1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * efi.c - EFI subsystem 4 * 5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> 6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> 7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> 8 * 9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, 10 * allowing the efivarfs to be mounted or the efivars module to be loaded. 11 * The existance of /sys/firmware/efi may also be used by userspace to 12 * determine that the system supports EFI. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/kobject.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/efi.h> 23 #include <linux/of.h> 24 #include <linux/initrd.h> 25 #include <linux/io.h> 26 #include <linux/kexec.h> 27 #include <linux/platform_device.h> 28 #include <linux/random.h> 29 #include <linux/reboot.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/ucs2_string.h> 33 #include <linux/memblock.h> 34 #include <linux/security.h> 35 36 #include <asm/early_ioremap.h> 37 38 struct efi __read_mostly efi = { 39 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL, 40 .acpi = EFI_INVALID_TABLE_ADDR, 41 .acpi20 = EFI_INVALID_TABLE_ADDR, 42 .smbios = EFI_INVALID_TABLE_ADDR, 43 .smbios3 = EFI_INVALID_TABLE_ADDR, 44 .esrt = EFI_INVALID_TABLE_ADDR, 45 .tpm_log = EFI_INVALID_TABLE_ADDR, 46 .tpm_final_log = EFI_INVALID_TABLE_ADDR, 47 #ifdef CONFIG_LOAD_UEFI_KEYS 48 .mokvar_table = EFI_INVALID_TABLE_ADDR, 49 #endif 50 #ifdef CONFIG_EFI_COCO_SECRET 51 .coco_secret = EFI_INVALID_TABLE_ADDR, 52 #endif 53 #ifdef CONFIG_UNACCEPTED_MEMORY 54 .unaccepted = EFI_INVALID_TABLE_ADDR, 55 #endif 56 }; 57 EXPORT_SYMBOL(efi); 58 59 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR; 60 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR; 61 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR; 62 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR; 63 64 extern unsigned long screen_info_table; 65 66 struct mm_struct efi_mm = { 67 .mm_mt = MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock), 68 .mm_users = ATOMIC_INIT(2), 69 .mm_count = ATOMIC_INIT(1), 70 .write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq), 71 MMAP_LOCK_INITIALIZER(efi_mm) 72 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock), 73 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist), 74 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0}, 75 }; 76 77 struct workqueue_struct *efi_rts_wq; 78 79 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME); 80 static int __init setup_noefi(char *arg) 81 { 82 disable_runtime = true; 83 return 0; 84 } 85 early_param("noefi", setup_noefi); 86 87 bool efi_runtime_disabled(void) 88 { 89 return disable_runtime; 90 } 91 92 bool __pure __efi_soft_reserve_enabled(void) 93 { 94 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE); 95 } 96 97 static int __init parse_efi_cmdline(char *str) 98 { 99 if (!str) { 100 pr_warn("need at least one option\n"); 101 return -EINVAL; 102 } 103 104 if (parse_option_str(str, "debug")) 105 set_bit(EFI_DBG, &efi.flags); 106 107 if (parse_option_str(str, "noruntime")) 108 disable_runtime = true; 109 110 if (parse_option_str(str, "runtime")) 111 disable_runtime = false; 112 113 if (parse_option_str(str, "nosoftreserve")) 114 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags); 115 116 return 0; 117 } 118 early_param("efi", parse_efi_cmdline); 119 120 struct kobject *efi_kobj; 121 122 /* 123 * Let's not leave out systab information that snuck into 124 * the efivars driver 125 * Note, do not add more fields in systab sysfs file as it breaks sysfs 126 * one value per file rule! 127 */ 128 static ssize_t systab_show(struct kobject *kobj, 129 struct kobj_attribute *attr, char *buf) 130 { 131 char *str = buf; 132 133 if (!kobj || !buf) 134 return -EINVAL; 135 136 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 137 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); 138 if (efi.acpi != EFI_INVALID_TABLE_ADDR) 139 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); 140 /* 141 * If both SMBIOS and SMBIOS3 entry points are implemented, the 142 * SMBIOS3 entry point shall be preferred, so we list it first to 143 * let applications stop parsing after the first match. 144 */ 145 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) 146 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); 147 if (efi.smbios != EFI_INVALID_TABLE_ADDR) 148 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); 149 150 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86)) 151 str = efi_systab_show_arch(str); 152 153 return str - buf; 154 } 155 156 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400); 157 158 static ssize_t fw_platform_size_show(struct kobject *kobj, 159 struct kobj_attribute *attr, char *buf) 160 { 161 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); 162 } 163 164 extern __weak struct kobj_attribute efi_attr_fw_vendor; 165 extern __weak struct kobj_attribute efi_attr_runtime; 166 extern __weak struct kobj_attribute efi_attr_config_table; 167 static struct kobj_attribute efi_attr_fw_platform_size = 168 __ATTR_RO(fw_platform_size); 169 170 static struct attribute *efi_subsys_attrs[] = { 171 &efi_attr_systab.attr, 172 &efi_attr_fw_platform_size.attr, 173 &efi_attr_fw_vendor.attr, 174 &efi_attr_runtime.attr, 175 &efi_attr_config_table.attr, 176 NULL, 177 }; 178 179 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, 180 int n) 181 { 182 return attr->mode; 183 } 184 185 static const struct attribute_group efi_subsys_attr_group = { 186 .attrs = efi_subsys_attrs, 187 .is_visible = efi_attr_is_visible, 188 }; 189 190 static struct efivars generic_efivars; 191 static struct efivar_operations generic_ops; 192 193 static bool generic_ops_supported(void) 194 { 195 unsigned long name_size; 196 efi_status_t status; 197 efi_char16_t name; 198 efi_guid_t guid; 199 200 name_size = sizeof(name); 201 202 status = efi.get_next_variable(&name_size, &name, &guid); 203 if (status == EFI_UNSUPPORTED) 204 return false; 205 206 return true; 207 } 208 209 static int generic_ops_register(void) 210 { 211 if (!generic_ops_supported()) 212 return 0; 213 214 generic_ops.get_variable = efi.get_variable; 215 generic_ops.get_next_variable = efi.get_next_variable; 216 generic_ops.query_variable_store = efi_query_variable_store; 217 218 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) { 219 generic_ops.set_variable = efi.set_variable; 220 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking; 221 } 222 return efivars_register(&generic_efivars, &generic_ops); 223 } 224 225 static void generic_ops_unregister(void) 226 { 227 if (!generic_ops.get_variable) 228 return; 229 230 efivars_unregister(&generic_efivars); 231 } 232 233 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS 234 #define EFIVAR_SSDT_NAME_MAX 16UL 235 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata; 236 static int __init efivar_ssdt_setup(char *str) 237 { 238 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES); 239 240 if (ret) 241 return ret; 242 243 if (strlen(str) < sizeof(efivar_ssdt)) 244 memcpy(efivar_ssdt, str, strlen(str)); 245 else 246 pr_warn("efivar_ssdt: name too long: %s\n", str); 247 return 1; 248 } 249 __setup("efivar_ssdt=", efivar_ssdt_setup); 250 251 static __init int efivar_ssdt_load(void) 252 { 253 unsigned long name_size = 256; 254 efi_char16_t *name = NULL; 255 efi_status_t status; 256 efi_guid_t guid; 257 258 if (!efivar_ssdt[0]) 259 return 0; 260 261 name = kzalloc(name_size, GFP_KERNEL); 262 if (!name) 263 return -ENOMEM; 264 265 for (;;) { 266 char utf8_name[EFIVAR_SSDT_NAME_MAX]; 267 unsigned long data_size = 0; 268 void *data; 269 int limit; 270 271 status = efi.get_next_variable(&name_size, name, &guid); 272 if (status == EFI_NOT_FOUND) { 273 break; 274 } else if (status == EFI_BUFFER_TOO_SMALL) { 275 name = krealloc(name, name_size, GFP_KERNEL); 276 if (!name) 277 return -ENOMEM; 278 continue; 279 } 280 281 limit = min(EFIVAR_SSDT_NAME_MAX, name_size); 282 ucs2_as_utf8(utf8_name, name, limit - 1); 283 if (strncmp(utf8_name, efivar_ssdt, limit) != 0) 284 continue; 285 286 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid); 287 288 status = efi.get_variable(name, &guid, NULL, &data_size, NULL); 289 if (status != EFI_BUFFER_TOO_SMALL || !data_size) 290 return -EIO; 291 292 data = kmalloc(data_size, GFP_KERNEL); 293 if (!data) 294 return -ENOMEM; 295 296 status = efi.get_variable(name, &guid, NULL, &data_size, data); 297 if (status == EFI_SUCCESS) { 298 acpi_status ret = acpi_load_table(data, NULL); 299 if (ret) 300 pr_err("failed to load table: %u\n", ret); 301 else 302 continue; 303 } else { 304 pr_err("failed to get var data: 0x%lx\n", status); 305 } 306 kfree(data); 307 } 308 return 0; 309 } 310 #else 311 static inline int efivar_ssdt_load(void) { return 0; } 312 #endif 313 314 #ifdef CONFIG_DEBUG_FS 315 316 #define EFI_DEBUGFS_MAX_BLOBS 32 317 318 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS]; 319 320 static void __init efi_debugfs_init(void) 321 { 322 struct dentry *efi_debugfs; 323 efi_memory_desc_t *md; 324 char name[32]; 325 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {}; 326 int i = 0; 327 328 efi_debugfs = debugfs_create_dir("efi", NULL); 329 if (IS_ERR_OR_NULL(efi_debugfs)) 330 return; 331 332 for_each_efi_memory_desc(md) { 333 switch (md->type) { 334 case EFI_BOOT_SERVICES_CODE: 335 snprintf(name, sizeof(name), "boot_services_code%d", 336 type_count[md->type]++); 337 break; 338 case EFI_BOOT_SERVICES_DATA: 339 snprintf(name, sizeof(name), "boot_services_data%d", 340 type_count[md->type]++); 341 break; 342 default: 343 continue; 344 } 345 346 if (i >= EFI_DEBUGFS_MAX_BLOBS) { 347 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n", 348 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS); 349 break; 350 } 351 352 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT; 353 debugfs_blob[i].data = memremap(md->phys_addr, 354 debugfs_blob[i].size, 355 MEMREMAP_WB); 356 if (!debugfs_blob[i].data) 357 continue; 358 359 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]); 360 i++; 361 } 362 } 363 #else 364 static inline void efi_debugfs_init(void) {} 365 #endif 366 367 /* 368 * We register the efi subsystem with the firmware subsystem and the 369 * efivars subsystem with the efi subsystem, if the system was booted with 370 * EFI. 371 */ 372 static int __init efisubsys_init(void) 373 { 374 int error; 375 376 if (!efi_enabled(EFI_RUNTIME_SERVICES)) 377 efi.runtime_supported_mask = 0; 378 379 if (!efi_enabled(EFI_BOOT)) 380 return 0; 381 382 if (efi.runtime_supported_mask) { 383 /* 384 * Since we process only one efi_runtime_service() at a time, an 385 * ordered workqueue (which creates only one execution context) 386 * should suffice for all our needs. 387 */ 388 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0); 389 if (!efi_rts_wq) { 390 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n"); 391 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 392 efi.runtime_supported_mask = 0; 393 return 0; 394 } 395 } 396 397 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES)) 398 platform_device_register_simple("rtc-efi", 0, NULL, 0); 399 400 /* We register the efi directory at /sys/firmware/efi */ 401 efi_kobj = kobject_create_and_add("efi", firmware_kobj); 402 if (!efi_kobj) { 403 pr_err("efi: Firmware registration failed.\n"); 404 error = -ENOMEM; 405 goto err_destroy_wq; 406 } 407 408 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | 409 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) { 410 error = generic_ops_register(); 411 if (error) 412 goto err_put; 413 efivar_ssdt_load(); 414 platform_device_register_simple("efivars", 0, NULL, 0); 415 } 416 417 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); 418 if (error) { 419 pr_err("efi: Sysfs attribute export failed with error %d.\n", 420 error); 421 goto err_unregister; 422 } 423 424 /* and the standard mountpoint for efivarfs */ 425 error = sysfs_create_mount_point(efi_kobj, "efivars"); 426 if (error) { 427 pr_err("efivars: Subsystem registration failed.\n"); 428 goto err_remove_group; 429 } 430 431 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS)) 432 efi_debugfs_init(); 433 434 #ifdef CONFIG_EFI_COCO_SECRET 435 if (efi.coco_secret != EFI_INVALID_TABLE_ADDR) 436 platform_device_register_simple("efi_secret", 0, NULL, 0); 437 #endif 438 439 return 0; 440 441 err_remove_group: 442 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); 443 err_unregister: 444 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | 445 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) 446 generic_ops_unregister(); 447 err_put: 448 kobject_put(efi_kobj); 449 efi_kobj = NULL; 450 err_destroy_wq: 451 if (efi_rts_wq) 452 destroy_workqueue(efi_rts_wq); 453 454 return error; 455 } 456 457 subsys_initcall(efisubsys_init); 458 459 void __init efi_find_mirror(void) 460 { 461 efi_memory_desc_t *md; 462 u64 mirror_size = 0, total_size = 0; 463 464 if (!efi_enabled(EFI_MEMMAP)) 465 return; 466 467 for_each_efi_memory_desc(md) { 468 unsigned long long start = md->phys_addr; 469 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 470 471 total_size += size; 472 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 473 memblock_mark_mirror(start, size); 474 mirror_size += size; 475 } 476 } 477 if (mirror_size) 478 pr_info("Memory: %lldM/%lldM mirrored memory\n", 479 mirror_size>>20, total_size>>20); 480 } 481 482 /* 483 * Find the efi memory descriptor for a given physical address. Given a 484 * physical address, determine if it exists within an EFI Memory Map entry, 485 * and if so, populate the supplied memory descriptor with the appropriate 486 * data. 487 */ 488 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) 489 { 490 efi_memory_desc_t *md; 491 492 if (!efi_enabled(EFI_MEMMAP)) { 493 pr_err_once("EFI_MEMMAP is not enabled.\n"); 494 return -EINVAL; 495 } 496 497 if (!out_md) { 498 pr_err_once("out_md is null.\n"); 499 return -EINVAL; 500 } 501 502 for_each_efi_memory_desc(md) { 503 u64 size; 504 u64 end; 505 506 /* skip bogus entries (including empty ones) */ 507 if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) || 508 (md->num_pages <= 0) || 509 (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT)) 510 continue; 511 512 size = md->num_pages << EFI_PAGE_SHIFT; 513 end = md->phys_addr + size; 514 if (phys_addr >= md->phys_addr && phys_addr < end) { 515 memcpy(out_md, md, sizeof(*out_md)); 516 return 0; 517 } 518 } 519 return -ENOENT; 520 } 521 522 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) 523 __weak __alias(__efi_mem_desc_lookup); 524 525 /* 526 * Calculate the highest address of an efi memory descriptor. 527 */ 528 u64 __init efi_mem_desc_end(efi_memory_desc_t *md) 529 { 530 u64 size = md->num_pages << EFI_PAGE_SHIFT; 531 u64 end = md->phys_addr + size; 532 return end; 533 } 534 535 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} 536 537 /** 538 * efi_mem_reserve - Reserve an EFI memory region 539 * @addr: Physical address to reserve 540 * @size: Size of reservation 541 * 542 * Mark a region as reserved from general kernel allocation and 543 * prevent it being released by efi_free_boot_services(). 544 * 545 * This function should be called drivers once they've parsed EFI 546 * configuration tables to figure out where their data lives, e.g. 547 * efi_esrt_init(). 548 */ 549 void __init efi_mem_reserve(phys_addr_t addr, u64 size) 550 { 551 /* efi_mem_reserve() does not work under Xen */ 552 if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT))) 553 return; 554 555 if (!memblock_is_region_reserved(addr, size)) 556 memblock_reserve(addr, size); 557 558 /* 559 * Some architectures (x86) reserve all boot services ranges 560 * until efi_free_boot_services() because of buggy firmware 561 * implementations. This means the above memblock_reserve() is 562 * superfluous on x86 and instead what it needs to do is 563 * ensure the @start, @size is not freed. 564 */ 565 efi_arch_mem_reserve(addr, size); 566 } 567 568 static const efi_config_table_type_t common_tables[] __initconst = { 569 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" }, 570 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" }, 571 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" }, 572 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" }, 573 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" }, 574 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" }, 575 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" }, 576 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" }, 577 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" }, 578 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" }, 579 {LINUX_EFI_INITRD_MEDIA_GUID, &initrd, "INITRD" }, 580 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" }, 581 #ifdef CONFIG_EFI_RCI2_TABLE 582 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys }, 583 #endif 584 #ifdef CONFIG_LOAD_UEFI_KEYS 585 {LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" }, 586 #endif 587 #ifdef CONFIG_EFI_COCO_SECRET 588 {LINUX_EFI_COCO_SECRET_AREA_GUID, &efi.coco_secret, "CocoSecret" }, 589 #endif 590 #ifdef CONFIG_UNACCEPTED_MEMORY 591 {LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID, &efi.unaccepted, "Unaccepted" }, 592 #endif 593 #ifdef CONFIG_EFI_GENERIC_STUB 594 {LINUX_EFI_SCREEN_INFO_TABLE_GUID, &screen_info_table }, 595 #endif 596 {}, 597 }; 598 599 static __init int match_config_table(const efi_guid_t *guid, 600 unsigned long table, 601 const efi_config_table_type_t *table_types) 602 { 603 int i; 604 605 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { 606 if (efi_guidcmp(*guid, table_types[i].guid)) 607 continue; 608 609 if (!efi_config_table_is_usable(guid, table)) { 610 if (table_types[i].name[0]) 611 pr_cont("(%s=0x%lx unusable) ", 612 table_types[i].name, table); 613 return 1; 614 } 615 616 *(table_types[i].ptr) = table; 617 if (table_types[i].name[0]) 618 pr_cont("%s=0x%lx ", table_types[i].name, table); 619 return 1; 620 } 621 622 return 0; 623 } 624 625 int __init efi_config_parse_tables(const efi_config_table_t *config_tables, 626 int count, 627 const efi_config_table_type_t *arch_tables) 628 { 629 const efi_config_table_64_t *tbl64 = (void *)config_tables; 630 const efi_config_table_32_t *tbl32 = (void *)config_tables; 631 const efi_guid_t *guid; 632 unsigned long table; 633 int i; 634 635 pr_info(""); 636 for (i = 0; i < count; i++) { 637 if (!IS_ENABLED(CONFIG_X86)) { 638 guid = &config_tables[i].guid; 639 table = (unsigned long)config_tables[i].table; 640 } else if (efi_enabled(EFI_64BIT)) { 641 guid = &tbl64[i].guid; 642 table = tbl64[i].table; 643 644 if (IS_ENABLED(CONFIG_X86_32) && 645 tbl64[i].table > U32_MAX) { 646 pr_cont("\n"); 647 pr_err("Table located above 4GB, disabling EFI.\n"); 648 return -EINVAL; 649 } 650 } else { 651 guid = &tbl32[i].guid; 652 table = tbl32[i].table; 653 } 654 655 if (!match_config_table(guid, table, common_tables) && arch_tables) 656 match_config_table(guid, table, arch_tables); 657 } 658 pr_cont("\n"); 659 set_bit(EFI_CONFIG_TABLES, &efi.flags); 660 661 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) { 662 struct linux_efi_random_seed *seed; 663 u32 size = 0; 664 665 seed = early_memremap(efi_rng_seed, sizeof(*seed)); 666 if (seed != NULL) { 667 size = min_t(u32, seed->size, SZ_1K); // sanity check 668 early_memunmap(seed, sizeof(*seed)); 669 } else { 670 pr_err("Could not map UEFI random seed!\n"); 671 } 672 if (size > 0) { 673 seed = early_memremap(efi_rng_seed, 674 sizeof(*seed) + size); 675 if (seed != NULL) { 676 add_bootloader_randomness(seed->bits, size); 677 memzero_explicit(seed->bits, size); 678 early_memunmap(seed, sizeof(*seed) + size); 679 } else { 680 pr_err("Could not map UEFI random seed!\n"); 681 } 682 } 683 } 684 685 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP)) 686 efi_memattr_init(); 687 688 efi_tpm_eventlog_init(); 689 690 if (mem_reserve != EFI_INVALID_TABLE_ADDR) { 691 unsigned long prsv = mem_reserve; 692 693 while (prsv) { 694 struct linux_efi_memreserve *rsv; 695 u8 *p; 696 697 /* 698 * Just map a full page: that is what we will get 699 * anyway, and it permits us to map the entire entry 700 * before knowing its size. 701 */ 702 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE), 703 PAGE_SIZE); 704 if (p == NULL) { 705 pr_err("Could not map UEFI memreserve entry!\n"); 706 return -ENOMEM; 707 } 708 709 rsv = (void *)(p + prsv % PAGE_SIZE); 710 711 /* reserve the entry itself */ 712 memblock_reserve(prsv, 713 struct_size(rsv, entry, rsv->size)); 714 715 for (i = 0; i < atomic_read(&rsv->count); i++) { 716 memblock_reserve(rsv->entry[i].base, 717 rsv->entry[i].size); 718 } 719 720 prsv = rsv->next; 721 early_memunmap(p, PAGE_SIZE); 722 } 723 } 724 725 if (rt_prop != EFI_INVALID_TABLE_ADDR) { 726 efi_rt_properties_table_t *tbl; 727 728 tbl = early_memremap(rt_prop, sizeof(*tbl)); 729 if (tbl) { 730 efi.runtime_supported_mask &= tbl->runtime_services_supported; 731 early_memunmap(tbl, sizeof(*tbl)); 732 } 733 } 734 735 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && 736 initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) { 737 struct linux_efi_initrd *tbl; 738 739 tbl = early_memremap(initrd, sizeof(*tbl)); 740 if (tbl) { 741 phys_initrd_start = tbl->base; 742 phys_initrd_size = tbl->size; 743 early_memunmap(tbl, sizeof(*tbl)); 744 } 745 } 746 747 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && 748 efi.unaccepted != EFI_INVALID_TABLE_ADDR) { 749 struct efi_unaccepted_memory *unaccepted; 750 751 unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted)); 752 if (unaccepted) { 753 unsigned long size; 754 755 if (unaccepted->version == 1) { 756 size = sizeof(*unaccepted) + unaccepted->size; 757 memblock_reserve(efi.unaccepted, size); 758 } else { 759 efi.unaccepted = EFI_INVALID_TABLE_ADDR; 760 } 761 762 early_memunmap(unaccepted, sizeof(*unaccepted)); 763 } 764 } 765 766 return 0; 767 } 768 769 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr) 770 { 771 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) { 772 pr_err("System table signature incorrect!\n"); 773 return -EINVAL; 774 } 775 776 return 0; 777 } 778 779 #ifndef CONFIG_IA64 780 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor, 781 size_t size) 782 { 783 const efi_char16_t *ret; 784 785 ret = early_memremap_ro(fw_vendor, size); 786 if (!ret) 787 pr_err("Could not map the firmware vendor!\n"); 788 return ret; 789 } 790 791 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size) 792 { 793 early_memunmap((void *)fw_vendor, size); 794 } 795 #else 796 #define map_fw_vendor(p, s) __va(p) 797 #define unmap_fw_vendor(v, s) 798 #endif 799 800 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr, 801 unsigned long fw_vendor) 802 { 803 char vendor[100] = "unknown"; 804 const efi_char16_t *c16; 805 size_t i; 806 u16 rev; 807 808 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t)); 809 if (c16) { 810 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i) 811 vendor[i] = c16[i]; 812 vendor[i] = '\0'; 813 814 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t)); 815 } 816 817 rev = (u16)systab_hdr->revision; 818 pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10); 819 820 rev %= 10; 821 if (rev) 822 pr_cont(".%u", rev); 823 824 pr_cont(" by %s\n", vendor); 825 826 if (IS_ENABLED(CONFIG_X86_64) && 827 systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION && 828 !strcmp(vendor, "Apple")) { 829 pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n"); 830 efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION; 831 } 832 } 833 834 static __initdata char memory_type_name[][13] = { 835 "Reserved", 836 "Loader Code", 837 "Loader Data", 838 "Boot Code", 839 "Boot Data", 840 "Runtime Code", 841 "Runtime Data", 842 "Conventional", 843 "Unusable", 844 "ACPI Reclaim", 845 "ACPI Mem NVS", 846 "MMIO", 847 "MMIO Port", 848 "PAL Code", 849 "Persistent", 850 "Unaccepted", 851 }; 852 853 char * __init efi_md_typeattr_format(char *buf, size_t size, 854 const efi_memory_desc_t *md) 855 { 856 char *pos; 857 int type_len; 858 u64 attr; 859 860 pos = buf; 861 if (md->type >= ARRAY_SIZE(memory_type_name)) 862 type_len = snprintf(pos, size, "[type=%u", md->type); 863 else 864 type_len = snprintf(pos, size, "[%-*s", 865 (int)(sizeof(memory_type_name[0]) - 1), 866 memory_type_name[md->type]); 867 if (type_len >= size) 868 return buf; 869 870 pos += type_len; 871 size -= type_len; 872 873 attr = md->attribute; 874 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | 875 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | 876 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | 877 EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO | 878 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE)) 879 snprintf(pos, size, "|attr=0x%016llx]", 880 (unsigned long long)attr); 881 else 882 snprintf(pos, size, 883 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", 884 attr & EFI_MEMORY_RUNTIME ? "RUN" : "", 885 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", 886 attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "", 887 attr & EFI_MEMORY_SP ? "SP" : "", 888 attr & EFI_MEMORY_NV ? "NV" : "", 889 attr & EFI_MEMORY_XP ? "XP" : "", 890 attr & EFI_MEMORY_RP ? "RP" : "", 891 attr & EFI_MEMORY_WP ? "WP" : "", 892 attr & EFI_MEMORY_RO ? "RO" : "", 893 attr & EFI_MEMORY_UCE ? "UCE" : "", 894 attr & EFI_MEMORY_WB ? "WB" : "", 895 attr & EFI_MEMORY_WT ? "WT" : "", 896 attr & EFI_MEMORY_WC ? "WC" : "", 897 attr & EFI_MEMORY_UC ? "UC" : ""); 898 return buf; 899 } 900 901 /* 902 * IA64 has a funky EFI memory map that doesn't work the same way as 903 * other architectures. 904 */ 905 #ifndef CONFIG_IA64 906 /* 907 * efi_mem_attributes - lookup memmap attributes for physical address 908 * @phys_addr: the physical address to lookup 909 * 910 * Search in the EFI memory map for the region covering 911 * @phys_addr. Returns the EFI memory attributes if the region 912 * was found in the memory map, 0 otherwise. 913 */ 914 u64 efi_mem_attributes(unsigned long phys_addr) 915 { 916 efi_memory_desc_t *md; 917 918 if (!efi_enabled(EFI_MEMMAP)) 919 return 0; 920 921 for_each_efi_memory_desc(md) { 922 if ((md->phys_addr <= phys_addr) && 923 (phys_addr < (md->phys_addr + 924 (md->num_pages << EFI_PAGE_SHIFT)))) 925 return md->attribute; 926 } 927 return 0; 928 } 929 930 /* 931 * efi_mem_type - lookup memmap type for physical address 932 * @phys_addr: the physical address to lookup 933 * 934 * Search in the EFI memory map for the region covering @phys_addr. 935 * Returns the EFI memory type if the region was found in the memory 936 * map, -EINVAL otherwise. 937 */ 938 int efi_mem_type(unsigned long phys_addr) 939 { 940 const efi_memory_desc_t *md; 941 942 if (!efi_enabled(EFI_MEMMAP)) 943 return -ENOTSUPP; 944 945 for_each_efi_memory_desc(md) { 946 if ((md->phys_addr <= phys_addr) && 947 (phys_addr < (md->phys_addr + 948 (md->num_pages << EFI_PAGE_SHIFT)))) 949 return md->type; 950 } 951 return -EINVAL; 952 } 953 #endif 954 955 int efi_status_to_err(efi_status_t status) 956 { 957 int err; 958 959 switch (status) { 960 case EFI_SUCCESS: 961 err = 0; 962 break; 963 case EFI_INVALID_PARAMETER: 964 err = -EINVAL; 965 break; 966 case EFI_OUT_OF_RESOURCES: 967 err = -ENOSPC; 968 break; 969 case EFI_DEVICE_ERROR: 970 err = -EIO; 971 break; 972 case EFI_WRITE_PROTECTED: 973 err = -EROFS; 974 break; 975 case EFI_SECURITY_VIOLATION: 976 err = -EACCES; 977 break; 978 case EFI_NOT_FOUND: 979 err = -ENOENT; 980 break; 981 case EFI_ABORTED: 982 err = -EINTR; 983 break; 984 default: 985 err = -EINVAL; 986 } 987 988 return err; 989 } 990 EXPORT_SYMBOL_GPL(efi_status_to_err); 991 992 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock); 993 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init; 994 995 static int __init efi_memreserve_map_root(void) 996 { 997 if (mem_reserve == EFI_INVALID_TABLE_ADDR) 998 return -ENODEV; 999 1000 efi_memreserve_root = memremap(mem_reserve, 1001 sizeof(*efi_memreserve_root), 1002 MEMREMAP_WB); 1003 if (WARN_ON_ONCE(!efi_memreserve_root)) 1004 return -ENOMEM; 1005 return 0; 1006 } 1007 1008 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size) 1009 { 1010 struct resource *res, *parent; 1011 int ret; 1012 1013 res = kzalloc(sizeof(struct resource), GFP_ATOMIC); 1014 if (!res) 1015 return -ENOMEM; 1016 1017 res->name = "reserved"; 1018 res->flags = IORESOURCE_MEM; 1019 res->start = addr; 1020 res->end = addr + size - 1; 1021 1022 /* we expect a conflict with a 'System RAM' region */ 1023 parent = request_resource_conflict(&iomem_resource, res); 1024 ret = parent ? request_resource(parent, res) : 0; 1025 1026 /* 1027 * Given that efi_mem_reserve_iomem() can be called at any 1028 * time, only call memblock_reserve() if the architecture 1029 * keeps the infrastructure around. 1030 */ 1031 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret) 1032 memblock_reserve(addr, size); 1033 1034 return ret; 1035 } 1036 1037 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size) 1038 { 1039 struct linux_efi_memreserve *rsv; 1040 unsigned long prsv; 1041 int rc, index; 1042 1043 if (efi_memreserve_root == (void *)ULONG_MAX) 1044 return -ENODEV; 1045 1046 if (!efi_memreserve_root) { 1047 rc = efi_memreserve_map_root(); 1048 if (rc) 1049 return rc; 1050 } 1051 1052 /* first try to find a slot in an existing linked list entry */ 1053 for (prsv = efi_memreserve_root->next; prsv; ) { 1054 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB); 1055 if (!rsv) 1056 return -ENOMEM; 1057 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size); 1058 if (index < rsv->size) { 1059 rsv->entry[index].base = addr; 1060 rsv->entry[index].size = size; 1061 1062 memunmap(rsv); 1063 return efi_mem_reserve_iomem(addr, size); 1064 } 1065 prsv = rsv->next; 1066 memunmap(rsv); 1067 } 1068 1069 /* no slot found - allocate a new linked list entry */ 1070 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC); 1071 if (!rsv) 1072 return -ENOMEM; 1073 1074 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K); 1075 if (rc) { 1076 free_page((unsigned long)rsv); 1077 return rc; 1078 } 1079 1080 /* 1081 * The memremap() call above assumes that a linux_efi_memreserve entry 1082 * never crosses a page boundary, so let's ensure that this remains true 1083 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by 1084 * using SZ_4K explicitly in the size calculation below. 1085 */ 1086 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K); 1087 atomic_set(&rsv->count, 1); 1088 rsv->entry[0].base = addr; 1089 rsv->entry[0].size = size; 1090 1091 spin_lock(&efi_mem_reserve_persistent_lock); 1092 rsv->next = efi_memreserve_root->next; 1093 efi_memreserve_root->next = __pa(rsv); 1094 spin_unlock(&efi_mem_reserve_persistent_lock); 1095 1096 return efi_mem_reserve_iomem(addr, size); 1097 } 1098 1099 static int __init efi_memreserve_root_init(void) 1100 { 1101 if (efi_memreserve_root) 1102 return 0; 1103 if (efi_memreserve_map_root()) 1104 efi_memreserve_root = (void *)ULONG_MAX; 1105 return 0; 1106 } 1107 early_initcall(efi_memreserve_root_init); 1108 1109 #ifdef CONFIG_KEXEC 1110 static int update_efi_random_seed(struct notifier_block *nb, 1111 unsigned long code, void *unused) 1112 { 1113 struct linux_efi_random_seed *seed; 1114 u32 size = 0; 1115 1116 if (!kexec_in_progress) 1117 return NOTIFY_DONE; 1118 1119 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB); 1120 if (seed != NULL) { 1121 size = min(seed->size, EFI_RANDOM_SEED_SIZE); 1122 memunmap(seed); 1123 } else { 1124 pr_err("Could not map UEFI random seed!\n"); 1125 } 1126 if (size > 0) { 1127 seed = memremap(efi_rng_seed, sizeof(*seed) + size, 1128 MEMREMAP_WB); 1129 if (seed != NULL) { 1130 seed->size = size; 1131 get_random_bytes(seed->bits, seed->size); 1132 memunmap(seed); 1133 } else { 1134 pr_err("Could not map UEFI random seed!\n"); 1135 } 1136 } 1137 return NOTIFY_DONE; 1138 } 1139 1140 static struct notifier_block efi_random_seed_nb = { 1141 .notifier_call = update_efi_random_seed, 1142 }; 1143 1144 static int __init register_update_efi_random_seed(void) 1145 { 1146 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR) 1147 return 0; 1148 return register_reboot_notifier(&efi_random_seed_nb); 1149 } 1150 late_initcall(register_update_efi_random_seed); 1151 #endif 1152