xref: /openbmc/linux/drivers/firmware/efi/libstub/efi-stub-helper.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2011 Intel Corporation; author Matt Fleming
8  */
9 
10 #include <linux/efi.h>
11 #include <asm/efi.h>
12 
13 #include "efistub.h"
14 
15 /*
16  * Some firmware implementations have problems reading files in one go.
17  * A read chunk size of 1MB seems to work for most platforms.
18  *
19  * Unfortunately, reading files in chunks triggers *other* bugs on some
20  * platforms, so we provide a way to disable this workaround, which can
21  * be done by passing "efi=nochunk" on the EFI boot stub command line.
22  *
23  * If you experience issues with initrd images being corrupt it's worth
24  * trying efi=nochunk, but chunking is enabled by default because there
25  * are far more machines that require the workaround than those that
26  * break with it enabled.
27  */
28 #define EFI_READ_CHUNK_SIZE	(1024 * 1024)
29 
30 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
31 
32 static int __section(.data) __nokaslr;
33 static int __section(.data) __quiet;
34 static int __section(.data) __novamap;
35 
36 int __pure nokaslr(void)
37 {
38 	return __nokaslr;
39 }
40 int __pure is_quiet(void)
41 {
42 	return __quiet;
43 }
44 int __pure novamap(void)
45 {
46 	return __novamap;
47 }
48 
49 #define EFI_MMAP_NR_SLACK_SLOTS	8
50 
51 struct file_info {
52 	efi_file_handle_t *handle;
53 	u64 size;
54 };
55 
56 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
57 {
58 	char *s8;
59 
60 	for (s8 = str; *s8; s8++) {
61 		efi_char16_t ch[2] = { 0 };
62 
63 		ch[0] = *s8;
64 		if (*s8 == '\n') {
65 			efi_char16_t nl[2] = { '\r', 0 };
66 			efi_char16_printk(sys_table_arg, nl);
67 		}
68 
69 		efi_char16_printk(sys_table_arg, ch);
70 	}
71 }
72 
73 static inline bool mmap_has_headroom(unsigned long buff_size,
74 				     unsigned long map_size,
75 				     unsigned long desc_size)
76 {
77 	unsigned long slack = buff_size - map_size;
78 
79 	return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
80 }
81 
82 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
83 				struct efi_boot_memmap *map)
84 {
85 	efi_memory_desc_t *m = NULL;
86 	efi_status_t status;
87 	unsigned long key;
88 	u32 desc_version;
89 
90 	*map->desc_size =	sizeof(*m);
91 	*map->map_size =	*map->desc_size * 32;
92 	*map->buff_size =	*map->map_size;
93 again:
94 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
95 				*map->map_size, (void **)&m);
96 	if (status != EFI_SUCCESS)
97 		goto fail;
98 
99 	*map->desc_size = 0;
100 	key = 0;
101 	status = efi_call_early(get_memory_map, map->map_size, m,
102 				&key, map->desc_size, &desc_version);
103 	if (status == EFI_BUFFER_TOO_SMALL ||
104 	    !mmap_has_headroom(*map->buff_size, *map->map_size,
105 			       *map->desc_size)) {
106 		efi_call_early(free_pool, m);
107 		/*
108 		 * Make sure there is some entries of headroom so that the
109 		 * buffer can be reused for a new map after allocations are
110 		 * no longer permitted.  Its unlikely that the map will grow to
111 		 * exceed this headroom once we are ready to trigger
112 		 * ExitBootServices()
113 		 */
114 		*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
115 		*map->buff_size = *map->map_size;
116 		goto again;
117 	}
118 
119 	if (status != EFI_SUCCESS)
120 		efi_call_early(free_pool, m);
121 
122 	if (map->key_ptr && status == EFI_SUCCESS)
123 		*map->key_ptr = key;
124 	if (map->desc_ver && status == EFI_SUCCESS)
125 		*map->desc_ver = desc_version;
126 
127 fail:
128 	*map->map = m;
129 	return status;
130 }
131 
132 
133 unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
134 {
135 	efi_status_t status;
136 	unsigned long map_size, buff_size;
137 	unsigned long membase  = EFI_ERROR;
138 	struct efi_memory_map map;
139 	efi_memory_desc_t *md;
140 	struct efi_boot_memmap boot_map;
141 
142 	boot_map.map =		(efi_memory_desc_t **)&map.map;
143 	boot_map.map_size =	&map_size;
144 	boot_map.desc_size =	&map.desc_size;
145 	boot_map.desc_ver =	NULL;
146 	boot_map.key_ptr =	NULL;
147 	boot_map.buff_size =	&buff_size;
148 
149 	status = efi_get_memory_map(sys_table_arg, &boot_map);
150 	if (status != EFI_SUCCESS)
151 		return membase;
152 
153 	map.map_end = map.map + map_size;
154 
155 	for_each_efi_memory_desc_in_map(&map, md) {
156 		if (md->attribute & EFI_MEMORY_WB) {
157 			if (membase > md->phys_addr)
158 				membase = md->phys_addr;
159 		}
160 	}
161 
162 	efi_call_early(free_pool, map.map);
163 
164 	return membase;
165 }
166 
167 /*
168  * Allocate at the highest possible address that is not above 'max'.
169  */
170 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
171 			    unsigned long size, unsigned long align,
172 			    unsigned long *addr, unsigned long max)
173 {
174 	unsigned long map_size, desc_size, buff_size;
175 	efi_memory_desc_t *map;
176 	efi_status_t status;
177 	unsigned long nr_pages;
178 	u64 max_addr = 0;
179 	int i;
180 	struct efi_boot_memmap boot_map;
181 
182 	boot_map.map =		&map;
183 	boot_map.map_size =	&map_size;
184 	boot_map.desc_size =	&desc_size;
185 	boot_map.desc_ver =	NULL;
186 	boot_map.key_ptr =	NULL;
187 	boot_map.buff_size =	&buff_size;
188 
189 	status = efi_get_memory_map(sys_table_arg, &boot_map);
190 	if (status != EFI_SUCCESS)
191 		goto fail;
192 
193 	/*
194 	 * Enforce minimum alignment that EFI or Linux requires when
195 	 * requesting a specific address.  We are doing page-based (or
196 	 * larger) allocations, and both the address and size must meet
197 	 * alignment constraints.
198 	 */
199 	if (align < EFI_ALLOC_ALIGN)
200 		align = EFI_ALLOC_ALIGN;
201 
202 	size = round_up(size, EFI_ALLOC_ALIGN);
203 	nr_pages = size / EFI_PAGE_SIZE;
204 again:
205 	for (i = 0; i < map_size / desc_size; i++) {
206 		efi_memory_desc_t *desc;
207 		unsigned long m = (unsigned long)map;
208 		u64 start, end;
209 
210 		desc = efi_early_memdesc_ptr(m, desc_size, i);
211 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
212 			continue;
213 
214 		if (desc->num_pages < nr_pages)
215 			continue;
216 
217 		start = desc->phys_addr;
218 		end = start + desc->num_pages * EFI_PAGE_SIZE;
219 
220 		if (end > max)
221 			end = max;
222 
223 		if ((start + size) > end)
224 			continue;
225 
226 		if (round_down(end - size, align) < start)
227 			continue;
228 
229 		start = round_down(end - size, align);
230 
231 		/*
232 		 * Don't allocate at 0x0. It will confuse code that
233 		 * checks pointers against NULL.
234 		 */
235 		if (start == 0x0)
236 			continue;
237 
238 		if (start > max_addr)
239 			max_addr = start;
240 	}
241 
242 	if (!max_addr)
243 		status = EFI_NOT_FOUND;
244 	else {
245 		status = efi_call_early(allocate_pages,
246 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
247 					nr_pages, &max_addr);
248 		if (status != EFI_SUCCESS) {
249 			max = max_addr;
250 			max_addr = 0;
251 			goto again;
252 		}
253 
254 		*addr = max_addr;
255 	}
256 
257 	efi_call_early(free_pool, map);
258 fail:
259 	return status;
260 }
261 
262 /*
263  * Allocate at the lowest possible address.
264  */
265 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
266 			   unsigned long size, unsigned long align,
267 			   unsigned long *addr)
268 {
269 	unsigned long map_size, desc_size, buff_size;
270 	efi_memory_desc_t *map;
271 	efi_status_t status;
272 	unsigned long nr_pages;
273 	int i;
274 	struct efi_boot_memmap boot_map;
275 
276 	boot_map.map =		&map;
277 	boot_map.map_size =	&map_size;
278 	boot_map.desc_size =	&desc_size;
279 	boot_map.desc_ver =	NULL;
280 	boot_map.key_ptr =	NULL;
281 	boot_map.buff_size =	&buff_size;
282 
283 	status = efi_get_memory_map(sys_table_arg, &boot_map);
284 	if (status != EFI_SUCCESS)
285 		goto fail;
286 
287 	/*
288 	 * Enforce minimum alignment that EFI or Linux requires when
289 	 * requesting a specific address.  We are doing page-based (or
290 	 * larger) allocations, and both the address and size must meet
291 	 * alignment constraints.
292 	 */
293 	if (align < EFI_ALLOC_ALIGN)
294 		align = EFI_ALLOC_ALIGN;
295 
296 	size = round_up(size, EFI_ALLOC_ALIGN);
297 	nr_pages = size / EFI_PAGE_SIZE;
298 	for (i = 0; i < map_size / desc_size; i++) {
299 		efi_memory_desc_t *desc;
300 		unsigned long m = (unsigned long)map;
301 		u64 start, end;
302 
303 		desc = efi_early_memdesc_ptr(m, desc_size, i);
304 
305 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
306 			continue;
307 
308 		if (desc->num_pages < nr_pages)
309 			continue;
310 
311 		start = desc->phys_addr;
312 		end = start + desc->num_pages * EFI_PAGE_SIZE;
313 
314 		/*
315 		 * Don't allocate at 0x0. It will confuse code that
316 		 * checks pointers against NULL. Skip the first 8
317 		 * bytes so we start at a nice even number.
318 		 */
319 		if (start == 0x0)
320 			start += 8;
321 
322 		start = round_up(start, align);
323 		if ((start + size) > end)
324 			continue;
325 
326 		status = efi_call_early(allocate_pages,
327 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
328 					nr_pages, &start);
329 		if (status == EFI_SUCCESS) {
330 			*addr = start;
331 			break;
332 		}
333 	}
334 
335 	if (i == map_size / desc_size)
336 		status = EFI_NOT_FOUND;
337 
338 	efi_call_early(free_pool, map);
339 fail:
340 	return status;
341 }
342 
343 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
344 	      unsigned long addr)
345 {
346 	unsigned long nr_pages;
347 
348 	if (!size)
349 		return;
350 
351 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
352 	efi_call_early(free_pages, addr, nr_pages);
353 }
354 
355 static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
356 				  efi_char16_t *filename_16, void **handle,
357 				  u64 *file_sz)
358 {
359 	efi_file_handle_t *h, *fh = __fh;
360 	efi_file_info_t *info;
361 	efi_status_t status;
362 	efi_guid_t info_guid = EFI_FILE_INFO_ID;
363 	unsigned long info_sz;
364 
365 	status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16,
366 				EFI_FILE_MODE_READ, (u64)0);
367 	if (status != EFI_SUCCESS) {
368 		efi_printk(sys_table_arg, "Failed to open file: ");
369 		efi_char16_printk(sys_table_arg, filename_16);
370 		efi_printk(sys_table_arg, "\n");
371 		return status;
372 	}
373 
374 	*handle = h;
375 
376 	info_sz = 0;
377 	status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
378 				&info_sz, NULL);
379 	if (status != EFI_BUFFER_TOO_SMALL) {
380 		efi_printk(sys_table_arg, "Failed to get file info size\n");
381 		return status;
382 	}
383 
384 grow:
385 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
386 				info_sz, (void **)&info);
387 	if (status != EFI_SUCCESS) {
388 		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
389 		return status;
390 	}
391 
392 	status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
393 				&info_sz, info);
394 	if (status == EFI_BUFFER_TOO_SMALL) {
395 		efi_call_early(free_pool, info);
396 		goto grow;
397 	}
398 
399 	*file_sz = info->file_size;
400 	efi_call_early(free_pool, info);
401 
402 	if (status != EFI_SUCCESS)
403 		efi_printk(sys_table_arg, "Failed to get initrd info\n");
404 
405 	return status;
406 }
407 
408 static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr)
409 {
410 	return efi_call_proto(efi_file_handle, read, handle, size, addr);
411 }
412 
413 static efi_status_t efi_file_close(void *handle)
414 {
415 	return efi_call_proto(efi_file_handle, close, handle);
416 }
417 
418 static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
419 				    efi_loaded_image_t *image,
420 				    efi_file_handle_t **__fh)
421 {
422 	efi_file_io_interface_t *io;
423 	efi_file_handle_t *fh;
424 	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
425 	efi_status_t status;
426 	void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image,
427 							     device_handle,
428 							     image);
429 
430 	status = efi_call_early(handle_protocol, handle,
431 				&fs_proto, (void **)&io);
432 	if (status != EFI_SUCCESS) {
433 		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
434 		return status;
435 	}
436 
437 	status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh);
438 	if (status != EFI_SUCCESS)
439 		efi_printk(sys_table_arg, "Failed to open volume\n");
440 	else
441 		*__fh = fh;
442 
443 	return status;
444 }
445 
446 /*
447  * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
448  * option, e.g. efi=nochunk.
449  *
450  * It should be noted that efi= is parsed in two very different
451  * environments, first in the early boot environment of the EFI boot
452  * stub, and subsequently during the kernel boot.
453  */
454 efi_status_t efi_parse_options(char const *cmdline)
455 {
456 	char *str;
457 
458 	str = strstr(cmdline, "nokaslr");
459 	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
460 		__nokaslr = 1;
461 
462 	str = strstr(cmdline, "quiet");
463 	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
464 		__quiet = 1;
465 
466 	/*
467 	 * If no EFI parameters were specified on the cmdline we've got
468 	 * nothing to do.
469 	 */
470 	str = strstr(cmdline, "efi=");
471 	if (!str)
472 		return EFI_SUCCESS;
473 
474 	/* Skip ahead to first argument */
475 	str += strlen("efi=");
476 
477 	/*
478 	 * Remember, because efi= is also used by the kernel we need to
479 	 * skip over arguments we don't understand.
480 	 */
481 	while (*str && *str != ' ') {
482 		if (!strncmp(str, "nochunk", 7)) {
483 			str += strlen("nochunk");
484 			__chunk_size = -1UL;
485 		}
486 
487 		if (!strncmp(str, "novamap", 7)) {
488 			str += strlen("novamap");
489 			__novamap = 1;
490 		}
491 
492 		/* Group words together, delimited by "," */
493 		while (*str && *str != ' ' && *str != ',')
494 			str++;
495 
496 		if (*str == ',')
497 			str++;
498 	}
499 
500 	return EFI_SUCCESS;
501 }
502 
503 /*
504  * Check the cmdline for a LILO-style file= arguments.
505  *
506  * We only support loading a file from the same filesystem as
507  * the kernel image.
508  */
509 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
510 				  efi_loaded_image_t *image,
511 				  char *cmd_line, char *option_string,
512 				  unsigned long max_addr,
513 				  unsigned long *load_addr,
514 				  unsigned long *load_size)
515 {
516 	struct file_info *files;
517 	unsigned long file_addr;
518 	u64 file_size_total;
519 	efi_file_handle_t *fh = NULL;
520 	efi_status_t status;
521 	int nr_files;
522 	char *str;
523 	int i, j, k;
524 
525 	file_addr = 0;
526 	file_size_total = 0;
527 
528 	str = cmd_line;
529 
530 	j = 0;			/* See close_handles */
531 
532 	if (!load_addr || !load_size)
533 		return EFI_INVALID_PARAMETER;
534 
535 	*load_addr = 0;
536 	*load_size = 0;
537 
538 	if (!str || !*str)
539 		return EFI_SUCCESS;
540 
541 	for (nr_files = 0; *str; nr_files++) {
542 		str = strstr(str, option_string);
543 		if (!str)
544 			break;
545 
546 		str += strlen(option_string);
547 
548 		/* Skip any leading slashes */
549 		while (*str == '/' || *str == '\\')
550 			str++;
551 
552 		while (*str && *str != ' ' && *str != '\n')
553 			str++;
554 	}
555 
556 	if (!nr_files)
557 		return EFI_SUCCESS;
558 
559 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
560 				nr_files * sizeof(*files), (void **)&files);
561 	if (status != EFI_SUCCESS) {
562 		pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
563 		goto fail;
564 	}
565 
566 	str = cmd_line;
567 	for (i = 0; i < nr_files; i++) {
568 		struct file_info *file;
569 		efi_char16_t filename_16[256];
570 		efi_char16_t *p;
571 
572 		str = strstr(str, option_string);
573 		if (!str)
574 			break;
575 
576 		str += strlen(option_string);
577 
578 		file = &files[i];
579 		p = filename_16;
580 
581 		/* Skip any leading slashes */
582 		while (*str == '/' || *str == '\\')
583 			str++;
584 
585 		while (*str && *str != ' ' && *str != '\n') {
586 			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
587 				break;
588 
589 			if (*str == '/') {
590 				*p++ = '\\';
591 				str++;
592 			} else {
593 				*p++ = *str++;
594 			}
595 		}
596 
597 		*p = '\0';
598 
599 		/* Only open the volume once. */
600 		if (!i) {
601 			status = efi_open_volume(sys_table_arg, image, &fh);
602 			if (status != EFI_SUCCESS)
603 				goto free_files;
604 		}
605 
606 		status = efi_file_size(sys_table_arg, fh, filename_16,
607 				       (void **)&file->handle, &file->size);
608 		if (status != EFI_SUCCESS)
609 			goto close_handles;
610 
611 		file_size_total += file->size;
612 	}
613 
614 	if (file_size_total) {
615 		unsigned long addr;
616 
617 		/*
618 		 * Multiple files need to be at consecutive addresses in memory,
619 		 * so allocate enough memory for all the files.  This is used
620 		 * for loading multiple files.
621 		 */
622 		status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
623 				    &file_addr, max_addr);
624 		if (status != EFI_SUCCESS) {
625 			pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
626 			goto close_handles;
627 		}
628 
629 		/* We've run out of free low memory. */
630 		if (file_addr > max_addr) {
631 			pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
632 			status = EFI_INVALID_PARAMETER;
633 			goto free_file_total;
634 		}
635 
636 		addr = file_addr;
637 		for (j = 0; j < nr_files; j++) {
638 			unsigned long size;
639 
640 			size = files[j].size;
641 			while (size) {
642 				unsigned long chunksize;
643 
644 				if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
645 					chunksize = __chunk_size;
646 				else
647 					chunksize = size;
648 
649 				status = efi_file_read(files[j].handle,
650 						       &chunksize,
651 						       (void *)addr);
652 				if (status != EFI_SUCCESS) {
653 					pr_efi_err(sys_table_arg, "Failed to read file\n");
654 					goto free_file_total;
655 				}
656 				addr += chunksize;
657 				size -= chunksize;
658 			}
659 
660 			efi_file_close(files[j].handle);
661 		}
662 
663 	}
664 
665 	efi_call_early(free_pool, files);
666 
667 	*load_addr = file_addr;
668 	*load_size = file_size_total;
669 
670 	return status;
671 
672 free_file_total:
673 	efi_free(sys_table_arg, file_size_total, file_addr);
674 
675 close_handles:
676 	for (k = j; k < i; k++)
677 		efi_file_close(files[k].handle);
678 free_files:
679 	efi_call_early(free_pool, files);
680 fail:
681 	*load_addr = 0;
682 	*load_size = 0;
683 
684 	return status;
685 }
686 /*
687  * Relocate a kernel image, either compressed or uncompressed.
688  * In the ARM64 case, all kernel images are currently
689  * uncompressed, and as such when we relocate it we need to
690  * allocate additional space for the BSS segment. Any low
691  * memory that this function should avoid needs to be
692  * unavailable in the EFI memory map, as if the preferred
693  * address is not available the lowest available address will
694  * be used.
695  */
696 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
697 				 unsigned long *image_addr,
698 				 unsigned long image_size,
699 				 unsigned long alloc_size,
700 				 unsigned long preferred_addr,
701 				 unsigned long alignment)
702 {
703 	unsigned long cur_image_addr;
704 	unsigned long new_addr = 0;
705 	efi_status_t status;
706 	unsigned long nr_pages;
707 	efi_physical_addr_t efi_addr = preferred_addr;
708 
709 	if (!image_addr || !image_size || !alloc_size)
710 		return EFI_INVALID_PARAMETER;
711 	if (alloc_size < image_size)
712 		return EFI_INVALID_PARAMETER;
713 
714 	cur_image_addr = *image_addr;
715 
716 	/*
717 	 * The EFI firmware loader could have placed the kernel image
718 	 * anywhere in memory, but the kernel has restrictions on the
719 	 * max physical address it can run at.  Some architectures
720 	 * also have a prefered address, so first try to relocate
721 	 * to the preferred address.  If that fails, allocate as low
722 	 * as possible while respecting the required alignment.
723 	 */
724 	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
725 	status = efi_call_early(allocate_pages,
726 				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
727 				nr_pages, &efi_addr);
728 	new_addr = efi_addr;
729 	/*
730 	 * If preferred address allocation failed allocate as low as
731 	 * possible.
732 	 */
733 	if (status != EFI_SUCCESS) {
734 		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
735 				       &new_addr);
736 	}
737 	if (status != EFI_SUCCESS) {
738 		pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
739 		return status;
740 	}
741 
742 	/*
743 	 * We know source/dest won't overlap since both memory ranges
744 	 * have been allocated by UEFI, so we can safely use memcpy.
745 	 */
746 	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
747 
748 	/* Return the new address of the relocated image. */
749 	*image_addr = new_addr;
750 
751 	return status;
752 }
753 
754 /*
755  * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
756  * This overestimates for surrogates, but that is okay.
757  */
758 static int efi_utf8_bytes(u16 c)
759 {
760 	return 1 + (c >= 0x80) + (c >= 0x800);
761 }
762 
763 /*
764  * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
765  */
766 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
767 {
768 	unsigned int c;
769 
770 	while (n--) {
771 		c = *src++;
772 		if (n && c >= 0xd800 && c <= 0xdbff &&
773 		    *src >= 0xdc00 && *src <= 0xdfff) {
774 			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
775 			src++;
776 			n--;
777 		}
778 		if (c >= 0xd800 && c <= 0xdfff)
779 			c = 0xfffd; /* Unmatched surrogate */
780 		if (c < 0x80) {
781 			*dst++ = c;
782 			continue;
783 		}
784 		if (c < 0x800) {
785 			*dst++ = 0xc0 + (c >> 6);
786 			goto t1;
787 		}
788 		if (c < 0x10000) {
789 			*dst++ = 0xe0 + (c >> 12);
790 			goto t2;
791 		}
792 		*dst++ = 0xf0 + (c >> 18);
793 		*dst++ = 0x80 + ((c >> 12) & 0x3f);
794 	t2:
795 		*dst++ = 0x80 + ((c >> 6) & 0x3f);
796 	t1:
797 		*dst++ = 0x80 + (c & 0x3f);
798 	}
799 
800 	return dst;
801 }
802 
803 #ifndef MAX_CMDLINE_ADDRESS
804 #define MAX_CMDLINE_ADDRESS	ULONG_MAX
805 #endif
806 
807 /*
808  * Convert the unicode UEFI command line to ASCII to pass to kernel.
809  * Size of memory allocated return in *cmd_line_len.
810  * Returns NULL on error.
811  */
812 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
813 			  efi_loaded_image_t *image,
814 			  int *cmd_line_len)
815 {
816 	const u16 *s2;
817 	u8 *s1 = NULL;
818 	unsigned long cmdline_addr = 0;
819 	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
820 	const u16 *options = image->load_options;
821 	int options_bytes = 0;  /* UTF-8 bytes */
822 	int options_chars = 0;  /* UTF-16 chars */
823 	efi_status_t status;
824 	u16 zero = 0;
825 
826 	if (options) {
827 		s2 = options;
828 		while (*s2 && *s2 != '\n'
829 		       && options_chars < load_options_chars) {
830 			options_bytes += efi_utf8_bytes(*s2++);
831 			options_chars++;
832 		}
833 	}
834 
835 	if (!options_chars) {
836 		/* No command line options, so return empty string*/
837 		options = &zero;
838 	}
839 
840 	options_bytes++;	/* NUL termination */
841 
842 	status = efi_high_alloc(sys_table_arg, options_bytes, 0,
843 				&cmdline_addr, MAX_CMDLINE_ADDRESS);
844 	if (status != EFI_SUCCESS)
845 		return NULL;
846 
847 	s1 = (u8 *)cmdline_addr;
848 	s2 = (const u16 *)options;
849 
850 	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
851 	*s1 = '\0';
852 
853 	*cmd_line_len = options_bytes;
854 	return (char *)cmdline_addr;
855 }
856 
857 /*
858  * Handle calling ExitBootServices according to the requirements set out by the
859  * spec.  Obtains the current memory map, and returns that info after calling
860  * ExitBootServices.  The client must specify a function to perform any
861  * processing of the memory map data prior to ExitBootServices.  A client
862  * specific structure may be passed to the function via priv.  The client
863  * function may be called multiple times.
864  */
865 efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
866 				    void *handle,
867 				    struct efi_boot_memmap *map,
868 				    void *priv,
869 				    efi_exit_boot_map_processing priv_func)
870 {
871 	efi_status_t status;
872 
873 	status = efi_get_memory_map(sys_table_arg, map);
874 
875 	if (status != EFI_SUCCESS)
876 		goto fail;
877 
878 	status = priv_func(sys_table_arg, map, priv);
879 	if (status != EFI_SUCCESS)
880 		goto free_map;
881 
882 	status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
883 
884 	if (status == EFI_INVALID_PARAMETER) {
885 		/*
886 		 * The memory map changed between efi_get_memory_map() and
887 		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
888 		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
889 		 * updated map, and try again.  The spec implies one retry
890 		 * should be sufficent, which is confirmed against the EDK2
891 		 * implementation.  Per the spec, we can only invoke
892 		 * get_memory_map() and exit_boot_services() - we cannot alloc
893 		 * so efi_get_memory_map() cannot be used, and we must reuse
894 		 * the buffer.  For all practical purposes, the headroom in the
895 		 * buffer should account for any changes in the map so the call
896 		 * to get_memory_map() is expected to succeed here.
897 		 */
898 		*map->map_size = *map->buff_size;
899 		status = efi_call_early(get_memory_map,
900 					map->map_size,
901 					*map->map,
902 					map->key_ptr,
903 					map->desc_size,
904 					map->desc_ver);
905 
906 		/* exit_boot_services() was called, thus cannot free */
907 		if (status != EFI_SUCCESS)
908 			goto fail;
909 
910 		status = priv_func(sys_table_arg, map, priv);
911 		/* exit_boot_services() was called, thus cannot free */
912 		if (status != EFI_SUCCESS)
913 			goto fail;
914 
915 		status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
916 	}
917 
918 	/* exit_boot_services() was called, thus cannot free */
919 	if (status != EFI_SUCCESS)
920 		goto fail;
921 
922 	return EFI_SUCCESS;
923 
924 free_map:
925 	efi_call_early(free_pool, *map->map);
926 fail:
927 	return status;
928 }
929