14febfb8dSArd Biesheuvel // SPDX-License-Identifier: GPL-2.0
281a0bc39SRoy Franz /*
381a0bc39SRoy Franz  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
481a0bc39SRoy Franz  */
581a0bc39SRoy Franz #include <linux/efi.h>
681a0bc39SRoy Franz #include <asm/efi.h>
781a0bc39SRoy Franz 
8eeff7d63SArd Biesheuvel #include "efistub.h"
9eeff7d63SArd Biesheuvel 
102ec0f0a3SArd Biesheuvel efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
112ec0f0a3SArd Biesheuvel {
122ec0f0a3SArd Biesheuvel 	int block;
132ec0f0a3SArd Biesheuvel 
142ec0f0a3SArd Biesheuvel 	/* non-LPAE kernels can run anywhere */
152ec0f0a3SArd Biesheuvel 	if (!IS_ENABLED(CONFIG_ARM_LPAE))
162ec0f0a3SArd Biesheuvel 		return EFI_SUCCESS;
172ec0f0a3SArd Biesheuvel 
182ec0f0a3SArd Biesheuvel 	/* LPAE kernels need compatible hardware */
192ec0f0a3SArd Biesheuvel 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
202ec0f0a3SArd Biesheuvel 	if (block < 5) {
212ec0f0a3SArd Biesheuvel 		pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
222ec0f0a3SArd Biesheuvel 		return EFI_UNSUPPORTED;
232ec0f0a3SArd Biesheuvel 	}
242ec0f0a3SArd Biesheuvel 	return EFI_SUCCESS;
252ec0f0a3SArd Biesheuvel }
262ec0f0a3SArd Biesheuvel 
27801820beSArd Biesheuvel static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
28801820beSArd Biesheuvel 
29801820beSArd Biesheuvel struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
30801820beSArd Biesheuvel {
31801820beSArd Biesheuvel 	struct screen_info *si;
32801820beSArd Biesheuvel 	efi_status_t status;
33801820beSArd Biesheuvel 
34801820beSArd Biesheuvel 	/*
35801820beSArd Biesheuvel 	 * Unlike on arm64, where we can directly fill out the screen_info
36801820beSArd Biesheuvel 	 * structure from the stub, we need to allocate a buffer to hold
37801820beSArd Biesheuvel 	 * its contents while we hand over to the kernel proper from the
38801820beSArd Biesheuvel 	 * decompressor.
39801820beSArd Biesheuvel 	 */
40801820beSArd Biesheuvel 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
41801820beSArd Biesheuvel 				sizeof(*si), (void **)&si);
42801820beSArd Biesheuvel 
43801820beSArd Biesheuvel 	if (status != EFI_SUCCESS)
44801820beSArd Biesheuvel 		return NULL;
45801820beSArd Biesheuvel 
46801820beSArd Biesheuvel 	status = efi_call_early(install_configuration_table,
47801820beSArd Biesheuvel 				&screen_info_guid, si);
48801820beSArd Biesheuvel 	if (status == EFI_SUCCESS)
49801820beSArd Biesheuvel 		return si;
50801820beSArd Biesheuvel 
51801820beSArd Biesheuvel 	efi_call_early(free_pool, si);
52801820beSArd Biesheuvel 	return NULL;
53801820beSArd Biesheuvel }
54801820beSArd Biesheuvel 
55801820beSArd Biesheuvel void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
56801820beSArd Biesheuvel {
57801820beSArd Biesheuvel 	if (!si)
58801820beSArd Biesheuvel 		return;
59801820beSArd Biesheuvel 
60801820beSArd Biesheuvel 	efi_call_early(install_configuration_table, &screen_info_guid, NULL);
61801820beSArd Biesheuvel 	efi_call_early(free_pool, si);
62801820beSArd Biesheuvel }
63801820beSArd Biesheuvel 
64318532bfSArd Biesheuvel static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
6581a0bc39SRoy Franz 					unsigned long dram_base,
66318532bfSArd Biesheuvel 					unsigned long *reserve_addr,
67318532bfSArd Biesheuvel 					unsigned long *reserve_size)
6881a0bc39SRoy Franz {
6981a0bc39SRoy Franz 	efi_physical_addr_t alloc_addr;
70318532bfSArd Biesheuvel 	efi_memory_desc_t *memory_map;
71318532bfSArd Biesheuvel 	unsigned long nr_pages, map_size, desc_size, buff_size;
72318532bfSArd Biesheuvel 	efi_status_t status;
73318532bfSArd Biesheuvel 	unsigned long l;
7481a0bc39SRoy Franz 
75318532bfSArd Biesheuvel 	struct efi_boot_memmap map = {
76318532bfSArd Biesheuvel 		.map		= &memory_map,
77318532bfSArd Biesheuvel 		.map_size	= &map_size,
78318532bfSArd Biesheuvel 		.desc_size	= &desc_size,
79318532bfSArd Biesheuvel 		.desc_ver	= NULL,
80318532bfSArd Biesheuvel 		.key_ptr	= NULL,
81318532bfSArd Biesheuvel 		.buff_size	= &buff_size,
82318532bfSArd Biesheuvel 	};
8381a0bc39SRoy Franz 
8481a0bc39SRoy Franz 	/*
8581a0bc39SRoy Franz 	 * Reserve memory for the uncompressed kernel image. This is
8681a0bc39SRoy Franz 	 * all that prevents any future allocations from conflicting
8781a0bc39SRoy Franz 	 * with the kernel. Since we can't tell from the compressed
8881a0bc39SRoy Franz 	 * image how much DRAM the kernel actually uses (due to BSS
8981a0bc39SRoy Franz 	 * size uncertainty) we allocate the maximum possible size.
9081a0bc39SRoy Franz 	 * Do this very early, as prints can cause memory allocations
9181a0bc39SRoy Franz 	 * that may conflict with this.
9281a0bc39SRoy Franz 	 */
93318532bfSArd Biesheuvel 	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
94318532bfSArd Biesheuvel 	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
95318532bfSArd Biesheuvel 	status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
96318532bfSArd Biesheuvel 				EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
97318532bfSArd Biesheuvel 	if (status == EFI_SUCCESS) {
98318532bfSArd Biesheuvel 		if (alloc_addr == dram_base) {
99318532bfSArd Biesheuvel 			*reserve_addr = alloc_addr;
10081a0bc39SRoy Franz 			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
101318532bfSArd Biesheuvel 			return EFI_SUCCESS;
102318532bfSArd Biesheuvel 		}
103318532bfSArd Biesheuvel 		/*
104318532bfSArd Biesheuvel 		 * If we end up here, the allocation succeeded but starts below
105318532bfSArd Biesheuvel 		 * dram_base. This can only occur if the real base of DRAM is
106318532bfSArd Biesheuvel 		 * not a multiple of 128 MB, in which case dram_base will have
107318532bfSArd Biesheuvel 		 * been rounded up. Since this implies that a part of the region
108318532bfSArd Biesheuvel 		 * was already occupied, we need to fall through to the code
109318532bfSArd Biesheuvel 		 * below to ensure that the existing allocations don't conflict.
110318532bfSArd Biesheuvel 		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
111318532bfSArd Biesheuvel 		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
112318532bfSArd Biesheuvel 		 * allocations that we want to disallow.
113318532bfSArd Biesheuvel 		 */
114318532bfSArd Biesheuvel 	}
115318532bfSArd Biesheuvel 
116318532bfSArd Biesheuvel 	/*
117318532bfSArd Biesheuvel 	 * If the allocation above failed, we may still be able to proceed:
118318532bfSArd Biesheuvel 	 * if the only allocations in the region are of types that will be
119318532bfSArd Biesheuvel 	 * released to the OS after ExitBootServices(), the decompressor can
120318532bfSArd Biesheuvel 	 * safely overwrite them.
121318532bfSArd Biesheuvel 	 */
122318532bfSArd Biesheuvel 	status = efi_get_memory_map(sys_table_arg, &map);
12381a0bc39SRoy Franz 	if (status != EFI_SUCCESS) {
124318532bfSArd Biesheuvel 		pr_efi_err(sys_table_arg,
125318532bfSArd Biesheuvel 			   "reserve_kernel_base(): Unable to retrieve memory map.\n");
126318532bfSArd Biesheuvel 		return status;
127318532bfSArd Biesheuvel 	}
128318532bfSArd Biesheuvel 
129318532bfSArd Biesheuvel 	for (l = 0; l < map_size; l += desc_size) {
130318532bfSArd Biesheuvel 		efi_memory_desc_t *desc;
131318532bfSArd Biesheuvel 		u64 start, end;
132318532bfSArd Biesheuvel 
133318532bfSArd Biesheuvel 		desc = (void *)memory_map + l;
134318532bfSArd Biesheuvel 		start = desc->phys_addr;
135318532bfSArd Biesheuvel 		end = start + desc->num_pages * EFI_PAGE_SIZE;
136318532bfSArd Biesheuvel 
137318532bfSArd Biesheuvel 		/* Skip if entry does not intersect with region */
138318532bfSArd Biesheuvel 		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
139318532bfSArd Biesheuvel 		    end <= dram_base)
140318532bfSArd Biesheuvel 			continue;
141318532bfSArd Biesheuvel 
142318532bfSArd Biesheuvel 		switch (desc->type) {
143318532bfSArd Biesheuvel 		case EFI_BOOT_SERVICES_CODE:
144318532bfSArd Biesheuvel 		case EFI_BOOT_SERVICES_DATA:
145318532bfSArd Biesheuvel 			/* Ignore types that are released to the OS anyway */
146318532bfSArd Biesheuvel 			continue;
147318532bfSArd Biesheuvel 
148318532bfSArd Biesheuvel 		case EFI_CONVENTIONAL_MEMORY:
149318532bfSArd Biesheuvel 			/*
150318532bfSArd Biesheuvel 			 * Reserve the intersection between this entry and the
151318532bfSArd Biesheuvel 			 * region.
152318532bfSArd Biesheuvel 			 */
153318532bfSArd Biesheuvel 			start = max(start, (u64)dram_base);
154318532bfSArd Biesheuvel 			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
155318532bfSArd Biesheuvel 
156318532bfSArd Biesheuvel 			status = efi_call_early(allocate_pages,
157318532bfSArd Biesheuvel 						EFI_ALLOCATE_ADDRESS,
158318532bfSArd Biesheuvel 						EFI_LOADER_DATA,
159318532bfSArd Biesheuvel 						(end - start) / EFI_PAGE_SIZE,
160318532bfSArd Biesheuvel 						&start);
161318532bfSArd Biesheuvel 			if (status != EFI_SUCCESS) {
162318532bfSArd Biesheuvel 				pr_efi_err(sys_table_arg,
163318532bfSArd Biesheuvel 					"reserve_kernel_base(): alloc failed.\n");
164318532bfSArd Biesheuvel 				goto out;
165318532bfSArd Biesheuvel 			}
166318532bfSArd Biesheuvel 			break;
167318532bfSArd Biesheuvel 
168318532bfSArd Biesheuvel 		case EFI_LOADER_CODE:
169318532bfSArd Biesheuvel 		case EFI_LOADER_DATA:
170318532bfSArd Biesheuvel 			/*
171318532bfSArd Biesheuvel 			 * These regions may be released and reallocated for
172318532bfSArd Biesheuvel 			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
173318532bfSArd Biesheuvel 			 * at any time during the execution of the OS loader,
174318532bfSArd Biesheuvel 			 * so we cannot consider them as safe.
175318532bfSArd Biesheuvel 			 */
176318532bfSArd Biesheuvel 		default:
177318532bfSArd Biesheuvel 			/*
178318532bfSArd Biesheuvel 			 * Treat any other allocation in the region as unsafe */
179318532bfSArd Biesheuvel 			status = EFI_OUT_OF_RESOURCES;
180318532bfSArd Biesheuvel 			goto out;
181318532bfSArd Biesheuvel 		}
182318532bfSArd Biesheuvel 	}
183318532bfSArd Biesheuvel 
184318532bfSArd Biesheuvel 	status = EFI_SUCCESS;
185318532bfSArd Biesheuvel out:
186318532bfSArd Biesheuvel 	efi_call_early(free_pool, memory_map);
187318532bfSArd Biesheuvel 	return status;
188318532bfSArd Biesheuvel }
189318532bfSArd Biesheuvel 
190318532bfSArd Biesheuvel efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
191318532bfSArd Biesheuvel 				 unsigned long *image_addr,
192318532bfSArd Biesheuvel 				 unsigned long *image_size,
193318532bfSArd Biesheuvel 				 unsigned long *reserve_addr,
194318532bfSArd Biesheuvel 				 unsigned long *reserve_size,
195318532bfSArd Biesheuvel 				 unsigned long dram_base,
196318532bfSArd Biesheuvel 				 efi_loaded_image_t *image)
197318532bfSArd Biesheuvel {
19841cd96faSArd Biesheuvel 	unsigned long kernel_base;
199318532bfSArd Biesheuvel 	efi_status_t status;
200318532bfSArd Biesheuvel 
201318532bfSArd Biesheuvel 	/*
202318532bfSArd Biesheuvel 	 * Verify that the DRAM base address is compatible with the ARM
203318532bfSArd Biesheuvel 	 * boot protocol, which determines the base of DRAM by masking
204318532bfSArd Biesheuvel 	 * off the low 27 bits of the address at which the zImage is
205318532bfSArd Biesheuvel 	 * loaded. These assumptions are made by the decompressor,
206318532bfSArd Biesheuvel 	 * before any memory map is available.
207318532bfSArd Biesheuvel 	 */
20841cd96faSArd Biesheuvel 	kernel_base = round_up(dram_base, SZ_128M);
209318532bfSArd Biesheuvel 
21041cd96faSArd Biesheuvel 	/*
21141cd96faSArd Biesheuvel 	 * Note that some platforms (notably, the Raspberry Pi 2) put
21241cd96faSArd Biesheuvel 	 * spin-tables and other pieces of firmware at the base of RAM,
21341cd96faSArd Biesheuvel 	 * abusing the fact that the window of TEXT_OFFSET bytes at the
21441cd96faSArd Biesheuvel 	 * base of the kernel image is only partially used at the moment.
21541cd96faSArd Biesheuvel 	 * (Up to 5 pages are used for the swapper page tables)
21641cd96faSArd Biesheuvel 	 */
21741cd96faSArd Biesheuvel 	kernel_base += TEXT_OFFSET - 5 * PAGE_SIZE;
21841cd96faSArd Biesheuvel 
21941cd96faSArd Biesheuvel 	status = reserve_kernel_base(sys_table, kernel_base, reserve_addr,
220318532bfSArd Biesheuvel 				     reserve_size);
221318532bfSArd Biesheuvel 	if (status != EFI_SUCCESS) {
22281a0bc39SRoy Franz 		pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
22381a0bc39SRoy Franz 		return status;
22481a0bc39SRoy Franz 	}
22581a0bc39SRoy Franz 
22681a0bc39SRoy Franz 	/*
22781a0bc39SRoy Franz 	 * Relocate the zImage, so that it appears in the lowest 128 MB
22881a0bc39SRoy Franz 	 * memory window.
22981a0bc39SRoy Franz 	 */
23081a0bc39SRoy Franz 	*image_size = image->image_size;
23181a0bc39SRoy Franz 	status = efi_relocate_kernel(sys_table, image_addr, *image_size,
23281a0bc39SRoy Franz 				     *image_size,
23341cd96faSArd Biesheuvel 				     kernel_base + MAX_UNCOMP_KERNEL_SIZE, 0);
23481a0bc39SRoy Franz 	if (status != EFI_SUCCESS) {
23581a0bc39SRoy Franz 		pr_efi_err(sys_table, "Failed to relocate kernel.\n");
23681a0bc39SRoy Franz 		efi_free(sys_table, *reserve_size, *reserve_addr);
23781a0bc39SRoy Franz 		*reserve_size = 0;
23881a0bc39SRoy Franz 		return status;
23981a0bc39SRoy Franz 	}
24081a0bc39SRoy Franz 
24181a0bc39SRoy Franz 	/*
24281a0bc39SRoy Franz 	 * Check to see if we were able to allocate memory low enough
24381a0bc39SRoy Franz 	 * in memory. The kernel determines the base of DRAM from the
24481a0bc39SRoy Franz 	 * address at which the zImage is loaded.
24581a0bc39SRoy Franz 	 */
24681a0bc39SRoy Franz 	if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
24781a0bc39SRoy Franz 		pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
24881a0bc39SRoy Franz 		efi_free(sys_table, *reserve_size, *reserve_addr);
24981a0bc39SRoy Franz 		*reserve_size = 0;
25081a0bc39SRoy Franz 		efi_free(sys_table, *image_size, *image_addr);
25181a0bc39SRoy Franz 		*image_size = 0;
25281a0bc39SRoy Franz 		return EFI_LOAD_ERROR;
25381a0bc39SRoy Franz 	}
25481a0bc39SRoy Franz 	return EFI_SUCCESS;
25581a0bc39SRoy Franz }
256