xref: /openbmc/linux/drivers/firmware/efi/efi.c (revision 801b27e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 
36 #include <asm/early_ioremap.h>
37 
38 struct efi __read_mostly efi = {
39 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40 	.acpi			= EFI_INVALID_TABLE_ADDR,
41 	.acpi20			= EFI_INVALID_TABLE_ADDR,
42 	.smbios			= EFI_INVALID_TABLE_ADDR,
43 	.smbios3		= EFI_INVALID_TABLE_ADDR,
44 	.esrt			= EFI_INVALID_TABLE_ADDR,
45 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
46 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
47 #ifdef CONFIG_LOAD_UEFI_KEYS
48 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
49 #endif
50 #ifdef CONFIG_EFI_COCO_SECRET
51 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
52 #endif
53 #ifdef CONFIG_UNACCEPTED_MEMORY
54 	.unaccepted		= EFI_INVALID_TABLE_ADDR,
55 #endif
56 };
57 EXPORT_SYMBOL(efi);
58 
59 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
60 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
61 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
63 
64 extern unsigned long screen_info_table;
65 
66 struct mm_struct efi_mm = {
67 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
68 	.mm_users		= ATOMIC_INIT(2),
69 	.mm_count		= ATOMIC_INIT(1),
70 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
71 	MMAP_LOCK_INITIALIZER(efi_mm)
72 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
73 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
74 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
75 };
76 
77 struct workqueue_struct *efi_rts_wq;
78 
79 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
80 static int __init setup_noefi(char *arg)
81 {
82 	disable_runtime = true;
83 	return 0;
84 }
85 early_param("noefi", setup_noefi);
86 
87 bool efi_runtime_disabled(void)
88 {
89 	return disable_runtime;
90 }
91 
92 bool __pure __efi_soft_reserve_enabled(void)
93 {
94 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
95 }
96 
97 static int __init parse_efi_cmdline(char *str)
98 {
99 	if (!str) {
100 		pr_warn("need at least one option\n");
101 		return -EINVAL;
102 	}
103 
104 	if (parse_option_str(str, "debug"))
105 		set_bit(EFI_DBG, &efi.flags);
106 
107 	if (parse_option_str(str, "noruntime"))
108 		disable_runtime = true;
109 
110 	if (parse_option_str(str, "runtime"))
111 		disable_runtime = false;
112 
113 	if (parse_option_str(str, "nosoftreserve"))
114 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
115 
116 	return 0;
117 }
118 early_param("efi", parse_efi_cmdline);
119 
120 struct kobject *efi_kobj;
121 
122 /*
123  * Let's not leave out systab information that snuck into
124  * the efivars driver
125  * Note, do not add more fields in systab sysfs file as it breaks sysfs
126  * one value per file rule!
127  */
128 static ssize_t systab_show(struct kobject *kobj,
129 			   struct kobj_attribute *attr, char *buf)
130 {
131 	char *str = buf;
132 
133 	if (!kobj || !buf)
134 		return -EINVAL;
135 
136 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
137 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
138 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
139 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
140 	/*
141 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
142 	 * SMBIOS3 entry point shall be preferred, so we list it first to
143 	 * let applications stop parsing after the first match.
144 	 */
145 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
146 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
147 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
148 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
149 
150 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
151 		str = efi_systab_show_arch(str);
152 
153 	return str - buf;
154 }
155 
156 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
157 
158 static ssize_t fw_platform_size_show(struct kobject *kobj,
159 				     struct kobj_attribute *attr, char *buf)
160 {
161 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
162 }
163 
164 extern __weak struct kobj_attribute efi_attr_fw_vendor;
165 extern __weak struct kobj_attribute efi_attr_runtime;
166 extern __weak struct kobj_attribute efi_attr_config_table;
167 static struct kobj_attribute efi_attr_fw_platform_size =
168 	__ATTR_RO(fw_platform_size);
169 
170 static struct attribute *efi_subsys_attrs[] = {
171 	&efi_attr_systab.attr,
172 	&efi_attr_fw_platform_size.attr,
173 	&efi_attr_fw_vendor.attr,
174 	&efi_attr_runtime.attr,
175 	&efi_attr_config_table.attr,
176 	NULL,
177 };
178 
179 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
180 				   int n)
181 {
182 	return attr->mode;
183 }
184 
185 static const struct attribute_group efi_subsys_attr_group = {
186 	.attrs = efi_subsys_attrs,
187 	.is_visible = efi_attr_is_visible,
188 };
189 
190 static struct efivars generic_efivars;
191 static struct efivar_operations generic_ops;
192 
193 static bool generic_ops_supported(void)
194 {
195 	unsigned long name_size;
196 	efi_status_t status;
197 	efi_char16_t name;
198 	efi_guid_t guid;
199 
200 	name_size = sizeof(name);
201 
202 	status = efi.get_next_variable(&name_size, &name, &guid);
203 	if (status == EFI_UNSUPPORTED)
204 		return false;
205 
206 	return true;
207 }
208 
209 static int generic_ops_register(void)
210 {
211 	if (!generic_ops_supported())
212 		return 0;
213 
214 	generic_ops.get_variable = efi.get_variable;
215 	generic_ops.get_next_variable = efi.get_next_variable;
216 	generic_ops.query_variable_store = efi_query_variable_store;
217 	generic_ops.query_variable_info = efi.query_variable_info;
218 
219 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
220 		generic_ops.set_variable = efi.set_variable;
221 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
222 	}
223 	return efivars_register(&generic_efivars, &generic_ops);
224 }
225 
226 static void generic_ops_unregister(void)
227 {
228 	if (!generic_ops.get_variable)
229 		return;
230 
231 	efivars_unregister(&generic_efivars);
232 }
233 
234 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
235 #define EFIVAR_SSDT_NAME_MAX	16UL
236 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
237 static int __init efivar_ssdt_setup(char *str)
238 {
239 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
240 
241 	if (ret)
242 		return ret;
243 
244 	if (strlen(str) < sizeof(efivar_ssdt))
245 		memcpy(efivar_ssdt, str, strlen(str));
246 	else
247 		pr_warn("efivar_ssdt: name too long: %s\n", str);
248 	return 1;
249 }
250 __setup("efivar_ssdt=", efivar_ssdt_setup);
251 
252 static __init int efivar_ssdt_load(void)
253 {
254 	unsigned long name_size = 256;
255 	efi_char16_t *name = NULL;
256 	efi_status_t status;
257 	efi_guid_t guid;
258 
259 	if (!efivar_ssdt[0])
260 		return 0;
261 
262 	name = kzalloc(name_size, GFP_KERNEL);
263 	if (!name)
264 		return -ENOMEM;
265 
266 	for (;;) {
267 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
268 		unsigned long data_size = 0;
269 		void *data;
270 		int limit;
271 
272 		status = efi.get_next_variable(&name_size, name, &guid);
273 		if (status == EFI_NOT_FOUND) {
274 			break;
275 		} else if (status == EFI_BUFFER_TOO_SMALL) {
276 			name = krealloc(name, name_size, GFP_KERNEL);
277 			if (!name)
278 				return -ENOMEM;
279 			continue;
280 		}
281 
282 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
283 		ucs2_as_utf8(utf8_name, name, limit - 1);
284 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
285 			continue;
286 
287 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
288 
289 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
290 		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
291 			return -EIO;
292 
293 		data = kmalloc(data_size, GFP_KERNEL);
294 		if (!data)
295 			return -ENOMEM;
296 
297 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
298 		if (status == EFI_SUCCESS) {
299 			acpi_status ret = acpi_load_table(data, NULL);
300 			if (ret)
301 				pr_err("failed to load table: %u\n", ret);
302 			else
303 				continue;
304 		} else {
305 			pr_err("failed to get var data: 0x%lx\n", status);
306 		}
307 		kfree(data);
308 	}
309 	return 0;
310 }
311 #else
312 static inline int efivar_ssdt_load(void) { return 0; }
313 #endif
314 
315 #ifdef CONFIG_DEBUG_FS
316 
317 #define EFI_DEBUGFS_MAX_BLOBS 32
318 
319 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
320 
321 static void __init efi_debugfs_init(void)
322 {
323 	struct dentry *efi_debugfs;
324 	efi_memory_desc_t *md;
325 	char name[32];
326 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
327 	int i = 0;
328 
329 	efi_debugfs = debugfs_create_dir("efi", NULL);
330 	if (IS_ERR_OR_NULL(efi_debugfs))
331 		return;
332 
333 	for_each_efi_memory_desc(md) {
334 		switch (md->type) {
335 		case EFI_BOOT_SERVICES_CODE:
336 			snprintf(name, sizeof(name), "boot_services_code%d",
337 				 type_count[md->type]++);
338 			break;
339 		case EFI_BOOT_SERVICES_DATA:
340 			snprintf(name, sizeof(name), "boot_services_data%d",
341 				 type_count[md->type]++);
342 			break;
343 		default:
344 			continue;
345 		}
346 
347 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
348 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
349 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
350 			break;
351 		}
352 
353 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
354 		debugfs_blob[i].data = memremap(md->phys_addr,
355 						debugfs_blob[i].size,
356 						MEMREMAP_WB);
357 		if (!debugfs_blob[i].data)
358 			continue;
359 
360 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
361 		i++;
362 	}
363 }
364 #else
365 static inline void efi_debugfs_init(void) {}
366 #endif
367 
368 /*
369  * We register the efi subsystem with the firmware subsystem and the
370  * efivars subsystem with the efi subsystem, if the system was booted with
371  * EFI.
372  */
373 static int __init efisubsys_init(void)
374 {
375 	int error;
376 
377 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
378 		efi.runtime_supported_mask = 0;
379 
380 	if (!efi_enabled(EFI_BOOT))
381 		return 0;
382 
383 	if (efi.runtime_supported_mask) {
384 		/*
385 		 * Since we process only one efi_runtime_service() at a time, an
386 		 * ordered workqueue (which creates only one execution context)
387 		 * should suffice for all our needs.
388 		 */
389 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
390 		if (!efi_rts_wq) {
391 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
392 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
393 			efi.runtime_supported_mask = 0;
394 			return 0;
395 		}
396 	}
397 
398 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
399 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
400 
401 	/* We register the efi directory at /sys/firmware/efi */
402 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
403 	if (!efi_kobj) {
404 		pr_err("efi: Firmware registration failed.\n");
405 		error = -ENOMEM;
406 		goto err_destroy_wq;
407 	}
408 
409 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
410 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
411 		error = generic_ops_register();
412 		if (error)
413 			goto err_put;
414 		efivar_ssdt_load();
415 		platform_device_register_simple("efivars", 0, NULL, 0);
416 	}
417 
418 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
419 	if (error) {
420 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
421 		       error);
422 		goto err_unregister;
423 	}
424 
425 	/* and the standard mountpoint for efivarfs */
426 	error = sysfs_create_mount_point(efi_kobj, "efivars");
427 	if (error) {
428 		pr_err("efivars: Subsystem registration failed.\n");
429 		goto err_remove_group;
430 	}
431 
432 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
433 		efi_debugfs_init();
434 
435 #ifdef CONFIG_EFI_COCO_SECRET
436 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
437 		platform_device_register_simple("efi_secret", 0, NULL, 0);
438 #endif
439 
440 	return 0;
441 
442 err_remove_group:
443 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
444 err_unregister:
445 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
446 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
447 		generic_ops_unregister();
448 err_put:
449 	kobject_put(efi_kobj);
450 	efi_kobj = NULL;
451 err_destroy_wq:
452 	if (efi_rts_wq)
453 		destroy_workqueue(efi_rts_wq);
454 
455 	return error;
456 }
457 
458 subsys_initcall(efisubsys_init);
459 
460 void __init efi_find_mirror(void)
461 {
462 	efi_memory_desc_t *md;
463 	u64 mirror_size = 0, total_size = 0;
464 
465 	if (!efi_enabled(EFI_MEMMAP))
466 		return;
467 
468 	for_each_efi_memory_desc(md) {
469 		unsigned long long start = md->phys_addr;
470 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
471 
472 		total_size += size;
473 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
474 			memblock_mark_mirror(start, size);
475 			mirror_size += size;
476 		}
477 	}
478 	if (mirror_size)
479 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
480 			mirror_size>>20, total_size>>20);
481 }
482 
483 /*
484  * Find the efi memory descriptor for a given physical address.  Given a
485  * physical address, determine if it exists within an EFI Memory Map entry,
486  * and if so, populate the supplied memory descriptor with the appropriate
487  * data.
488  */
489 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
490 {
491 	efi_memory_desc_t *md;
492 
493 	if (!efi_enabled(EFI_MEMMAP)) {
494 		pr_err_once("EFI_MEMMAP is not enabled.\n");
495 		return -EINVAL;
496 	}
497 
498 	if (!out_md) {
499 		pr_err_once("out_md is null.\n");
500 		return -EINVAL;
501         }
502 
503 	for_each_efi_memory_desc(md) {
504 		u64 size;
505 		u64 end;
506 
507 		/* skip bogus entries (including empty ones) */
508 		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
509 		    (md->num_pages <= 0) ||
510 		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
511 			continue;
512 
513 		size = md->num_pages << EFI_PAGE_SHIFT;
514 		end = md->phys_addr + size;
515 		if (phys_addr >= md->phys_addr && phys_addr < end) {
516 			memcpy(out_md, md, sizeof(*out_md));
517 			return 0;
518 		}
519 	}
520 	return -ENOENT;
521 }
522 
523 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
524 	__weak __alias(__efi_mem_desc_lookup);
525 
526 /*
527  * Calculate the highest address of an efi memory descriptor.
528  */
529 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
530 {
531 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
532 	u64 end = md->phys_addr + size;
533 	return end;
534 }
535 
536 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
537 
538 /**
539  * efi_mem_reserve - Reserve an EFI memory region
540  * @addr: Physical address to reserve
541  * @size: Size of reservation
542  *
543  * Mark a region as reserved from general kernel allocation and
544  * prevent it being released by efi_free_boot_services().
545  *
546  * This function should be called drivers once they've parsed EFI
547  * configuration tables to figure out where their data lives, e.g.
548  * efi_esrt_init().
549  */
550 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
551 {
552 	/* efi_mem_reserve() does not work under Xen */
553 	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
554 		return;
555 
556 	if (!memblock_is_region_reserved(addr, size))
557 		memblock_reserve(addr, size);
558 
559 	/*
560 	 * Some architectures (x86) reserve all boot services ranges
561 	 * until efi_free_boot_services() because of buggy firmware
562 	 * implementations. This means the above memblock_reserve() is
563 	 * superfluous on x86 and instead what it needs to do is
564 	 * ensure the @start, @size is not freed.
565 	 */
566 	efi_arch_mem_reserve(addr, size);
567 }
568 
569 static const efi_config_table_type_t common_tables[] __initconst = {
570 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
571 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
572 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
573 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
574 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
575 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
576 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
577 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
578 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
579 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
580 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
581 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
582 #ifdef CONFIG_EFI_RCI2_TABLE
583 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
584 #endif
585 #ifdef CONFIG_LOAD_UEFI_KEYS
586 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
587 #endif
588 #ifdef CONFIG_EFI_COCO_SECRET
589 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
590 #endif
591 #ifdef CONFIG_UNACCEPTED_MEMORY
592 	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
593 #endif
594 #ifdef CONFIG_EFI_GENERIC_STUB
595 	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
596 #endif
597 	{},
598 };
599 
600 static __init int match_config_table(const efi_guid_t *guid,
601 				     unsigned long table,
602 				     const efi_config_table_type_t *table_types)
603 {
604 	int i;
605 
606 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
607 		if (efi_guidcmp(*guid, table_types[i].guid))
608 			continue;
609 
610 		if (!efi_config_table_is_usable(guid, table)) {
611 			if (table_types[i].name[0])
612 				pr_cont("(%s=0x%lx unusable) ",
613 					table_types[i].name, table);
614 			return 1;
615 		}
616 
617 		*(table_types[i].ptr) = table;
618 		if (table_types[i].name[0])
619 			pr_cont("%s=0x%lx ", table_types[i].name, table);
620 		return 1;
621 	}
622 
623 	return 0;
624 }
625 
626 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
627 				   int count,
628 				   const efi_config_table_type_t *arch_tables)
629 {
630 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
631 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
632 	const efi_guid_t *guid;
633 	unsigned long table;
634 	int i;
635 
636 	pr_info("");
637 	for (i = 0; i < count; i++) {
638 		if (!IS_ENABLED(CONFIG_X86)) {
639 			guid = &config_tables[i].guid;
640 			table = (unsigned long)config_tables[i].table;
641 		} else if (efi_enabled(EFI_64BIT)) {
642 			guid = &tbl64[i].guid;
643 			table = tbl64[i].table;
644 
645 			if (IS_ENABLED(CONFIG_X86_32) &&
646 			    tbl64[i].table > U32_MAX) {
647 				pr_cont("\n");
648 				pr_err("Table located above 4GB, disabling EFI.\n");
649 				return -EINVAL;
650 			}
651 		} else {
652 			guid = &tbl32[i].guid;
653 			table = tbl32[i].table;
654 		}
655 
656 		if (!match_config_table(guid, table, common_tables) && arch_tables)
657 			match_config_table(guid, table, arch_tables);
658 	}
659 	pr_cont("\n");
660 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
661 
662 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
663 		struct linux_efi_random_seed *seed;
664 		u32 size = 0;
665 
666 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
667 		if (seed != NULL) {
668 			size = min_t(u32, seed->size, SZ_1K); // sanity check
669 			early_memunmap(seed, sizeof(*seed));
670 		} else {
671 			pr_err("Could not map UEFI random seed!\n");
672 		}
673 		if (size > 0) {
674 			seed = early_memremap(efi_rng_seed,
675 					      sizeof(*seed) + size);
676 			if (seed != NULL) {
677 				add_bootloader_randomness(seed->bits, size);
678 				memzero_explicit(seed->bits, size);
679 				early_memunmap(seed, sizeof(*seed) + size);
680 			} else {
681 				pr_err("Could not map UEFI random seed!\n");
682 			}
683 		}
684 	}
685 
686 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
687 		efi_memattr_init();
688 
689 	efi_tpm_eventlog_init();
690 
691 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
692 		unsigned long prsv = mem_reserve;
693 
694 		while (prsv) {
695 			struct linux_efi_memreserve *rsv;
696 			u8 *p;
697 
698 			/*
699 			 * Just map a full page: that is what we will get
700 			 * anyway, and it permits us to map the entire entry
701 			 * before knowing its size.
702 			 */
703 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
704 					   PAGE_SIZE);
705 			if (p == NULL) {
706 				pr_err("Could not map UEFI memreserve entry!\n");
707 				return -ENOMEM;
708 			}
709 
710 			rsv = (void *)(p + prsv % PAGE_SIZE);
711 
712 			/* reserve the entry itself */
713 			memblock_reserve(prsv,
714 					 struct_size(rsv, entry, rsv->size));
715 
716 			for (i = 0; i < atomic_read(&rsv->count); i++) {
717 				memblock_reserve(rsv->entry[i].base,
718 						 rsv->entry[i].size);
719 			}
720 
721 			prsv = rsv->next;
722 			early_memunmap(p, PAGE_SIZE);
723 		}
724 	}
725 
726 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
727 		efi_rt_properties_table_t *tbl;
728 
729 		tbl = early_memremap(rt_prop, sizeof(*tbl));
730 		if (tbl) {
731 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
732 			early_memunmap(tbl, sizeof(*tbl));
733 		}
734 	}
735 
736 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
737 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
738 		struct linux_efi_initrd *tbl;
739 
740 		tbl = early_memremap(initrd, sizeof(*tbl));
741 		if (tbl) {
742 			phys_initrd_start = tbl->base;
743 			phys_initrd_size = tbl->size;
744 			early_memunmap(tbl, sizeof(*tbl));
745 		}
746 	}
747 
748 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
749 	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
750 		struct efi_unaccepted_memory *unaccepted;
751 
752 		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
753 		if (unaccepted) {
754 			unsigned long size;
755 
756 			if (unaccepted->version == 1) {
757 				size = sizeof(*unaccepted) + unaccepted->size;
758 				memblock_reserve(efi.unaccepted, size);
759 			} else {
760 				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
761 			}
762 
763 			early_memunmap(unaccepted, sizeof(*unaccepted));
764 		}
765 	}
766 
767 	return 0;
768 }
769 
770 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
771 {
772 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
773 		pr_err("System table signature incorrect!\n");
774 		return -EINVAL;
775 	}
776 
777 	return 0;
778 }
779 
780 #ifndef CONFIG_IA64
781 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
782 						size_t size)
783 {
784 	const efi_char16_t *ret;
785 
786 	ret = early_memremap_ro(fw_vendor, size);
787 	if (!ret)
788 		pr_err("Could not map the firmware vendor!\n");
789 	return ret;
790 }
791 
792 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
793 {
794 	early_memunmap((void *)fw_vendor, size);
795 }
796 #else
797 #define map_fw_vendor(p, s)	__va(p)
798 #define unmap_fw_vendor(v, s)
799 #endif
800 
801 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
802 				     unsigned long fw_vendor)
803 {
804 	char vendor[100] = "unknown";
805 	const efi_char16_t *c16;
806 	size_t i;
807 	u16 rev;
808 
809 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
810 	if (c16) {
811 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
812 			vendor[i] = c16[i];
813 		vendor[i] = '\0';
814 
815 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
816 	}
817 
818 	rev = (u16)systab_hdr->revision;
819 	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
820 
821 	rev %= 10;
822 	if (rev)
823 		pr_cont(".%u", rev);
824 
825 	pr_cont(" by %s\n", vendor);
826 
827 	if (IS_ENABLED(CONFIG_X86_64) &&
828 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
829 	    !strcmp(vendor, "Apple")) {
830 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
831 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
832 	}
833 }
834 
835 static __initdata char memory_type_name[][13] = {
836 	"Reserved",
837 	"Loader Code",
838 	"Loader Data",
839 	"Boot Code",
840 	"Boot Data",
841 	"Runtime Code",
842 	"Runtime Data",
843 	"Conventional",
844 	"Unusable",
845 	"ACPI Reclaim",
846 	"ACPI Mem NVS",
847 	"MMIO",
848 	"MMIO Port",
849 	"PAL Code",
850 	"Persistent",
851 	"Unaccepted",
852 };
853 
854 char * __init efi_md_typeattr_format(char *buf, size_t size,
855 				     const efi_memory_desc_t *md)
856 {
857 	char *pos;
858 	int type_len;
859 	u64 attr;
860 
861 	pos = buf;
862 	if (md->type >= ARRAY_SIZE(memory_type_name))
863 		type_len = snprintf(pos, size, "[type=%u", md->type);
864 	else
865 		type_len = snprintf(pos, size, "[%-*s",
866 				    (int)(sizeof(memory_type_name[0]) - 1),
867 				    memory_type_name[md->type]);
868 	if (type_len >= size)
869 		return buf;
870 
871 	pos += type_len;
872 	size -= type_len;
873 
874 	attr = md->attribute;
875 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
876 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
877 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
878 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
879 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
880 		snprintf(pos, size, "|attr=0x%016llx]",
881 			 (unsigned long long)attr);
882 	else
883 		snprintf(pos, size,
884 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
885 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
886 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
887 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
888 			 attr & EFI_MEMORY_SP			? "SP"  : "",
889 			 attr & EFI_MEMORY_NV			? "NV"  : "",
890 			 attr & EFI_MEMORY_XP			? "XP"  : "",
891 			 attr & EFI_MEMORY_RP			? "RP"  : "",
892 			 attr & EFI_MEMORY_WP			? "WP"  : "",
893 			 attr & EFI_MEMORY_RO			? "RO"  : "",
894 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
895 			 attr & EFI_MEMORY_WB			? "WB"  : "",
896 			 attr & EFI_MEMORY_WT			? "WT"  : "",
897 			 attr & EFI_MEMORY_WC			? "WC"  : "",
898 			 attr & EFI_MEMORY_UC			? "UC"  : "");
899 	return buf;
900 }
901 
902 /*
903  * IA64 has a funky EFI memory map that doesn't work the same way as
904  * other architectures.
905  */
906 #ifndef CONFIG_IA64
907 /*
908  * efi_mem_attributes - lookup memmap attributes for physical address
909  * @phys_addr: the physical address to lookup
910  *
911  * Search in the EFI memory map for the region covering
912  * @phys_addr. Returns the EFI memory attributes if the region
913  * was found in the memory map, 0 otherwise.
914  */
915 u64 efi_mem_attributes(unsigned long phys_addr)
916 {
917 	efi_memory_desc_t *md;
918 
919 	if (!efi_enabled(EFI_MEMMAP))
920 		return 0;
921 
922 	for_each_efi_memory_desc(md) {
923 		if ((md->phys_addr <= phys_addr) &&
924 		    (phys_addr < (md->phys_addr +
925 		    (md->num_pages << EFI_PAGE_SHIFT))))
926 			return md->attribute;
927 	}
928 	return 0;
929 }
930 
931 /*
932  * efi_mem_type - lookup memmap type for physical address
933  * @phys_addr: the physical address to lookup
934  *
935  * Search in the EFI memory map for the region covering @phys_addr.
936  * Returns the EFI memory type if the region was found in the memory
937  * map, -EINVAL otherwise.
938  */
939 int efi_mem_type(unsigned long phys_addr)
940 {
941 	const efi_memory_desc_t *md;
942 
943 	if (!efi_enabled(EFI_MEMMAP))
944 		return -ENOTSUPP;
945 
946 	for_each_efi_memory_desc(md) {
947 		if ((md->phys_addr <= phys_addr) &&
948 		    (phys_addr < (md->phys_addr +
949 				  (md->num_pages << EFI_PAGE_SHIFT))))
950 			return md->type;
951 	}
952 	return -EINVAL;
953 }
954 #endif
955 
956 int efi_status_to_err(efi_status_t status)
957 {
958 	int err;
959 
960 	switch (status) {
961 	case EFI_SUCCESS:
962 		err = 0;
963 		break;
964 	case EFI_INVALID_PARAMETER:
965 		err = -EINVAL;
966 		break;
967 	case EFI_OUT_OF_RESOURCES:
968 		err = -ENOSPC;
969 		break;
970 	case EFI_DEVICE_ERROR:
971 		err = -EIO;
972 		break;
973 	case EFI_WRITE_PROTECTED:
974 		err = -EROFS;
975 		break;
976 	case EFI_SECURITY_VIOLATION:
977 		err = -EACCES;
978 		break;
979 	case EFI_NOT_FOUND:
980 		err = -ENOENT;
981 		break;
982 	case EFI_ABORTED:
983 		err = -EINTR;
984 		break;
985 	default:
986 		err = -EINVAL;
987 	}
988 
989 	return err;
990 }
991 EXPORT_SYMBOL_GPL(efi_status_to_err);
992 
993 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
994 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
995 
996 static int __init efi_memreserve_map_root(void)
997 {
998 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
999 		return -ENODEV;
1000 
1001 	efi_memreserve_root = memremap(mem_reserve,
1002 				       sizeof(*efi_memreserve_root),
1003 				       MEMREMAP_WB);
1004 	if (WARN_ON_ONCE(!efi_memreserve_root))
1005 		return -ENOMEM;
1006 	return 0;
1007 }
1008 
1009 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1010 {
1011 	struct resource *res, *parent;
1012 	int ret;
1013 
1014 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1015 	if (!res)
1016 		return -ENOMEM;
1017 
1018 	res->name	= "reserved";
1019 	res->flags	= IORESOURCE_MEM;
1020 	res->start	= addr;
1021 	res->end	= addr + size - 1;
1022 
1023 	/* we expect a conflict with a 'System RAM' region */
1024 	parent = request_resource_conflict(&iomem_resource, res);
1025 	ret = parent ? request_resource(parent, res) : 0;
1026 
1027 	/*
1028 	 * Given that efi_mem_reserve_iomem() can be called at any
1029 	 * time, only call memblock_reserve() if the architecture
1030 	 * keeps the infrastructure around.
1031 	 */
1032 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1033 		memblock_reserve(addr, size);
1034 
1035 	return ret;
1036 }
1037 
1038 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1039 {
1040 	struct linux_efi_memreserve *rsv;
1041 	unsigned long prsv;
1042 	int rc, index;
1043 
1044 	if (efi_memreserve_root == (void *)ULONG_MAX)
1045 		return -ENODEV;
1046 
1047 	if (!efi_memreserve_root) {
1048 		rc = efi_memreserve_map_root();
1049 		if (rc)
1050 			return rc;
1051 	}
1052 
1053 	/* first try to find a slot in an existing linked list entry */
1054 	for (prsv = efi_memreserve_root->next; prsv; ) {
1055 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1056 		if (!rsv)
1057 			return -ENOMEM;
1058 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1059 		if (index < rsv->size) {
1060 			rsv->entry[index].base = addr;
1061 			rsv->entry[index].size = size;
1062 
1063 			memunmap(rsv);
1064 			return efi_mem_reserve_iomem(addr, size);
1065 		}
1066 		prsv = rsv->next;
1067 		memunmap(rsv);
1068 	}
1069 
1070 	/* no slot found - allocate a new linked list entry */
1071 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1072 	if (!rsv)
1073 		return -ENOMEM;
1074 
1075 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1076 	if (rc) {
1077 		free_page((unsigned long)rsv);
1078 		return rc;
1079 	}
1080 
1081 	/*
1082 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1083 	 * never crosses a page boundary, so let's ensure that this remains true
1084 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1085 	 * using SZ_4K explicitly in the size calculation below.
1086 	 */
1087 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1088 	atomic_set(&rsv->count, 1);
1089 	rsv->entry[0].base = addr;
1090 	rsv->entry[0].size = size;
1091 
1092 	spin_lock(&efi_mem_reserve_persistent_lock);
1093 	rsv->next = efi_memreserve_root->next;
1094 	efi_memreserve_root->next = __pa(rsv);
1095 	spin_unlock(&efi_mem_reserve_persistent_lock);
1096 
1097 	return efi_mem_reserve_iomem(addr, size);
1098 }
1099 
1100 static int __init efi_memreserve_root_init(void)
1101 {
1102 	if (efi_memreserve_root)
1103 		return 0;
1104 	if (efi_memreserve_map_root())
1105 		efi_memreserve_root = (void *)ULONG_MAX;
1106 	return 0;
1107 }
1108 early_initcall(efi_memreserve_root_init);
1109 
1110 #ifdef CONFIG_KEXEC
1111 static int update_efi_random_seed(struct notifier_block *nb,
1112 				  unsigned long code, void *unused)
1113 {
1114 	struct linux_efi_random_seed *seed;
1115 	u32 size = 0;
1116 
1117 	if (!kexec_in_progress)
1118 		return NOTIFY_DONE;
1119 
1120 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1121 	if (seed != NULL) {
1122 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1123 		memunmap(seed);
1124 	} else {
1125 		pr_err("Could not map UEFI random seed!\n");
1126 	}
1127 	if (size > 0) {
1128 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1129 				MEMREMAP_WB);
1130 		if (seed != NULL) {
1131 			seed->size = size;
1132 			get_random_bytes(seed->bits, seed->size);
1133 			memunmap(seed);
1134 		} else {
1135 			pr_err("Could not map UEFI random seed!\n");
1136 		}
1137 	}
1138 	return NOTIFY_DONE;
1139 }
1140 
1141 static struct notifier_block efi_random_seed_nb = {
1142 	.notifier_call = update_efi_random_seed,
1143 };
1144 
1145 static int __init register_update_efi_random_seed(void)
1146 {
1147 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1148 		return 0;
1149 	return register_reboot_notifier(&efi_random_seed_nb);
1150 }
1151 late_initcall(register_update_efi_random_seed);
1152 #endif
1153