;
817 	u16 zero = 0;
818 
819 	if (options) {
820 		s2 = options;
821 		while (*s2 && *s2 != '\n'
822 		       && options_chars < load_options_chars) {
823 			options_bytes += efi_utf8_bytes(*s2++);
824 			options_chars++;
825 		}
826 	}
827 
828 	if (!options_chars) {
829 		/* No command line options, so return empty string*/
830 		options = &zero;
831 	}
832 
833 	options_bytes++;	/* NUL termination */
834 
835 	status = efi_high_alloc(sys_table_arg, options_bytes, 0,
836 				&cmdline_addr, MAX_CMDLINE_ADDRESS);
837 	if (status != EFI_SUCCESS)
838 		return NULL;
839 
840 	s1 = (u8 *)cmdline_addr;
841 	s2 = (const u16 *)options;
842 
843 	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
844 	*s1 = '\0';
845 
846 	*cmd_line_len = options_bytes;
847 	return (char *)cmdline_addr;
848 }
849 
850 /*
851  * Handle calling ExitBootServices according to the requirements set out by the
852  * spec.  Obtains the current memory map, and returns that info after calling
853  * ExitBootServices.  The client must specify a function to perform any
854  * processing of the memory map data prior to ExitBootServices.  A client
855  * specific structure may be passed to the function via priv.  The client
856  * function may be called multiple times.
857  */
858 efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
859 				    void *handle,
860 				    struct efi_boot_memmap *map,
861 				    void *priv,
862 				    efi_exit_boot_map_processing priv_func)
863 {
864 	efi_status_t status;
865 
866 	status = efi_get_memory_map(sys_table_arg, map);
867 
868 	if (status != EFI_SUCCESS)
869 		goto fail;
870 
871 	status = priv_func(sys_table_arg, map, priv);
872 	if (status != EFI_SUCCESS)
873 		goto free_map;
874 
875 	status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
876 
877 	if (status == EFI_INVALID_PARAMETER) {
878 		/*
879 		 * The memory map changed between efi_get_memory_map() and
880 		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
881 		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
882 		 * updated map, and try again.  The spec implies one retry
883 		 * should be sufficent, which is confirmed against the EDK2
884 		 * implementation.  Per the spec, we can only invoke
885 		 * get_memory_map() and exit_boot_services() - we cannot alloc
886 		 * so efi_get_memory_map() cannot be used, and we must reuse
887 		 * the buffer.  For all practical purposes, the headroom in the
888 		 * buffer should account for any changes in the map so the call
889 		 * to get_memory_map() is expected to succeed here.
890 		 */
891 		*map->map_size = *map->buff_size;
892 		status = efi_call_early(get_memory_map,
893 					map->map_size,
894 					*map->map,
895 					map->key_ptr,
896 					map->desc_size,
897 					map->desc_ver);
898 
899 		/* exit_boot_services() was called, thus cannot free */
900 		if (status != EFI_SUCCESS)
901 			goto fail;
902 
903 		status = priv_func(sys_table_arg, map, priv);
904 		/* exit_boot_services() was called, thus cannot free */
905 		if (status != EFI_SUCCESS)
906 			goto fail;
907 
908 		status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
909 	}
910 
911 	/* exit_boot_services() was called, thus cannot free */
912 	if (status != EFI_SUCCESS)
913 		goto fail;
914 
915 	return EFI_SUCCESS;
916 
917 free_map:
918 	efi_call_early(free_pool, *map->map);
919 fail:
920 	return status;
921 }
922