1 /*
2  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 #include <linux/efi.h>
10 #include <asm/efi.h>
11 
12 #include "efistub.h"
13 
14 efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
15 {
16 	int block;
17 
18 	/* non-LPAE kernels can run anywhere */
19 	if (!IS_ENABLED(CONFIG_ARM_LPAE))
20 		return EFI_SUCCESS;
21 
22 	/* LPAE kernels need compatible hardware */
23 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
24 	if (block < 5) {
25 		pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
26 		return EFI_UNSUPPORTED;
27 	}
28 	return EFI_SUCCESS;
29 }
30 
31 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
32 
33 struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
34 {
35 	struct screen_info *si;
36 	efi_status_t status;
37 
38 	/*
39 	 * Unlike on arm64, where we can directly fill out the screen_info
40 	 * structure from the stub, we need to allocate a buffer to hold
41 	 * its contents while we hand over to the kernel proper from the
42 	 * decompressor.
43 	 */
44 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
45 				sizeof(*si), (void **)&si);
46 
47 	if (status != EFI_SUCCESS)
48 		return NULL;
49 
50 	status = efi_call_early(install_configuration_table,
51 				&screen_info_guid, si);
52 	if (status == EFI_SUCCESS)
53 		return si;
54 
55 	efi_call_early(free_pool, si);
56 	return NULL;
57 }
58 
59 void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
60 {
61 	if (!si)
62 		return;
63 
64 	efi_call_early(install_configuration_table, &screen_info_guid, NULL);
65 	efi_call_early(free_pool, si);
66 }
67 
68 static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
69 					unsigned long dram_base,
70 					unsigned long *reserve_addr,
71 					unsigned long *reserve_size)
72 {
73 	efi_physical_addr_t alloc_addr;
74 	efi_memory_desc_t *memory_map;
75 	unsigned long nr_pages, map_size, desc_size, buff_size;
76 	efi_status_t status;
77 	unsigned long l;
78 
79 	struct efi_boot_memmap map = {
80 		.map		= &memory_map,
81 		.map_size	= &map_size,
82 		.desc_size	= &desc_size,
83 		.desc_ver	= NULL,
84 		.key_ptr	= NULL,
85 		.buff_size	= &buff_size,
86 	};
87 
88 	/*
89 	 * Reserve memory for the uncompressed kernel image. This is
90 	 * all that prevents any future allocations from conflicting
91 	 * with the kernel. Since we can't tell from the compressed
92 	 * image how much DRAM the kernel actually uses (due to BSS
93 	 * size uncertainty) we allocate the maximum possible size.
94 	 * Do this very early, as prints can cause memory allocations
95 	 * that may conflict with this.
96 	 */
97 	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
98 	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
99 	status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
100 				EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
101 	if (status == EFI_SUCCESS) {
102 		if (alloc_addr == dram_base) {
103 			*reserve_addr = alloc_addr;
104 			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
105 			return EFI_SUCCESS;
106 		}
107 		/*
108 		 * If we end up here, the allocation succeeded but starts below
109 		 * dram_base. This can only occur if the real base of DRAM is
110 		 * not a multiple of 128 MB, in which case dram_base will have
111 		 * been rounded up. Since this implies that a part of the region
112 		 * was already occupied, we need to fall through to the code
113 		 * below to ensure that the existing allocations don't conflict.
114 		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
115 		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
116 		 * allocations that we want to disallow.
117 		 */
118 	}
119 
120 	/*
121 	 * If the allocation above failed, we may still be able to proceed:
122 	 * if the only allocations in the region are of types that will be
123 	 * released to the OS after ExitBootServices(), the decompressor can
124 	 * safely overwrite them.
125 	 */
126 	status = efi_get_memory_map(sys_table_arg, &map);
127 	if (status != EFI_SUCCESS) {
128 		pr_efi_err(sys_table_arg,
129 			   "reserve_kernel_base(): Unable to retrieve memory map.\n");
130 		return status;
131 	}
132 
133 	for (l = 0; l < map_size; l += desc_size) {
134 		efi_memory_desc_t *desc;
135 		u64 start, end;
136 
137 		desc = (void *)memory_map + l;
138 		start = desc->phys_addr;
139 		end = start + desc->num_pages * EFI_PAGE_SIZE;
140 
141 		/* Skip if entry does not intersect with region */
142 		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
143 		    end <= dram_base)
144 			continue;
145 
146 		switch (desc->type) {
147 		case EFI_BOOT_SERVICES_CODE:
148 		case EFI_BOOT_SERVICES_DATA:
149 			/* Ignore types that are released to the OS anyway */
150 			continue;
151 
152 		case EFI_CONVENTIONAL_MEMORY:
153 			/*
154 			 * Reserve the intersection between this entry and the
155 			 * region.
156 			 */
157 			start = max(start, (u64)dram_base);
158 			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
159 
160 			status = efi_call_early(allocate_pages,
161 						EFI_ALLOCATE_ADDRESS,
162 						EFI_LOADER_DATA,
163 						(end - start) / EFI_PAGE_SIZE,
164 						&start);
165 			if (status != EFI_SUCCESS) {
166 				pr_efi_err(sys_table_arg,
167 					"reserve_kernel_base(): alloc failed.\n");
168 				goto out;
169 			}
170 			break;
171 
172 		case EFI_LOADER_CODE:
173 		case EFI_LOADER_DATA:
174 			/*
175 			 * These regions may be released and reallocated for
176 			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
177 			 * at any time during the execution of the OS loader,
178 			 * so we cannot consider them as safe.
179 			 */
180 		default:
181 			/*
182 			 * Treat any other allocation in the region as unsafe */
183 			status = EFI_OUT_OF_RESOURCES;
184 			goto out;
185 		}
186 	}
187 
188 	status = EFI_SUCCESS;
189 out:
190 	efi_call_early(free_pool, memory_map);
191 	return status;
192 }
193 
194 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
195 				 unsigned long *image_addr,
196 				 unsigned long *image_size,
197 				 unsigned long *reserve_addr,
198 				 unsigned long *reserve_size,
199 				 unsigned long dram_base,
200 				 efi_loaded_image_t *image)
201 {
202 	efi_status_t status;
203 
204 	/*
205 	 * Verify that the DRAM base address is compatible with the ARM
206 	 * boot protocol, which determines the base of DRAM by masking
207 	 * off the low 27 bits of the address at which the zImage is
208 	 * loaded. These assumptions are made by the decompressor,
209 	 * before any memory map is available.
210 	 */
211 	dram_base = round_up(dram_base, SZ_128M);
212 
213 	status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
214 				     reserve_size);
215 	if (status != EFI_SUCCESS) {
216 		pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
217 		return status;
218 	}
219 
220 	/*
221 	 * Relocate the zImage, so that it appears in the lowest 128 MB
222 	 * memory window.
223 	 */
224 	*image_size = image->image_size;
225 	status = efi_relocate_kernel(sys_table, image_addr, *image_size,
226 				     *image_size,
227 				     dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
228 	if (status != EFI_SUCCESS) {
229 		pr_efi_err(sys_table, "Failed to relocate kernel.\n");
230 		efi_free(sys_table, *reserve_size, *reserve_addr);
231 		*reserve_size = 0;
232 		return status;
233 	}
234 
235 	/*
236 	 * Check to see if we were able to allocate memory low enough
237 	 * in memory. The kernel determines the base of DRAM from the
238 	 * address at which the zImage is loaded.
239 	 */
240 	if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
241 		pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
242 		efi_free(sys_table, *reserve_size, *reserve_addr);
243 		*reserve_size = 0;
244 		efi_free(sys_table, *image_size, *image_addr);
245 		*image_size = 0;
246 		return EFI_LOAD_ERROR;
247 	}
248 	return EFI_SUCCESS;
249 }
250