xref: /openbmc/linux/drivers/firmware/efi/libstub/arm32-stub.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
4  */
5 #include <linux/efi.h>
6 #include <asm/efi.h>
7 
8 #include "efistub.h"
9 
10 static efi_guid_t cpu_state_guid = LINUX_EFI_ARM_CPU_STATE_TABLE_GUID;
11 
12 struct efi_arm_entry_state *efi_entry_state;
13 
14 static void get_cpu_state(u32 *cpsr, u32 *sctlr)
15 {
16 	asm("mrs %0, cpsr" : "=r"(*cpsr));
17 	if ((*cpsr & MODE_MASK) == HYP_MODE)
18 		asm("mrc p15, 4, %0, c1, c0, 0" : "=r"(*sctlr));
19 	else
20 		asm("mrc p15, 0, %0, c1, c0, 0" : "=r"(*sctlr));
21 }
22 
23 efi_status_t check_platform_features(void)
24 {
25 	efi_status_t status;
26 	u32 cpsr, sctlr;
27 	int block;
28 
29 	get_cpu_state(&cpsr, &sctlr);
30 
31 	efi_info("Entering in %s mode with MMU %sabled\n",
32 		 ((cpsr & MODE_MASK) == HYP_MODE) ? "HYP" : "SVC",
33 		 (sctlr & 1) ? "en" : "dis");
34 
35 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
36 			     sizeof(*efi_entry_state),
37 			     (void **)&efi_entry_state);
38 	if (status != EFI_SUCCESS) {
39 		efi_err("allocate_pool() failed\n");
40 		return status;
41 	}
42 
43 	efi_entry_state->cpsr_before_ebs = cpsr;
44 	efi_entry_state->sctlr_before_ebs = sctlr;
45 
46 	status = efi_bs_call(install_configuration_table, &cpu_state_guid,
47 			     efi_entry_state);
48 	if (status != EFI_SUCCESS) {
49 		efi_err("install_configuration_table() failed\n");
50 		goto free_state;
51 	}
52 
53 	/* non-LPAE kernels can run anywhere */
54 	if (!IS_ENABLED(CONFIG_ARM_LPAE))
55 		return EFI_SUCCESS;
56 
57 	/* LPAE kernels need compatible hardware */
58 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
59 	if (block < 5) {
60 		efi_err("This LPAE kernel is not supported by your CPU\n");
61 		status = EFI_UNSUPPORTED;
62 		goto drop_table;
63 	}
64 	return EFI_SUCCESS;
65 
66 drop_table:
67 	efi_bs_call(install_configuration_table, &cpu_state_guid, NULL);
68 free_state:
69 	efi_bs_call(free_pool, efi_entry_state);
70 	return status;
71 }
72 
73 void efi_handle_post_ebs_state(void)
74 {
75 	get_cpu_state(&efi_entry_state->cpsr_after_ebs,
76 		      &efi_entry_state->sctlr_after_ebs);
77 }
78 
79 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
80 
81 struct screen_info *alloc_screen_info(void)
82 {
83 	struct screen_info *si;
84 	efi_status_t status;
85 
86 	/*
87 	 * Unlike on arm64, where we can directly fill out the screen_info
88 	 * structure from the stub, we need to allocate a buffer to hold
89 	 * its contents while we hand over to the kernel proper from the
90 	 * decompressor.
91 	 */
92 	status = efi_bs_call(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
93 			     sizeof(*si), (void **)&si);
94 
95 	if (status != EFI_SUCCESS)
96 		return NULL;
97 
98 	status = efi_bs_call(install_configuration_table,
99 			     &screen_info_guid, si);
100 	if (status == EFI_SUCCESS)
101 		return si;
102 
103 	efi_bs_call(free_pool, si);
104 	return NULL;
105 }
106 
107 void free_screen_info(struct screen_info *si)
108 {
109 	if (!si)
110 		return;
111 
112 	efi_bs_call(install_configuration_table, &screen_info_guid, NULL);
113 	efi_bs_call(free_pool, si);
114 }
115 
116 static efi_status_t reserve_kernel_base(unsigned long dram_base,
117 					unsigned long *reserve_addr,
118 					unsigned long *reserve_size)
119 {
120 	efi_physical_addr_t alloc_addr;
121 	efi_memory_desc_t *memory_map;
122 	unsigned long nr_pages, map_size, desc_size, buff_size;
123 	efi_status_t status;
124 	unsigned long l;
125 
126 	struct efi_boot_memmap map = {
127 		.map		= &memory_map,
128 		.map_size	= &map_size,
129 		.desc_size	= &desc_size,
130 		.desc_ver	= NULL,
131 		.key_ptr	= NULL,
132 		.buff_size	= &buff_size,
133 	};
134 
135 	/*
136 	 * Reserve memory for the uncompressed kernel image. This is
137 	 * all that prevents any future allocations from conflicting
138 	 * with the kernel. Since we can't tell from the compressed
139 	 * image how much DRAM the kernel actually uses (due to BSS
140 	 * size uncertainty) we allocate the maximum possible size.
141 	 * Do this very early, as prints can cause memory allocations
142 	 * that may conflict with this.
143 	 */
144 	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
145 	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
146 	status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
147 			     EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
148 	if (status == EFI_SUCCESS) {
149 		if (alloc_addr == dram_base) {
150 			*reserve_addr = alloc_addr;
151 			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
152 			return EFI_SUCCESS;
153 		}
154 		/*
155 		 * If we end up here, the allocation succeeded but starts below
156 		 * dram_base. This can only occur if the real base of DRAM is
157 		 * not a multiple of 128 MB, in which case dram_base will have
158 		 * been rounded up. Since this implies that a part of the region
159 		 * was already occupied, we need to fall through to the code
160 		 * below to ensure that the existing allocations don't conflict.
161 		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
162 		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
163 		 * allocations that we want to disallow.
164 		 */
165 	}
166 
167 	/*
168 	 * If the allocation above failed, we may still be able to proceed:
169 	 * if the only allocations in the region are of types that will be
170 	 * released to the OS after ExitBootServices(), the decompressor can
171 	 * safely overwrite them.
172 	 */
173 	status = efi_get_memory_map(&map);
174 	if (status != EFI_SUCCESS) {
175 		efi_err("reserve_kernel_base(): Unable to retrieve memory map.\n");
176 		return status;
177 	}
178 
179 	for (l = 0; l < map_size; l += desc_size) {
180 		efi_memory_desc_t *desc;
181 		u64 start, end;
182 
183 		desc = (void *)memory_map + l;
184 		start = desc->phys_addr;
185 		end = start + desc->num_pages * EFI_PAGE_SIZE;
186 
187 		/* Skip if entry does not intersect with region */
188 		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
189 		    end <= dram_base)
190 			continue;
191 
192 		switch (desc->type) {
193 		case EFI_BOOT_SERVICES_CODE:
194 		case EFI_BOOT_SERVICES_DATA:
195 			/* Ignore types that are released to the OS anyway */
196 			continue;
197 
198 		case EFI_CONVENTIONAL_MEMORY:
199 			/* Skip soft reserved conventional memory */
200 			if (efi_soft_reserve_enabled() &&
201 			    (desc->attribute & EFI_MEMORY_SP))
202 				continue;
203 
204 			/*
205 			 * Reserve the intersection between this entry and the
206 			 * region.
207 			 */
208 			start = max(start, (u64)dram_base);
209 			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
210 
211 			status = efi_bs_call(allocate_pages,
212 					     EFI_ALLOCATE_ADDRESS,
213 					     EFI_LOADER_DATA,
214 					     (end - start) / EFI_PAGE_SIZE,
215 					     &start);
216 			if (status != EFI_SUCCESS) {
217 				efi_err("reserve_kernel_base(): alloc failed.\n");
218 				goto out;
219 			}
220 			break;
221 
222 		case EFI_LOADER_CODE:
223 		case EFI_LOADER_DATA:
224 			/*
225 			 * These regions may be released and reallocated for
226 			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
227 			 * at any time during the execution of the OS loader,
228 			 * so we cannot consider them as safe.
229 			 */
230 		default:
231 			/*
232 			 * Treat any other allocation in the region as unsafe */
233 			status = EFI_OUT_OF_RESOURCES;
234 			goto out;
235 		}
236 	}
237 
238 	status = EFI_SUCCESS;
239 out:
240 	efi_bs_call(free_pool, memory_map);
241 	return status;
242 }
243 
244 efi_status_t handle_kernel_image(unsigned long *image_addr,
245 				 unsigned long *image_size,
246 				 unsigned long *reserve_addr,
247 				 unsigned long *reserve_size,
248 				 unsigned long dram_base,
249 				 efi_loaded_image_t *image)
250 {
251 	unsigned long kernel_base;
252 	efi_status_t status;
253 
254 	/* use a 16 MiB aligned base for the decompressed kernel */
255 	kernel_base = round_up(dram_base, SZ_16M) + TEXT_OFFSET;
256 
257 	/*
258 	 * Note that some platforms (notably, the Raspberry Pi 2) put
259 	 * spin-tables and other pieces of firmware at the base of RAM,
260 	 * abusing the fact that the window of TEXT_OFFSET bytes at the
261 	 * base of the kernel image is only partially used at the moment.
262 	 * (Up to 5 pages are used for the swapper page tables)
263 	 */
264 	status = reserve_kernel_base(kernel_base - 5 * PAGE_SIZE, reserve_addr,
265 				     reserve_size);
266 	if (status != EFI_SUCCESS) {
267 		efi_err("Unable to allocate memory for uncompressed kernel.\n");
268 		return status;
269 	}
270 
271 	*image_addr = kernel_base;
272 	*image_size = 0;
273 	return EFI_SUCCESS;
274 }
275