181a0bc39SRoy Franz /*
281a0bc39SRoy Franz  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
381a0bc39SRoy Franz  *
481a0bc39SRoy Franz  * This program is free software; you can redistribute it and/or modify
581a0bc39SRoy Franz  * it under the terms of the GNU General Public License version 2 as
681a0bc39SRoy Franz  * published by the Free Software Foundation.
781a0bc39SRoy Franz  *
881a0bc39SRoy Franz  */
981a0bc39SRoy Franz #include <linux/efi.h>
1081a0bc39SRoy Franz #include <asm/efi.h>
1181a0bc39SRoy Franz 
12eeff7d63SArd Biesheuvel #include "efistub.h"
13eeff7d63SArd Biesheuvel 
142ec0f0a3SArd Biesheuvel efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
152ec0f0a3SArd Biesheuvel {
162ec0f0a3SArd Biesheuvel 	int block;
172ec0f0a3SArd Biesheuvel 
182ec0f0a3SArd Biesheuvel 	/* non-LPAE kernels can run anywhere */
192ec0f0a3SArd Biesheuvel 	if (!IS_ENABLED(CONFIG_ARM_LPAE))
202ec0f0a3SArd Biesheuvel 		return EFI_SUCCESS;
212ec0f0a3SArd Biesheuvel 
222ec0f0a3SArd Biesheuvel 	/* LPAE kernels need compatible hardware */
232ec0f0a3SArd Biesheuvel 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
242ec0f0a3SArd Biesheuvel 	if (block < 5) {
252ec0f0a3SArd Biesheuvel 		pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
262ec0f0a3SArd Biesheuvel 		return EFI_UNSUPPORTED;
272ec0f0a3SArd Biesheuvel 	}
282ec0f0a3SArd Biesheuvel 	return EFI_SUCCESS;
292ec0f0a3SArd Biesheuvel }
302ec0f0a3SArd Biesheuvel 
31801820beSArd Biesheuvel static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
32801820beSArd Biesheuvel 
33801820beSArd Biesheuvel struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
34801820beSArd Biesheuvel {
35801820beSArd Biesheuvel 	struct screen_info *si;
36801820beSArd Biesheuvel 	efi_status_t status;
37801820beSArd Biesheuvel 
38801820beSArd Biesheuvel 	/*
39801820beSArd Biesheuvel 	 * Unlike on arm64, where we can directly fill out the screen_info
40801820beSArd Biesheuvel 	 * structure from the stub, we need to allocate a buffer to hold
41801820beSArd Biesheuvel 	 * its contents while we hand over to the kernel proper from the
42801820beSArd Biesheuvel 	 * decompressor.
43801820beSArd Biesheuvel 	 */
44801820beSArd Biesheuvel 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
45801820beSArd Biesheuvel 				sizeof(*si), (void **)&si);
46801820beSArd Biesheuvel 
47801820beSArd Biesheuvel 	if (status != EFI_SUCCESS)
48801820beSArd Biesheuvel 		return NULL;
49801820beSArd Biesheuvel 
50801820beSArd Biesheuvel 	status = efi_call_early(install_configuration_table,
51801820beSArd Biesheuvel 				&screen_info_guid, si);
52801820beSArd Biesheuvel 	if (status == EFI_SUCCESS)
53801820beSArd Biesheuvel 		return si;
54801820beSArd Biesheuvel 
55801820beSArd Biesheuvel 	efi_call_early(free_pool, si);
56801820beSArd Biesheuvel 	return NULL;
57801820beSArd Biesheuvel }
58801820beSArd Biesheuvel 
59801820beSArd Biesheuvel void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
60801820beSArd Biesheuvel {
61801820beSArd Biesheuvel 	if (!si)
62801820beSArd Biesheuvel 		return;
63801820beSArd Biesheuvel 
64801820beSArd Biesheuvel 	efi_call_early(install_configuration_table, &screen_info_guid, NULL);
65801820beSArd Biesheuvel 	efi_call_early(free_pool, si);
66801820beSArd Biesheuvel }
67801820beSArd Biesheuvel 
68318532bfSArd Biesheuvel static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
6981a0bc39SRoy Franz 					unsigned long dram_base,
70318532bfSArd Biesheuvel 					unsigned long *reserve_addr,
71318532bfSArd Biesheuvel 					unsigned long *reserve_size)
7281a0bc39SRoy Franz {
7381a0bc39SRoy Franz 	efi_physical_addr_t alloc_addr;
74318532bfSArd Biesheuvel 	efi_memory_desc_t *memory_map;
75318532bfSArd Biesheuvel 	unsigned long nr_pages, map_size, desc_size, buff_size;
76318532bfSArd Biesheuvel 	efi_status_t status;
77318532bfSArd Biesheuvel 	unsigned long l;
7881a0bc39SRoy Franz 
79318532bfSArd Biesheuvel 	struct efi_boot_memmap map = {
80318532bfSArd Biesheuvel 		.map		= &memory_map,
81318532bfSArd Biesheuvel 		.map_size	= &map_size,
82318532bfSArd Biesheuvel 		.desc_size	= &desc_size,
83318532bfSArd Biesheuvel 		.desc_ver	= NULL,
84318532bfSArd Biesheuvel 		.key_ptr	= NULL,
85318532bfSArd Biesheuvel 		.buff_size	= &buff_size,
86318532bfSArd Biesheuvel 	};
8781a0bc39SRoy Franz 
8881a0bc39SRoy Franz 	/*
8981a0bc39SRoy Franz 	 * Reserve memory for the uncompressed kernel image. This is
9081a0bc39SRoy Franz 	 * all that prevents any future allocations from conflicting
9181a0bc39SRoy Franz 	 * with the kernel. Since we can't tell from the compressed
9281a0bc39SRoy Franz 	 * image how much DRAM the kernel actually uses (due to BSS
9381a0bc39SRoy Franz 	 * size uncertainty) we allocate the maximum possible size.
9481a0bc39SRoy Franz 	 * Do this very early, as prints can cause memory allocations
9581a0bc39SRoy Franz 	 * that may conflict with this.
9681a0bc39SRoy Franz 	 */
97318532bfSArd Biesheuvel 	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
98318532bfSArd Biesheuvel 	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
99318532bfSArd Biesheuvel 	status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
100318532bfSArd Biesheuvel 				EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
101318532bfSArd Biesheuvel 	if (status == EFI_SUCCESS) {
102318532bfSArd Biesheuvel 		if (alloc_addr == dram_base) {
103318532bfSArd Biesheuvel 			*reserve_addr = alloc_addr;
10481a0bc39SRoy Franz 			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
105318532bfSArd Biesheuvel 			return EFI_SUCCESS;
106318532bfSArd Biesheuvel 		}
107318532bfSArd Biesheuvel 		/*
108318532bfSArd Biesheuvel 		 * If we end up here, the allocation succeeded but starts below
109318532bfSArd Biesheuvel 		 * dram_base. This can only occur if the real base of DRAM is
110318532bfSArd Biesheuvel 		 * not a multiple of 128 MB, in which case dram_base will have
111318532bfSArd Biesheuvel 		 * been rounded up. Since this implies that a part of the region
112318532bfSArd Biesheuvel 		 * was already occupied, we need to fall through to the code
113318532bfSArd Biesheuvel 		 * below to ensure that the existing allocations don't conflict.
114318532bfSArd Biesheuvel 		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
115318532bfSArd Biesheuvel 		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
116318532bfSArd Biesheuvel 		 * allocations that we want to disallow.
117318532bfSArd Biesheuvel 		 */
118318532bfSArd Biesheuvel 	}
119318532bfSArd Biesheuvel 
120318532bfSArd Biesheuvel 	/*
121318532bfSArd Biesheuvel 	 * If the allocation above failed, we may still be able to proceed:
122318532bfSArd Biesheuvel 	 * if the only allocations in the region are of types that will be
123318532bfSArd Biesheuvel 	 * released to the OS after ExitBootServices(), the decompressor can
124318532bfSArd Biesheuvel 	 * safely overwrite them.
125318532bfSArd Biesheuvel 	 */
126318532bfSArd Biesheuvel 	status = efi_get_memory_map(sys_table_arg, &map);
12781a0bc39SRoy Franz 	if (status != EFI_SUCCESS) {
128318532bfSArd Biesheuvel 		pr_efi_err(sys_table_arg,
129318532bfSArd Biesheuvel 			   "reserve_kernel_base(): Unable to retrieve memory map.\n");
130318532bfSArd Biesheuvel 		return status;
131318532bfSArd Biesheuvel 	}
132318532bfSArd Biesheuvel 
133318532bfSArd Biesheuvel 	for (l = 0; l < map_size; l += desc_size) {
134318532bfSArd Biesheuvel 		efi_memory_desc_t *desc;
135318532bfSArd Biesheuvel 		u64 start, end;
136318532bfSArd Biesheuvel 
137318532bfSArd Biesheuvel 		desc = (void *)memory_map + l;
138318532bfSArd Biesheuvel 		start = desc->phys_addr;
139318532bfSArd Biesheuvel 		end = start + desc->num_pages * EFI_PAGE_SIZE;
140318532bfSArd Biesheuvel 
141318532bfSArd Biesheuvel 		/* Skip if entry does not intersect with region */
142318532bfSArd Biesheuvel 		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
143318532bfSArd Biesheuvel 		    end <= dram_base)
144318532bfSArd Biesheuvel 			continue;
145318532bfSArd Biesheuvel 
146318532bfSArd Biesheuvel 		switch (desc->type) {
147318532bfSArd Biesheuvel 		case EFI_BOOT_SERVICES_CODE:
148318532bfSArd Biesheuvel 		case EFI_BOOT_SERVICES_DATA:
149318532bfSArd Biesheuvel 			/* Ignore types that are released to the OS anyway */
150318532bfSArd Biesheuvel 			continue;
151318532bfSArd Biesheuvel 
152318532bfSArd Biesheuvel 		case EFI_CONVENTIONAL_MEMORY:
153318532bfSArd Biesheuvel 			/*
154318532bfSArd Biesheuvel 			 * Reserve the intersection between this entry and the
155318532bfSArd Biesheuvel 			 * region.
156318532bfSArd Biesheuvel 			 */
157318532bfSArd Biesheuvel 			start = max(start, (u64)dram_base);
158318532bfSArd Biesheuvel 			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
159318532bfSArd Biesheuvel 
160318532bfSArd Biesheuvel 			status = efi_call_early(allocate_pages,
161318532bfSArd Biesheuvel 						EFI_ALLOCATE_ADDRESS,
162318532bfSArd Biesheuvel 						EFI_LOADER_DATA,
163318532bfSArd Biesheuvel 						(end - start) / EFI_PAGE_SIZE,
164318532bfSArd Biesheuvel 						&start);
165318532bfSArd Biesheuvel 			if (status != EFI_SUCCESS) {
166318532bfSArd Biesheuvel 				pr_efi_err(sys_table_arg,
167318532bfSArd Biesheuvel 					"reserve_kernel_base(): alloc failed.\n");
168318532bfSArd Biesheuvel 				goto out;
169318532bfSArd Biesheuvel 			}
170318532bfSArd Biesheuvel 			break;
171318532bfSArd Biesheuvel 
172318532bfSArd Biesheuvel 		case EFI_LOADER_CODE:
173318532bfSArd Biesheuvel 		case EFI_LOADER_DATA:
174318532bfSArd Biesheuvel 			/*
175318532bfSArd Biesheuvel 			 * These regions may be released and reallocated for
176318532bfSArd Biesheuvel 			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
177318532bfSArd Biesheuvel 			 * at any time during the execution of the OS loader,
178318532bfSArd Biesheuvel 			 * so we cannot consider them as safe.
179318532bfSArd Biesheuvel 			 */
180318532bfSArd Biesheuvel 		default:
181318532bfSArd Biesheuvel 			/*
182318532bfSArd Biesheuvel 			 * Treat any other allocation in the region as unsafe */
183318532bfSArd Biesheuvel 			status = EFI_OUT_OF_RESOURCES;
184318532bfSArd Biesheuvel 			goto out;
185318532bfSArd Biesheuvel 		}
186318532bfSArd Biesheuvel 	}
187318532bfSArd Biesheuvel 
188318532bfSArd Biesheuvel 	status = EFI_SUCCESS;
189318532bfSArd Biesheuvel out:
190318532bfSArd Biesheuvel 	efi_call_early(free_pool, memory_map);
191318532bfSArd Biesheuvel 	return status;
192318532bfSArd Biesheuvel }
193318532bfSArd Biesheuvel 
194318532bfSArd Biesheuvel efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
195318532bfSArd Biesheuvel 				 unsigned long *image_addr,
196318532bfSArd Biesheuvel 				 unsigned long *image_size,
197318532bfSArd Biesheuvel 				 unsigned long *reserve_addr,
198318532bfSArd Biesheuvel 				 unsigned long *reserve_size,
199318532bfSArd Biesheuvel 				 unsigned long dram_base,
200318532bfSArd Biesheuvel 				 efi_loaded_image_t *image)
201318532bfSArd Biesheuvel {
202318532bfSArd Biesheuvel 	efi_status_t status;
203318532bfSArd Biesheuvel 
204318532bfSArd Biesheuvel 	/*
205318532bfSArd Biesheuvel 	 * Verify that the DRAM base address is compatible with the ARM
206318532bfSArd Biesheuvel 	 * boot protocol, which determines the base of DRAM by masking
207318532bfSArd Biesheuvel 	 * off the low 27 bits of the address at which the zImage is
208318532bfSArd Biesheuvel 	 * loaded. These assumptions are made by the decompressor,
209318532bfSArd Biesheuvel 	 * before any memory map is available.
210318532bfSArd Biesheuvel 	 */
211318532bfSArd Biesheuvel 	dram_base = round_up(dram_base, SZ_128M);
212318532bfSArd Biesheuvel 
213318532bfSArd Biesheuvel 	status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
214318532bfSArd Biesheuvel 				     reserve_size);
215318532bfSArd Biesheuvel 	if (status != EFI_SUCCESS) {
21681a0bc39SRoy Franz 		pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
21781a0bc39SRoy Franz 		return status;
21881a0bc39SRoy Franz 	}
21981a0bc39SRoy Franz 
22081a0bc39SRoy Franz 	/*
22181a0bc39SRoy Franz 	 * Relocate the zImage, so that it appears in the lowest 128 MB
22281a0bc39SRoy Franz 	 * memory window.
22381a0bc39SRoy Franz 	 */
22481a0bc39SRoy Franz 	*image_size = image->image_size;
22581a0bc39SRoy Franz 	status = efi_relocate_kernel(sys_table, image_addr, *image_size,
22681a0bc39SRoy Franz 				     *image_size,
22781a0bc39SRoy Franz 				     dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
22881a0bc39SRoy Franz 	if (status != EFI_SUCCESS) {
22981a0bc39SRoy Franz 		pr_efi_err(sys_table, "Failed to relocate kernel.\n");
23081a0bc39SRoy Franz 		efi_free(sys_table, *reserve_size, *reserve_addr);
23181a0bc39SRoy Franz 		*reserve_size = 0;
23281a0bc39SRoy Franz 		return status;
23381a0bc39SRoy Franz 	}
23481a0bc39SRoy Franz 
23581a0bc39SRoy Franz 	/*
23681a0bc39SRoy Franz 	 * Check to see if we were able to allocate memory low enough
23781a0bc39SRoy Franz 	 * in memory. The kernel determines the base of DRAM from the
23881a0bc39SRoy Franz 	 * address at which the zImage is loaded.
23981a0bc39SRoy Franz 	 */
24081a0bc39SRoy Franz 	if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
24181a0bc39SRoy Franz 		pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
24281a0bc39SRoy Franz 		efi_free(sys_table, *reserve_size, *reserve_addr);
24381a0bc39SRoy Franz 		*reserve_size = 0;
24481a0bc39SRoy Franz 		efi_free(sys_table, *image_size, *image_addr);
24581a0bc39SRoy Franz 		*image_size = 0;
24681a0bc39SRoy Franz 		return EFI_LOAD_ERROR;
24781a0bc39SRoy Franz 	}
24881a0bc39SRoy Franz 	return EFI_SUCCESS;
24981a0bc39SRoy Franz }
250