xref: /openbmc/linux/drivers/firmware/efi/efi.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/io.h>
25 #include <linux/kexec.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/reboot.h>
29 #include <linux/slab.h>
30 #include <linux/acpi.h>
31 #include <linux/ucs2_string.h>
32 #include <linux/memblock.h>
33 #include <linux/security.h>
34 
35 #include <asm/early_ioremap.h>
36 
37 struct efi __read_mostly efi = {
38 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 	.acpi			= EFI_INVALID_TABLE_ADDR,
40 	.acpi20			= EFI_INVALID_TABLE_ADDR,
41 	.smbios			= EFI_INVALID_TABLE_ADDR,
42 	.smbios3		= EFI_INVALID_TABLE_ADDR,
43 	.esrt			= EFI_INVALID_TABLE_ADDR,
44 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 #ifdef CONFIG_LOAD_UEFI_KEYS
47 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
48 #endif
49 };
50 EXPORT_SYMBOL(efi);
51 
52 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
53 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
54 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
55 
56 struct mm_struct efi_mm = {
57 	.mm_rb			= RB_ROOT,
58 	.mm_users		= ATOMIC_INIT(2),
59 	.mm_count		= ATOMIC_INIT(1),
60 	MMAP_LOCK_INITIALIZER(efi_mm)
61 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
62 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
63 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
64 };
65 
66 struct workqueue_struct *efi_rts_wq;
67 
68 static bool disable_runtime;
69 static int __init setup_noefi(char *arg)
70 {
71 	disable_runtime = true;
72 	return 0;
73 }
74 early_param("noefi", setup_noefi);
75 
76 bool efi_runtime_disabled(void)
77 {
78 	return disable_runtime;
79 }
80 
81 bool __pure __efi_soft_reserve_enabled(void)
82 {
83 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
84 }
85 
86 static int __init parse_efi_cmdline(char *str)
87 {
88 	if (!str) {
89 		pr_warn("need at least one option\n");
90 		return -EINVAL;
91 	}
92 
93 	if (parse_option_str(str, "debug"))
94 		set_bit(EFI_DBG, &efi.flags);
95 
96 	if (parse_option_str(str, "noruntime"))
97 		disable_runtime = true;
98 
99 	if (parse_option_str(str, "nosoftreserve"))
100 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
101 
102 	return 0;
103 }
104 early_param("efi", parse_efi_cmdline);
105 
106 struct kobject *efi_kobj;
107 
108 /*
109  * Let's not leave out systab information that snuck into
110  * the efivars driver
111  * Note, do not add more fields in systab sysfs file as it breaks sysfs
112  * one value per file rule!
113  */
114 static ssize_t systab_show(struct kobject *kobj,
115 			   struct kobj_attribute *attr, char *buf)
116 {
117 	char *str = buf;
118 
119 	if (!kobj || !buf)
120 		return -EINVAL;
121 
122 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
123 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
124 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
125 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
126 	/*
127 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
128 	 * SMBIOS3 entry point shall be preferred, so we list it first to
129 	 * let applications stop parsing after the first match.
130 	 */
131 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
132 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
133 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
134 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
135 
136 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
137 		str = efi_systab_show_arch(str);
138 
139 	return str - buf;
140 }
141 
142 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
143 
144 static ssize_t fw_platform_size_show(struct kobject *kobj,
145 				     struct kobj_attribute *attr, char *buf)
146 {
147 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
148 }
149 
150 extern __weak struct kobj_attribute efi_attr_fw_vendor;
151 extern __weak struct kobj_attribute efi_attr_runtime;
152 extern __weak struct kobj_attribute efi_attr_config_table;
153 static struct kobj_attribute efi_attr_fw_platform_size =
154 	__ATTR_RO(fw_platform_size);
155 
156 static struct attribute *efi_subsys_attrs[] = {
157 	&efi_attr_systab.attr,
158 	&efi_attr_fw_platform_size.attr,
159 	&efi_attr_fw_vendor.attr,
160 	&efi_attr_runtime.attr,
161 	&efi_attr_config_table.attr,
162 	NULL,
163 };
164 
165 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
166 				   int n)
167 {
168 	return attr->mode;
169 }
170 
171 static const struct attribute_group efi_subsys_attr_group = {
172 	.attrs = efi_subsys_attrs,
173 	.is_visible = efi_attr_is_visible,
174 };
175 
176 static struct efivars generic_efivars;
177 static struct efivar_operations generic_ops;
178 
179 static int generic_ops_register(void)
180 {
181 	generic_ops.get_variable = efi.get_variable;
182 	generic_ops.get_next_variable = efi.get_next_variable;
183 	generic_ops.query_variable_store = efi_query_variable_store;
184 
185 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
186 		generic_ops.set_variable = efi.set_variable;
187 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
188 	}
189 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
190 }
191 
192 static void generic_ops_unregister(void)
193 {
194 	efivars_unregister(&generic_efivars);
195 }
196 
197 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
198 #define EFIVAR_SSDT_NAME_MAX	16
199 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
200 static int __init efivar_ssdt_setup(char *str)
201 {
202 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
203 
204 	if (ret)
205 		return ret;
206 
207 	if (strlen(str) < sizeof(efivar_ssdt))
208 		memcpy(efivar_ssdt, str, strlen(str));
209 	else
210 		pr_warn("efivar_ssdt: name too long: %s\n", str);
211 	return 0;
212 }
213 __setup("efivar_ssdt=", efivar_ssdt_setup);
214 
215 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
216 				   unsigned long name_size, void *data)
217 {
218 	struct efivar_entry *entry;
219 	struct list_head *list = data;
220 	char utf8_name[EFIVAR_SSDT_NAME_MAX];
221 	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
222 
223 	ucs2_as_utf8(utf8_name, name, limit - 1);
224 	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
225 		return 0;
226 
227 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
228 	if (!entry)
229 		return 0;
230 
231 	memcpy(entry->var.VariableName, name, name_size);
232 	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
233 
234 	efivar_entry_add(entry, list);
235 
236 	return 0;
237 }
238 
239 static __init int efivar_ssdt_load(void)
240 {
241 	LIST_HEAD(entries);
242 	struct efivar_entry *entry, *aux;
243 	unsigned long size;
244 	void *data;
245 	int ret;
246 
247 	if (!efivar_ssdt[0])
248 		return 0;
249 
250 	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
251 
252 	list_for_each_entry_safe(entry, aux, &entries, list) {
253 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
254 			&entry->var.VendorGuid);
255 
256 		list_del(&entry->list);
257 
258 		ret = efivar_entry_size(entry, &size);
259 		if (ret) {
260 			pr_err("failed to get var size\n");
261 			goto free_entry;
262 		}
263 
264 		data = kmalloc(size, GFP_KERNEL);
265 		if (!data) {
266 			ret = -ENOMEM;
267 			goto free_entry;
268 		}
269 
270 		ret = efivar_entry_get(entry, NULL, &size, data);
271 		if (ret) {
272 			pr_err("failed to get var data\n");
273 			goto free_data;
274 		}
275 
276 		ret = acpi_load_table(data, NULL);
277 		if (ret) {
278 			pr_err("failed to load table: %d\n", ret);
279 			goto free_data;
280 		}
281 
282 		goto free_entry;
283 
284 free_data:
285 		kfree(data);
286 
287 free_entry:
288 		kfree(entry);
289 	}
290 
291 	return ret;
292 }
293 #else
294 static inline int efivar_ssdt_load(void) { return 0; }
295 #endif
296 
297 #ifdef CONFIG_DEBUG_FS
298 
299 #define EFI_DEBUGFS_MAX_BLOBS 32
300 
301 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
302 
303 static void __init efi_debugfs_init(void)
304 {
305 	struct dentry *efi_debugfs;
306 	efi_memory_desc_t *md;
307 	char name[32];
308 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
309 	int i = 0;
310 
311 	efi_debugfs = debugfs_create_dir("efi", NULL);
312 	if (IS_ERR_OR_NULL(efi_debugfs))
313 		return;
314 
315 	for_each_efi_memory_desc(md) {
316 		switch (md->type) {
317 		case EFI_BOOT_SERVICES_CODE:
318 			snprintf(name, sizeof(name), "boot_services_code%d",
319 				 type_count[md->type]++);
320 			break;
321 		case EFI_BOOT_SERVICES_DATA:
322 			snprintf(name, sizeof(name), "boot_services_data%d",
323 				 type_count[md->type]++);
324 			break;
325 		default:
326 			continue;
327 		}
328 
329 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
330 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
331 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
332 			break;
333 		}
334 
335 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
336 		debugfs_blob[i].data = memremap(md->phys_addr,
337 						debugfs_blob[i].size,
338 						MEMREMAP_WB);
339 		if (!debugfs_blob[i].data)
340 			continue;
341 
342 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
343 		i++;
344 	}
345 }
346 #else
347 static inline void efi_debugfs_init(void) {}
348 #endif
349 
350 /*
351  * We register the efi subsystem with the firmware subsystem and the
352  * efivars subsystem with the efi subsystem, if the system was booted with
353  * EFI.
354  */
355 static int __init efisubsys_init(void)
356 {
357 	int error;
358 
359 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
360 		efi.runtime_supported_mask = 0;
361 
362 	if (!efi_enabled(EFI_BOOT))
363 		return 0;
364 
365 	if (efi.runtime_supported_mask) {
366 		/*
367 		 * Since we process only one efi_runtime_service() at a time, an
368 		 * ordered workqueue (which creates only one execution context)
369 		 * should suffice for all our needs.
370 		 */
371 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
372 		if (!efi_rts_wq) {
373 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
374 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
375 			efi.runtime_supported_mask = 0;
376 			return 0;
377 		}
378 	}
379 
380 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
381 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
382 
383 	/* We register the efi directory at /sys/firmware/efi */
384 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
385 	if (!efi_kobj) {
386 		pr_err("efi: Firmware registration failed.\n");
387 		destroy_workqueue(efi_rts_wq);
388 		return -ENOMEM;
389 	}
390 
391 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
392 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
393 		error = generic_ops_register();
394 		if (error)
395 			goto err_put;
396 		efivar_ssdt_load();
397 		platform_device_register_simple("efivars", 0, NULL, 0);
398 	}
399 
400 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
401 	if (error) {
402 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
403 		       error);
404 		goto err_unregister;
405 	}
406 
407 	error = efi_runtime_map_init(efi_kobj);
408 	if (error)
409 		goto err_remove_group;
410 
411 	/* and the standard mountpoint for efivarfs */
412 	error = sysfs_create_mount_point(efi_kobj, "efivars");
413 	if (error) {
414 		pr_err("efivars: Subsystem registration failed.\n");
415 		goto err_remove_group;
416 	}
417 
418 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
419 		efi_debugfs_init();
420 
421 	return 0;
422 
423 err_remove_group:
424 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
425 err_unregister:
426 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
427 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
428 		generic_ops_unregister();
429 err_put:
430 	kobject_put(efi_kobj);
431 	destroy_workqueue(efi_rts_wq);
432 	return error;
433 }
434 
435 subsys_initcall(efisubsys_init);
436 
437 /*
438  * Find the efi memory descriptor for a given physical address.  Given a
439  * physical address, determine if it exists within an EFI Memory Map entry,
440  * and if so, populate the supplied memory descriptor with the appropriate
441  * data.
442  */
443 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
444 {
445 	efi_memory_desc_t *md;
446 
447 	if (!efi_enabled(EFI_MEMMAP)) {
448 		pr_err_once("EFI_MEMMAP is not enabled.\n");
449 		return -EINVAL;
450 	}
451 
452 	if (!out_md) {
453 		pr_err_once("out_md is null.\n");
454 		return -EINVAL;
455         }
456 
457 	for_each_efi_memory_desc(md) {
458 		u64 size;
459 		u64 end;
460 
461 		size = md->num_pages << EFI_PAGE_SHIFT;
462 		end = md->phys_addr + size;
463 		if (phys_addr >= md->phys_addr && phys_addr < end) {
464 			memcpy(out_md, md, sizeof(*out_md));
465 			return 0;
466 		}
467 	}
468 	return -ENOENT;
469 }
470 
471 /*
472  * Calculate the highest address of an efi memory descriptor.
473  */
474 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
475 {
476 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
477 	u64 end = md->phys_addr + size;
478 	return end;
479 }
480 
481 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
482 
483 /**
484  * efi_mem_reserve - Reserve an EFI memory region
485  * @addr: Physical address to reserve
486  * @size: Size of reservation
487  *
488  * Mark a region as reserved from general kernel allocation and
489  * prevent it being released by efi_free_boot_services().
490  *
491  * This function should be called drivers once they've parsed EFI
492  * configuration tables to figure out where their data lives, e.g.
493  * efi_esrt_init().
494  */
495 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
496 {
497 	if (!memblock_is_region_reserved(addr, size))
498 		memblock_reserve(addr, size);
499 
500 	/*
501 	 * Some architectures (x86) reserve all boot services ranges
502 	 * until efi_free_boot_services() because of buggy firmware
503 	 * implementations. This means the above memblock_reserve() is
504 	 * superfluous on x86 and instead what it needs to do is
505 	 * ensure the @start, @size is not freed.
506 	 */
507 	efi_arch_mem_reserve(addr, size);
508 }
509 
510 static const efi_config_table_type_t common_tables[] __initconst = {
511 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
512 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
513 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
514 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
515 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
516 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
517 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
518 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
519 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
520 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
521 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
522 #ifdef CONFIG_EFI_RCI2_TABLE
523 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
524 #endif
525 #ifdef CONFIG_LOAD_UEFI_KEYS
526 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
527 #endif
528 	{},
529 };
530 
531 static __init int match_config_table(const efi_guid_t *guid,
532 				     unsigned long table,
533 				     const efi_config_table_type_t *table_types)
534 {
535 	int i;
536 
537 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
538 		if (!efi_guidcmp(*guid, table_types[i].guid)) {
539 			*(table_types[i].ptr) = table;
540 			if (table_types[i].name[0])
541 				pr_cont("%s=0x%lx ",
542 					table_types[i].name, table);
543 			return 1;
544 		}
545 	}
546 
547 	return 0;
548 }
549 
550 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
551 				   int count,
552 				   const efi_config_table_type_t *arch_tables)
553 {
554 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
555 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
556 	const efi_guid_t *guid;
557 	unsigned long table;
558 	int i;
559 
560 	pr_info("");
561 	for (i = 0; i < count; i++) {
562 		if (!IS_ENABLED(CONFIG_X86)) {
563 			guid = &config_tables[i].guid;
564 			table = (unsigned long)config_tables[i].table;
565 		} else if (efi_enabled(EFI_64BIT)) {
566 			guid = &tbl64[i].guid;
567 			table = tbl64[i].table;
568 
569 			if (IS_ENABLED(CONFIG_X86_32) &&
570 			    tbl64[i].table > U32_MAX) {
571 				pr_cont("\n");
572 				pr_err("Table located above 4GB, disabling EFI.\n");
573 				return -EINVAL;
574 			}
575 		} else {
576 			guid = &tbl32[i].guid;
577 			table = tbl32[i].table;
578 		}
579 
580 		if (!match_config_table(guid, table, common_tables) && arch_tables)
581 			match_config_table(guid, table, arch_tables);
582 	}
583 	pr_cont("\n");
584 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
585 
586 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
587 		struct linux_efi_random_seed *seed;
588 		u32 size = 0;
589 
590 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
591 		if (seed != NULL) {
592 			size = READ_ONCE(seed->size);
593 			early_memunmap(seed, sizeof(*seed));
594 		} else {
595 			pr_err("Could not map UEFI random seed!\n");
596 		}
597 		if (size > 0) {
598 			seed = early_memremap(efi_rng_seed,
599 					      sizeof(*seed) + size);
600 			if (seed != NULL) {
601 				pr_notice("seeding entropy pool\n");
602 				add_bootloader_randomness(seed->bits, size);
603 				early_memunmap(seed, sizeof(*seed) + size);
604 			} else {
605 				pr_err("Could not map UEFI random seed!\n");
606 			}
607 		}
608 	}
609 
610 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
611 		efi_memattr_init();
612 
613 	efi_tpm_eventlog_init();
614 
615 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
616 		unsigned long prsv = mem_reserve;
617 
618 		while (prsv) {
619 			struct linux_efi_memreserve *rsv;
620 			u8 *p;
621 
622 			/*
623 			 * Just map a full page: that is what we will get
624 			 * anyway, and it permits us to map the entire entry
625 			 * before knowing its size.
626 			 */
627 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
628 					   PAGE_SIZE);
629 			if (p == NULL) {
630 				pr_err("Could not map UEFI memreserve entry!\n");
631 				return -ENOMEM;
632 			}
633 
634 			rsv = (void *)(p + prsv % PAGE_SIZE);
635 
636 			/* reserve the entry itself */
637 			memblock_reserve(prsv,
638 					 struct_size(rsv, entry, rsv->size));
639 
640 			for (i = 0; i < atomic_read(&rsv->count); i++) {
641 				memblock_reserve(rsv->entry[i].base,
642 						 rsv->entry[i].size);
643 			}
644 
645 			prsv = rsv->next;
646 			early_memunmap(p, PAGE_SIZE);
647 		}
648 	}
649 
650 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
651 		efi_rt_properties_table_t *tbl;
652 
653 		tbl = early_memremap(rt_prop, sizeof(*tbl));
654 		if (tbl) {
655 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
656 			early_memunmap(tbl, sizeof(*tbl));
657 		}
658 	}
659 
660 	return 0;
661 }
662 
663 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
664 				   int min_major_version)
665 {
666 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
667 		pr_err("System table signature incorrect!\n");
668 		return -EINVAL;
669 	}
670 
671 	if ((systab_hdr->revision >> 16) < min_major_version)
672 		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
673 		       systab_hdr->revision >> 16,
674 		       systab_hdr->revision & 0xffff,
675 		       min_major_version);
676 
677 	return 0;
678 }
679 
680 #ifndef CONFIG_IA64
681 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
682 						size_t size)
683 {
684 	const efi_char16_t *ret;
685 
686 	ret = early_memremap_ro(fw_vendor, size);
687 	if (!ret)
688 		pr_err("Could not map the firmware vendor!\n");
689 	return ret;
690 }
691 
692 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
693 {
694 	early_memunmap((void *)fw_vendor, size);
695 }
696 #else
697 #define map_fw_vendor(p, s)	__va(p)
698 #define unmap_fw_vendor(v, s)
699 #endif
700 
701 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
702 				     unsigned long fw_vendor)
703 {
704 	char vendor[100] = "unknown";
705 	const efi_char16_t *c16;
706 	size_t i;
707 
708 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
709 	if (c16) {
710 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
711 			vendor[i] = c16[i];
712 		vendor[i] = '\0';
713 
714 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
715 	}
716 
717 	pr_info("EFI v%u.%.02u by %s\n",
718 		systab_hdr->revision >> 16,
719 		systab_hdr->revision & 0xffff,
720 		vendor);
721 }
722 
723 static __initdata char memory_type_name[][13] = {
724 	"Reserved",
725 	"Loader Code",
726 	"Loader Data",
727 	"Boot Code",
728 	"Boot Data",
729 	"Runtime Code",
730 	"Runtime Data",
731 	"Conventional",
732 	"Unusable",
733 	"ACPI Reclaim",
734 	"ACPI Mem NVS",
735 	"MMIO",
736 	"MMIO Port",
737 	"PAL Code",
738 	"Persistent",
739 };
740 
741 char * __init efi_md_typeattr_format(char *buf, size_t size,
742 				     const efi_memory_desc_t *md)
743 {
744 	char *pos;
745 	int type_len;
746 	u64 attr;
747 
748 	pos = buf;
749 	if (md->type >= ARRAY_SIZE(memory_type_name))
750 		type_len = snprintf(pos, size, "[type=%u", md->type);
751 	else
752 		type_len = snprintf(pos, size, "[%-*s",
753 				    (int)(sizeof(memory_type_name[0]) - 1),
754 				    memory_type_name[md->type]);
755 	if (type_len >= size)
756 		return buf;
757 
758 	pos += type_len;
759 	size -= type_len;
760 
761 	attr = md->attribute;
762 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
763 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
764 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
765 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
766 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
767 		snprintf(pos, size, "|attr=0x%016llx]",
768 			 (unsigned long long)attr);
769 	else
770 		snprintf(pos, size,
771 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
772 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
773 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
774 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
775 			 attr & EFI_MEMORY_SP			? "SP"  : "",
776 			 attr & EFI_MEMORY_NV			? "NV"  : "",
777 			 attr & EFI_MEMORY_XP			? "XP"  : "",
778 			 attr & EFI_MEMORY_RP			? "RP"  : "",
779 			 attr & EFI_MEMORY_WP			? "WP"  : "",
780 			 attr & EFI_MEMORY_RO			? "RO"  : "",
781 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
782 			 attr & EFI_MEMORY_WB			? "WB"  : "",
783 			 attr & EFI_MEMORY_WT			? "WT"  : "",
784 			 attr & EFI_MEMORY_WC			? "WC"  : "",
785 			 attr & EFI_MEMORY_UC			? "UC"  : "");
786 	return buf;
787 }
788 
789 /*
790  * IA64 has a funky EFI memory map that doesn't work the same way as
791  * other architectures.
792  */
793 #ifndef CONFIG_IA64
794 /*
795  * efi_mem_attributes - lookup memmap attributes for physical address
796  * @phys_addr: the physical address to lookup
797  *
798  * Search in the EFI memory map for the region covering
799  * @phys_addr. Returns the EFI memory attributes if the region
800  * was found in the memory map, 0 otherwise.
801  */
802 u64 efi_mem_attributes(unsigned long phys_addr)
803 {
804 	efi_memory_desc_t *md;
805 
806 	if (!efi_enabled(EFI_MEMMAP))
807 		return 0;
808 
809 	for_each_efi_memory_desc(md) {
810 		if ((md->phys_addr <= phys_addr) &&
811 		    (phys_addr < (md->phys_addr +
812 		    (md->num_pages << EFI_PAGE_SHIFT))))
813 			return md->attribute;
814 	}
815 	return 0;
816 }
817 
818 /*
819  * efi_mem_type - lookup memmap type for physical address
820  * @phys_addr: the physical address to lookup
821  *
822  * Search in the EFI memory map for the region covering @phys_addr.
823  * Returns the EFI memory type if the region was found in the memory
824  * map, -EINVAL otherwise.
825  */
826 int efi_mem_type(unsigned long phys_addr)
827 {
828 	const efi_memory_desc_t *md;
829 
830 	if (!efi_enabled(EFI_MEMMAP))
831 		return -ENOTSUPP;
832 
833 	for_each_efi_memory_desc(md) {
834 		if ((md->phys_addr <= phys_addr) &&
835 		    (phys_addr < (md->phys_addr +
836 				  (md->num_pages << EFI_PAGE_SHIFT))))
837 			return md->type;
838 	}
839 	return -EINVAL;
840 }
841 #endif
842 
843 int efi_status_to_err(efi_status_t status)
844 {
845 	int err;
846 
847 	switch (status) {
848 	case EFI_SUCCESS:
849 		err = 0;
850 		break;
851 	case EFI_INVALID_PARAMETER:
852 		err = -EINVAL;
853 		break;
854 	case EFI_OUT_OF_RESOURCES:
855 		err = -ENOSPC;
856 		break;
857 	case EFI_DEVICE_ERROR:
858 		err = -EIO;
859 		break;
860 	case EFI_WRITE_PROTECTED:
861 		err = -EROFS;
862 		break;
863 	case EFI_SECURITY_VIOLATION:
864 		err = -EACCES;
865 		break;
866 	case EFI_NOT_FOUND:
867 		err = -ENOENT;
868 		break;
869 	case EFI_ABORTED:
870 		err = -EINTR;
871 		break;
872 	default:
873 		err = -EINVAL;
874 	}
875 
876 	return err;
877 }
878 
879 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
880 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
881 
882 static int __init efi_memreserve_map_root(void)
883 {
884 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
885 		return -ENODEV;
886 
887 	efi_memreserve_root = memremap(mem_reserve,
888 				       sizeof(*efi_memreserve_root),
889 				       MEMREMAP_WB);
890 	if (WARN_ON_ONCE(!efi_memreserve_root))
891 		return -ENOMEM;
892 	return 0;
893 }
894 
895 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
896 {
897 	struct resource *res, *parent;
898 
899 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
900 	if (!res)
901 		return -ENOMEM;
902 
903 	res->name	= "reserved";
904 	res->flags	= IORESOURCE_MEM;
905 	res->start	= addr;
906 	res->end	= addr + size - 1;
907 
908 	/* we expect a conflict with a 'System RAM' region */
909 	parent = request_resource_conflict(&iomem_resource, res);
910 	return parent ? request_resource(parent, res) : 0;
911 }
912 
913 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
914 {
915 	struct linux_efi_memreserve *rsv;
916 	unsigned long prsv;
917 	int rc, index;
918 
919 	if (efi_memreserve_root == (void *)ULONG_MAX)
920 		return -ENODEV;
921 
922 	if (!efi_memreserve_root) {
923 		rc = efi_memreserve_map_root();
924 		if (rc)
925 			return rc;
926 	}
927 
928 	/* first try to find a slot in an existing linked list entry */
929 	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
930 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
931 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
932 		if (index < rsv->size) {
933 			rsv->entry[index].base = addr;
934 			rsv->entry[index].size = size;
935 
936 			memunmap(rsv);
937 			return efi_mem_reserve_iomem(addr, size);
938 		}
939 		memunmap(rsv);
940 	}
941 
942 	/* no slot found - allocate a new linked list entry */
943 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
944 	if (!rsv)
945 		return -ENOMEM;
946 
947 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
948 	if (rc) {
949 		free_page((unsigned long)rsv);
950 		return rc;
951 	}
952 
953 	/*
954 	 * The memremap() call above assumes that a linux_efi_memreserve entry
955 	 * never crosses a page boundary, so let's ensure that this remains true
956 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
957 	 * using SZ_4K explicitly in the size calculation below.
958 	 */
959 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
960 	atomic_set(&rsv->count, 1);
961 	rsv->entry[0].base = addr;
962 	rsv->entry[0].size = size;
963 
964 	spin_lock(&efi_mem_reserve_persistent_lock);
965 	rsv->next = efi_memreserve_root->next;
966 	efi_memreserve_root->next = __pa(rsv);
967 	spin_unlock(&efi_mem_reserve_persistent_lock);
968 
969 	return efi_mem_reserve_iomem(addr, size);
970 }
971 
972 static int __init efi_memreserve_root_init(void)
973 {
974 	if (efi_memreserve_root)
975 		return 0;
976 	if (efi_memreserve_map_root())
977 		efi_memreserve_root = (void *)ULONG_MAX;
978 	return 0;
979 }
980 early_initcall(efi_memreserve_root_init);
981 
982 #ifdef CONFIG_KEXEC
983 static int update_efi_random_seed(struct notifier_block *nb,
984 				  unsigned long code, void *unused)
985 {
986 	struct linux_efi_random_seed *seed;
987 	u32 size = 0;
988 
989 	if (!kexec_in_progress)
990 		return NOTIFY_DONE;
991 
992 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
993 	if (seed != NULL) {
994 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
995 		memunmap(seed);
996 	} else {
997 		pr_err("Could not map UEFI random seed!\n");
998 	}
999 	if (size > 0) {
1000 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1001 				MEMREMAP_WB);
1002 		if (seed != NULL) {
1003 			seed->size = size;
1004 			get_random_bytes(seed->bits, seed->size);
1005 			memunmap(seed);
1006 		} else {
1007 			pr_err("Could not map UEFI random seed!\n");
1008 		}
1009 	}
1010 	return NOTIFY_DONE;
1011 }
1012 
1013 static struct notifier_block efi_random_seed_nb = {
1014 	.notifier_call = update_efi_random_seed,
1015 };
1016 
1017 static int __init register_update_efi_random_seed(void)
1018 {
1019 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1020 		return 0;
1021 	return register_reboot_notifier(&efi_random_seed_nb);
1022 }
1023 late_initcall(register_update_efi_random_seed);
1024 #endif
1025