xref: /openbmc/linux/drivers/firmware/efi/efi.c (revision 65844828)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 
36 #include <asm/early_ioremap.h>
37 
38 struct efi __read_mostly efi = {
39 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40 	.acpi			= EFI_INVALID_TABLE_ADDR,
41 	.acpi20			= EFI_INVALID_TABLE_ADDR,
42 	.smbios			= EFI_INVALID_TABLE_ADDR,
43 	.smbios3		= EFI_INVALID_TABLE_ADDR,
44 	.esrt			= EFI_INVALID_TABLE_ADDR,
45 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
46 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
47 #ifdef CONFIG_LOAD_UEFI_KEYS
48 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
49 #endif
50 #ifdef CONFIG_EFI_COCO_SECRET
51 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
52 #endif
53 };
54 EXPORT_SYMBOL(efi);
55 
56 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
57 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
58 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
59 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
60 
61 extern unsigned long screen_info_table;
62 
63 struct mm_struct efi_mm = {
64 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
65 	.mm_users		= ATOMIC_INIT(2),
66 	.mm_count		= ATOMIC_INIT(1),
67 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
68 	MMAP_LOCK_INITIALIZER(efi_mm)
69 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
70 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
71 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
72 };
73 
74 struct workqueue_struct *efi_rts_wq;
75 
76 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
77 static int __init setup_noefi(char *arg)
78 {
79 	disable_runtime = true;
80 	return 0;
81 }
82 early_param("noefi", setup_noefi);
83 
84 bool efi_runtime_disabled(void)
85 {
86 	return disable_runtime;
87 }
88 
89 bool __pure __efi_soft_reserve_enabled(void)
90 {
91 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
92 }
93 
94 static int __init parse_efi_cmdline(char *str)
95 {
96 	if (!str) {
97 		pr_warn("need at least one option\n");
98 		return -EINVAL;
99 	}
100 
101 	if (parse_option_str(str, "debug"))
102 		set_bit(EFI_DBG, &efi.flags);
103 
104 	if (parse_option_str(str, "noruntime"))
105 		disable_runtime = true;
106 
107 	if (parse_option_str(str, "runtime"))
108 		disable_runtime = false;
109 
110 	if (parse_option_str(str, "nosoftreserve"))
111 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
112 
113 	return 0;
114 }
115 early_param("efi", parse_efi_cmdline);
116 
117 struct kobject *efi_kobj;
118 
119 /*
120  * Let's not leave out systab information that snuck into
121  * the efivars driver
122  * Note, do not add more fields in systab sysfs file as it breaks sysfs
123  * one value per file rule!
124  */
125 static ssize_t systab_show(struct kobject *kobj,
126 			   struct kobj_attribute *attr, char *buf)
127 {
128 	char *str = buf;
129 
130 	if (!kobj || !buf)
131 		return -EINVAL;
132 
133 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
134 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
135 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
136 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
137 	/*
138 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
139 	 * SMBIOS3 entry point shall be preferred, so we list it first to
140 	 * let applications stop parsing after the first match.
141 	 */
142 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
143 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
144 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
145 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
146 
147 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
148 		str = efi_systab_show_arch(str);
149 
150 	return str - buf;
151 }
152 
153 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
154 
155 static ssize_t fw_platform_size_show(struct kobject *kobj,
156 				     struct kobj_attribute *attr, char *buf)
157 {
158 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
159 }
160 
161 extern __weak struct kobj_attribute efi_attr_fw_vendor;
162 extern __weak struct kobj_attribute efi_attr_runtime;
163 extern __weak struct kobj_attribute efi_attr_config_table;
164 static struct kobj_attribute efi_attr_fw_platform_size =
165 	__ATTR_RO(fw_platform_size);
166 
167 static struct attribute *efi_subsys_attrs[] = {
168 	&efi_attr_systab.attr,
169 	&efi_attr_fw_platform_size.attr,
170 	&efi_attr_fw_vendor.attr,
171 	&efi_attr_runtime.attr,
172 	&efi_attr_config_table.attr,
173 	NULL,
174 };
175 
176 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
177 				   int n)
178 {
179 	return attr->mode;
180 }
181 
182 static const struct attribute_group efi_subsys_attr_group = {
183 	.attrs = efi_subsys_attrs,
184 	.is_visible = efi_attr_is_visible,
185 };
186 
187 static struct efivars generic_efivars;
188 static struct efivar_operations generic_ops;
189 
190 static int generic_ops_register(void)
191 {
192 	generic_ops.get_variable = efi.get_variable;
193 	generic_ops.get_next_variable = efi.get_next_variable;
194 	generic_ops.query_variable_store = efi_query_variable_store;
195 
196 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
197 		generic_ops.set_variable = efi.set_variable;
198 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
199 	}
200 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
201 }
202 
203 static void generic_ops_unregister(void)
204 {
205 	efivars_unregister(&generic_efivars);
206 }
207 
208 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
209 #define EFIVAR_SSDT_NAME_MAX	16UL
210 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
211 static int __init efivar_ssdt_setup(char *str)
212 {
213 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
214 
215 	if (ret)
216 		return ret;
217 
218 	if (strlen(str) < sizeof(efivar_ssdt))
219 		memcpy(efivar_ssdt, str, strlen(str));
220 	else
221 		pr_warn("efivar_ssdt: name too long: %s\n", str);
222 	return 1;
223 }
224 __setup("efivar_ssdt=", efivar_ssdt_setup);
225 
226 static __init int efivar_ssdt_load(void)
227 {
228 	unsigned long name_size = 256;
229 	efi_char16_t *name = NULL;
230 	efi_status_t status;
231 	efi_guid_t guid;
232 
233 	if (!efivar_ssdt[0])
234 		return 0;
235 
236 	name = kzalloc(name_size, GFP_KERNEL);
237 	if (!name)
238 		return -ENOMEM;
239 
240 	for (;;) {
241 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
242 		unsigned long data_size = 0;
243 		void *data;
244 		int limit;
245 
246 		status = efi.get_next_variable(&name_size, name, &guid);
247 		if (status == EFI_NOT_FOUND) {
248 			break;
249 		} else if (status == EFI_BUFFER_TOO_SMALL) {
250 			name = krealloc(name, name_size, GFP_KERNEL);
251 			if (!name)
252 				return -ENOMEM;
253 			continue;
254 		}
255 
256 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
257 		ucs2_as_utf8(utf8_name, name, limit - 1);
258 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
259 			continue;
260 
261 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
262 
263 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
264 		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
265 			return -EIO;
266 
267 		data = kmalloc(data_size, GFP_KERNEL);
268 		if (!data)
269 			return -ENOMEM;
270 
271 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
272 		if (status == EFI_SUCCESS) {
273 			acpi_status ret = acpi_load_table(data, NULL);
274 			if (ret)
275 				pr_err("failed to load table: %u\n", ret);
276 			else
277 				continue;
278 		} else {
279 			pr_err("failed to get var data: 0x%lx\n", status);
280 		}
281 		kfree(data);
282 	}
283 	return 0;
284 }
285 #else
286 static inline int efivar_ssdt_load(void) { return 0; }
287 #endif
288 
289 #ifdef CONFIG_DEBUG_FS
290 
291 #define EFI_DEBUGFS_MAX_BLOBS 32
292 
293 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
294 
295 static void __init efi_debugfs_init(void)
296 {
297 	struct dentry *efi_debugfs;
298 	efi_memory_desc_t *md;
299 	char name[32];
300 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
301 	int i = 0;
302 
303 	efi_debugfs = debugfs_create_dir("efi", NULL);
304 	if (IS_ERR_OR_NULL(efi_debugfs))
305 		return;
306 
307 	for_each_efi_memory_desc(md) {
308 		switch (md->type) {
309 		case EFI_BOOT_SERVICES_CODE:
310 			snprintf(name, sizeof(name), "boot_services_code%d",
311 				 type_count[md->type]++);
312 			break;
313 		case EFI_BOOT_SERVICES_DATA:
314 			snprintf(name, sizeof(name), "boot_services_data%d",
315 				 type_count[md->type]++);
316 			break;
317 		default:
318 			continue;
319 		}
320 
321 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
322 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
323 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
324 			break;
325 		}
326 
327 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
328 		debugfs_blob[i].data = memremap(md->phys_addr,
329 						debugfs_blob[i].size,
330 						MEMREMAP_WB);
331 		if (!debugfs_blob[i].data)
332 			continue;
333 
334 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
335 		i++;
336 	}
337 }
338 #else
339 static inline void efi_debugfs_init(void) {}
340 #endif
341 
342 static void refresh_nv_rng_seed(struct work_struct *work)
343 {
344 	u8 seed[EFI_RANDOM_SEED_SIZE];
345 
346 	get_random_bytes(seed, sizeof(seed));
347 	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
348 			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
349 			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
350 	memzero_explicit(seed, sizeof(seed));
351 }
352 static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
353 {
354 	static DECLARE_WORK(work, refresh_nv_rng_seed);
355 	schedule_work(&work);
356 	return NOTIFY_DONE;
357 }
358 static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
359 
360 /*
361  * We register the efi subsystem with the firmware subsystem and the
362  * efivars subsystem with the efi subsystem, if the system was booted with
363  * EFI.
364  */
365 static int __init efisubsys_init(void)
366 {
367 	int error;
368 
369 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
370 		efi.runtime_supported_mask = 0;
371 
372 	if (!efi_enabled(EFI_BOOT))
373 		return 0;
374 
375 	if (efi.runtime_supported_mask) {
376 		/*
377 		 * Since we process only one efi_runtime_service() at a time, an
378 		 * ordered workqueue (which creates only one execution context)
379 		 * should suffice for all our needs.
380 		 */
381 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
382 		if (!efi_rts_wq) {
383 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
384 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
385 			efi.runtime_supported_mask = 0;
386 			return 0;
387 		}
388 	}
389 
390 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
391 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
392 
393 	/* We register the efi directory at /sys/firmware/efi */
394 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
395 	if (!efi_kobj) {
396 		pr_err("efi: Firmware registration failed.\n");
397 		destroy_workqueue(efi_rts_wq);
398 		return -ENOMEM;
399 	}
400 
401 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
402 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
403 		error = generic_ops_register();
404 		if (error)
405 			goto err_put;
406 		efivar_ssdt_load();
407 		platform_device_register_simple("efivars", 0, NULL, 0);
408 	}
409 
410 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
411 	if (error) {
412 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
413 		       error);
414 		goto err_unregister;
415 	}
416 
417 	/* and the standard mountpoint for efivarfs */
418 	error = sysfs_create_mount_point(efi_kobj, "efivars");
419 	if (error) {
420 		pr_err("efivars: Subsystem registration failed.\n");
421 		goto err_remove_group;
422 	}
423 
424 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
425 		efi_debugfs_init();
426 
427 #ifdef CONFIG_EFI_COCO_SECRET
428 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
429 		platform_device_register_simple("efi_secret", 0, NULL, 0);
430 #endif
431 
432 	execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
433 	return 0;
434 
435 err_remove_group:
436 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
437 err_unregister:
438 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
439 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
440 		generic_ops_unregister();
441 err_put:
442 	kobject_put(efi_kobj);
443 	efi_kobj = NULL;
444 	destroy_workqueue(efi_rts_wq);
445 	return error;
446 }
447 
448 subsys_initcall(efisubsys_init);
449 
450 void __init efi_find_mirror(void)
451 {
452 	efi_memory_desc_t *md;
453 	u64 mirror_size = 0, total_size = 0;
454 
455 	if (!efi_enabled(EFI_MEMMAP))
456 		return;
457 
458 	for_each_efi_memory_desc(md) {
459 		unsigned long long start = md->phys_addr;
460 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
461 
462 		total_size += size;
463 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
464 			memblock_mark_mirror(start, size);
465 			mirror_size += size;
466 		}
467 	}
468 	if (mirror_size)
469 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
470 			mirror_size>>20, total_size>>20);
471 }
472 
473 /*
474  * Find the efi memory descriptor for a given physical address.  Given a
475  * physical address, determine if it exists within an EFI Memory Map entry,
476  * and if so, populate the supplied memory descriptor with the appropriate
477  * data.
478  */
479 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
480 {
481 	efi_memory_desc_t *md;
482 
483 	if (!efi_enabled(EFI_MEMMAP)) {
484 		pr_err_once("EFI_MEMMAP is not enabled.\n");
485 		return -EINVAL;
486 	}
487 
488 	if (!out_md) {
489 		pr_err_once("out_md is null.\n");
490 		return -EINVAL;
491         }
492 
493 	for_each_efi_memory_desc(md) {
494 		u64 size;
495 		u64 end;
496 
497 		size = md->num_pages << EFI_PAGE_SHIFT;
498 		end = md->phys_addr + size;
499 		if (phys_addr >= md->phys_addr && phys_addr < end) {
500 			memcpy(out_md, md, sizeof(*out_md));
501 			return 0;
502 		}
503 	}
504 	return -ENOENT;
505 }
506 
507 /*
508  * Calculate the highest address of an efi memory descriptor.
509  */
510 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
511 {
512 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
513 	u64 end = md->phys_addr + size;
514 	return end;
515 }
516 
517 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
518 
519 /**
520  * efi_mem_reserve - Reserve an EFI memory region
521  * @addr: Physical address to reserve
522  * @size: Size of reservation
523  *
524  * Mark a region as reserved from general kernel allocation and
525  * prevent it being released by efi_free_boot_services().
526  *
527  * This function should be called drivers once they've parsed EFI
528  * configuration tables to figure out where their data lives, e.g.
529  * efi_esrt_init().
530  */
531 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
532 {
533 	if (!memblock_is_region_reserved(addr, size))
534 		memblock_reserve(addr, size);
535 
536 	/*
537 	 * Some architectures (x86) reserve all boot services ranges
538 	 * until efi_free_boot_services() because of buggy firmware
539 	 * implementations. This means the above memblock_reserve() is
540 	 * superfluous on x86 and instead what it needs to do is
541 	 * ensure the @start, @size is not freed.
542 	 */
543 	efi_arch_mem_reserve(addr, size);
544 }
545 
546 static const efi_config_table_type_t common_tables[] __initconst = {
547 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
548 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
549 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
550 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
551 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
552 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
553 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
554 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
555 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
556 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
557 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
558 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
559 #ifdef CONFIG_EFI_RCI2_TABLE
560 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
561 #endif
562 #ifdef CONFIG_LOAD_UEFI_KEYS
563 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
564 #endif
565 #ifdef CONFIG_EFI_COCO_SECRET
566 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
567 #endif
568 #ifdef CONFIG_EFI_GENERIC_STUB
569 	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
570 #endif
571 	{},
572 };
573 
574 static __init int match_config_table(const efi_guid_t *guid,
575 				     unsigned long table,
576 				     const efi_config_table_type_t *table_types)
577 {
578 	int i;
579 
580 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
581 		if (!efi_guidcmp(*guid, table_types[i].guid)) {
582 			*(table_types[i].ptr) = table;
583 			if (table_types[i].name[0])
584 				pr_cont("%s=0x%lx ",
585 					table_types[i].name, table);
586 			return 1;
587 		}
588 	}
589 
590 	return 0;
591 }
592 
593 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
594 				   int count,
595 				   const efi_config_table_type_t *arch_tables)
596 {
597 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
598 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
599 	const efi_guid_t *guid;
600 	unsigned long table;
601 	int i;
602 
603 	pr_info("");
604 	for (i = 0; i < count; i++) {
605 		if (!IS_ENABLED(CONFIG_X86)) {
606 			guid = &config_tables[i].guid;
607 			table = (unsigned long)config_tables[i].table;
608 		} else if (efi_enabled(EFI_64BIT)) {
609 			guid = &tbl64[i].guid;
610 			table = tbl64[i].table;
611 
612 			if (IS_ENABLED(CONFIG_X86_32) &&
613 			    tbl64[i].table > U32_MAX) {
614 				pr_cont("\n");
615 				pr_err("Table located above 4GB, disabling EFI.\n");
616 				return -EINVAL;
617 			}
618 		} else {
619 			guid = &tbl32[i].guid;
620 			table = tbl32[i].table;
621 		}
622 
623 		if (!match_config_table(guid, table, common_tables) && arch_tables)
624 			match_config_table(guid, table, arch_tables);
625 	}
626 	pr_cont("\n");
627 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
628 
629 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
630 		struct linux_efi_random_seed *seed;
631 		u32 size = 0;
632 
633 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
634 		if (seed != NULL) {
635 			size = min_t(u32, seed->size, SZ_1K); // sanity check
636 			early_memunmap(seed, sizeof(*seed));
637 		} else {
638 			pr_err("Could not map UEFI random seed!\n");
639 		}
640 		if (size > 0) {
641 			seed = early_memremap(efi_rng_seed,
642 					      sizeof(*seed) + size);
643 			if (seed != NULL) {
644 				add_bootloader_randomness(seed->bits, size);
645 				memzero_explicit(seed->bits, size);
646 				early_memunmap(seed, sizeof(*seed) + size);
647 			} else {
648 				pr_err("Could not map UEFI random seed!\n");
649 			}
650 		}
651 	}
652 
653 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
654 		efi_memattr_init();
655 
656 	efi_tpm_eventlog_init();
657 
658 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
659 		unsigned long prsv = mem_reserve;
660 
661 		while (prsv) {
662 			struct linux_efi_memreserve *rsv;
663 			u8 *p;
664 
665 			/*
666 			 * Just map a full page: that is what we will get
667 			 * anyway, and it permits us to map the entire entry
668 			 * before knowing its size.
669 			 */
670 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
671 					   PAGE_SIZE);
672 			if (p == NULL) {
673 				pr_err("Could not map UEFI memreserve entry!\n");
674 				return -ENOMEM;
675 			}
676 
677 			rsv = (void *)(p + prsv % PAGE_SIZE);
678 
679 			/* reserve the entry itself */
680 			memblock_reserve(prsv,
681 					 struct_size(rsv, entry, rsv->size));
682 
683 			for (i = 0; i < atomic_read(&rsv->count); i++) {
684 				memblock_reserve(rsv->entry[i].base,
685 						 rsv->entry[i].size);
686 			}
687 
688 			prsv = rsv->next;
689 			early_memunmap(p, PAGE_SIZE);
690 		}
691 	}
692 
693 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
694 		efi_rt_properties_table_t *tbl;
695 
696 		tbl = early_memremap(rt_prop, sizeof(*tbl));
697 		if (tbl) {
698 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
699 			early_memunmap(tbl, sizeof(*tbl));
700 		}
701 	}
702 
703 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
704 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
705 		struct linux_efi_initrd *tbl;
706 
707 		tbl = early_memremap(initrd, sizeof(*tbl));
708 		if (tbl) {
709 			phys_initrd_start = tbl->base;
710 			phys_initrd_size = tbl->size;
711 			early_memunmap(tbl, sizeof(*tbl));
712 		}
713 	}
714 
715 	return 0;
716 }
717 
718 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
719 				   int min_major_version)
720 {
721 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
722 		pr_err("System table signature incorrect!\n");
723 		return -EINVAL;
724 	}
725 
726 	if ((systab_hdr->revision >> 16) < min_major_version)
727 		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
728 		       systab_hdr->revision >> 16,
729 		       systab_hdr->revision & 0xffff,
730 		       min_major_version);
731 
732 	return 0;
733 }
734 
735 #ifndef CONFIG_IA64
736 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
737 						size_t size)
738 {
739 	const efi_char16_t *ret;
740 
741 	ret = early_memremap_ro(fw_vendor, size);
742 	if (!ret)
743 		pr_err("Could not map the firmware vendor!\n");
744 	return ret;
745 }
746 
747 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
748 {
749 	early_memunmap((void *)fw_vendor, size);
750 }
751 #else
752 #define map_fw_vendor(p, s)	__va(p)
753 #define unmap_fw_vendor(v, s)
754 #endif
755 
756 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
757 				     unsigned long fw_vendor)
758 {
759 	char vendor[100] = "unknown";
760 	const efi_char16_t *c16;
761 	size_t i;
762 
763 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
764 	if (c16) {
765 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
766 			vendor[i] = c16[i];
767 		vendor[i] = '\0';
768 
769 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
770 	}
771 
772 	pr_info("EFI v%u.%.02u by %s\n",
773 		systab_hdr->revision >> 16,
774 		systab_hdr->revision & 0xffff,
775 		vendor);
776 
777 	if (IS_ENABLED(CONFIG_X86_64) &&
778 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
779 	    !strcmp(vendor, "Apple")) {
780 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
781 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
782 	}
783 }
784 
785 static __initdata char memory_type_name[][13] = {
786 	"Reserved",
787 	"Loader Code",
788 	"Loader Data",
789 	"Boot Code",
790 	"Boot Data",
791 	"Runtime Code",
792 	"Runtime Data",
793 	"Conventional",
794 	"Unusable",
795 	"ACPI Reclaim",
796 	"ACPI Mem NVS",
797 	"MMIO",
798 	"MMIO Port",
799 	"PAL Code",
800 	"Persistent",
801 };
802 
803 char * __init efi_md_typeattr_format(char *buf, size_t size,
804 				     const efi_memory_desc_t *md)
805 {
806 	char *pos;
807 	int type_len;
808 	u64 attr;
809 
810 	pos = buf;
811 	if (md->type >= ARRAY_SIZE(memory_type_name))
812 		type_len = snprintf(pos, size, "[type=%u", md->type);
813 	else
814 		type_len = snprintf(pos, size, "[%-*s",
815 				    (int)(sizeof(memory_type_name[0]) - 1),
816 				    memory_type_name[md->type]);
817 	if (type_len >= size)
818 		return buf;
819 
820 	pos += type_len;
821 	size -= type_len;
822 
823 	attr = md->attribute;
824 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
825 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
826 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
827 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
828 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
829 		snprintf(pos, size, "|attr=0x%016llx]",
830 			 (unsigned long long)attr);
831 	else
832 		snprintf(pos, size,
833 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
834 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
835 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
836 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
837 			 attr & EFI_MEMORY_SP			? "SP"  : "",
838 			 attr & EFI_MEMORY_NV			? "NV"  : "",
839 			 attr & EFI_MEMORY_XP			? "XP"  : "",
840 			 attr & EFI_MEMORY_RP			? "RP"  : "",
841 			 attr & EFI_MEMORY_WP			? "WP"  : "",
842 			 attr & EFI_MEMORY_RO			? "RO"  : "",
843 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
844 			 attr & EFI_MEMORY_WB			? "WB"  : "",
845 			 attr & EFI_MEMORY_WT			? "WT"  : "",
846 			 attr & EFI_MEMORY_WC			? "WC"  : "",
847 			 attr & EFI_MEMORY_UC			? "UC"  : "");
848 	return buf;
849 }
850 
851 /*
852  * IA64 has a funky EFI memory map that doesn't work the same way as
853  * other architectures.
854  */
855 #ifndef CONFIG_IA64
856 /*
857  * efi_mem_attributes - lookup memmap attributes for physical address
858  * @phys_addr: the physical address to lookup
859  *
860  * Search in the EFI memory map for the region covering
861  * @phys_addr. Returns the EFI memory attributes if the region
862  * was found in the memory map, 0 otherwise.
863  */
864 u64 efi_mem_attributes(unsigned long phys_addr)
865 {
866 	efi_memory_desc_t *md;
867 
868 	if (!efi_enabled(EFI_MEMMAP))
869 		return 0;
870 
871 	for_each_efi_memory_desc(md) {
872 		if ((md->phys_addr <= phys_addr) &&
873 		    (phys_addr < (md->phys_addr +
874 		    (md->num_pages << EFI_PAGE_SHIFT))))
875 			return md->attribute;
876 	}
877 	return 0;
878 }
879 
880 /*
881  * efi_mem_type - lookup memmap type for physical address
882  * @phys_addr: the physical address to lookup
883  *
884  * Search in the EFI memory map for the region covering @phys_addr.
885  * Returns the EFI memory type if the region was found in the memory
886  * map, -EINVAL otherwise.
887  */
888 int efi_mem_type(unsigned long phys_addr)
889 {
890 	const efi_memory_desc_t *md;
891 
892 	if (!efi_enabled(EFI_MEMMAP))
893 		return -ENOTSUPP;
894 
895 	for_each_efi_memory_desc(md) {
896 		if ((md->phys_addr <= phys_addr) &&
897 		    (phys_addr < (md->phys_addr +
898 				  (md->num_pages << EFI_PAGE_SHIFT))))
899 			return md->type;
900 	}
901 	return -EINVAL;
902 }
903 #endif
904 
905 int efi_status_to_err(efi_status_t status)
906 {
907 	int err;
908 
909 	switch (status) {
910 	case EFI_SUCCESS:
911 		err = 0;
912 		break;
913 	case EFI_INVALID_PARAMETER:
914 		err = -EINVAL;
915 		break;
916 	case EFI_OUT_OF_RESOURCES:
917 		err = -ENOSPC;
918 		break;
919 	case EFI_DEVICE_ERROR:
920 		err = -EIO;
921 		break;
922 	case EFI_WRITE_PROTECTED:
923 		err = -EROFS;
924 		break;
925 	case EFI_SECURITY_VIOLATION:
926 		err = -EACCES;
927 		break;
928 	case EFI_NOT_FOUND:
929 		err = -ENOENT;
930 		break;
931 	case EFI_ABORTED:
932 		err = -EINTR;
933 		break;
934 	default:
935 		err = -EINVAL;
936 	}
937 
938 	return err;
939 }
940 EXPORT_SYMBOL_GPL(efi_status_to_err);
941 
942 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
943 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
944 
945 static int __init efi_memreserve_map_root(void)
946 {
947 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
948 		return -ENODEV;
949 
950 	efi_memreserve_root = memremap(mem_reserve,
951 				       sizeof(*efi_memreserve_root),
952 				       MEMREMAP_WB);
953 	if (WARN_ON_ONCE(!efi_memreserve_root))
954 		return -ENOMEM;
955 	return 0;
956 }
957 
958 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
959 {
960 	struct resource *res, *parent;
961 	int ret;
962 
963 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
964 	if (!res)
965 		return -ENOMEM;
966 
967 	res->name	= "reserved";
968 	res->flags	= IORESOURCE_MEM;
969 	res->start	= addr;
970 	res->end	= addr + size - 1;
971 
972 	/* we expect a conflict with a 'System RAM' region */
973 	parent = request_resource_conflict(&iomem_resource, res);
974 	ret = parent ? request_resource(parent, res) : 0;
975 
976 	/*
977 	 * Given that efi_mem_reserve_iomem() can be called at any
978 	 * time, only call memblock_reserve() if the architecture
979 	 * keeps the infrastructure around.
980 	 */
981 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
982 		memblock_reserve(addr, size);
983 
984 	return ret;
985 }
986 
987 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
988 {
989 	struct linux_efi_memreserve *rsv;
990 	unsigned long prsv;
991 	int rc, index;
992 
993 	if (efi_memreserve_root == (void *)ULONG_MAX)
994 		return -ENODEV;
995 
996 	if (!efi_memreserve_root) {
997 		rc = efi_memreserve_map_root();
998 		if (rc)
999 			return rc;
1000 	}
1001 
1002 	/* first try to find a slot in an existing linked list entry */
1003 	for (prsv = efi_memreserve_root->next; prsv; ) {
1004 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1005 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1006 		if (index < rsv->size) {
1007 			rsv->entry[index].base = addr;
1008 			rsv->entry[index].size = size;
1009 
1010 			memunmap(rsv);
1011 			return efi_mem_reserve_iomem(addr, size);
1012 		}
1013 		prsv = rsv->next;
1014 		memunmap(rsv);
1015 	}
1016 
1017 	/* no slot found - allocate a new linked list entry */
1018 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1019 	if (!rsv)
1020 		return -ENOMEM;
1021 
1022 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1023 	if (rc) {
1024 		free_page((unsigned long)rsv);
1025 		return rc;
1026 	}
1027 
1028 	/*
1029 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1030 	 * never crosses a page boundary, so let's ensure that this remains true
1031 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1032 	 * using SZ_4K explicitly in the size calculation below.
1033 	 */
1034 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1035 	atomic_set(&rsv->count, 1);
1036 	rsv->entry[0].base = addr;
1037 	rsv->entry[0].size = size;
1038 
1039 	spin_lock(&efi_mem_reserve_persistent_lock);
1040 	rsv->next = efi_memreserve_root->next;
1041 	efi_memreserve_root->next = __pa(rsv);
1042 	spin_unlock(&efi_mem_reserve_persistent_lock);
1043 
1044 	return efi_mem_reserve_iomem(addr, size);
1045 }
1046 
1047 static int __init efi_memreserve_root_init(void)
1048 {
1049 	if (efi_memreserve_root)
1050 		return 0;
1051 	if (efi_memreserve_map_root())
1052 		efi_memreserve_root = (void *)ULONG_MAX;
1053 	return 0;
1054 }
1055 early_initcall(efi_memreserve_root_init);
1056 
1057 #ifdef CONFIG_KEXEC
1058 static int update_efi_random_seed(struct notifier_block *nb,
1059 				  unsigned long code, void *unused)
1060 {
1061 	struct linux_efi_random_seed *seed;
1062 	u32 size = 0;
1063 
1064 	if (!kexec_in_progress)
1065 		return NOTIFY_DONE;
1066 
1067 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1068 	if (seed != NULL) {
1069 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1070 		memunmap(seed);
1071 	} else {
1072 		pr_err("Could not map UEFI random seed!\n");
1073 	}
1074 	if (size > 0) {
1075 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1076 				MEMREMAP_WB);
1077 		if (seed != NULL) {
1078 			seed->size = size;
1079 			get_random_bytes(seed->bits, seed->size);
1080 			memunmap(seed);
1081 		} else {
1082 			pr_err("Could not map UEFI random seed!\n");
1083 		}
1084 	}
1085 	return NOTIFY_DONE;
1086 }
1087 
1088 static struct notifier_block efi_random_seed_nb = {
1089 	.notifier_call = update_efi_random_seed,
1090 };
1091 
1092 static int __init register_update_efi_random_seed(void)
1093 {
1094 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1095 		return 0;
1096 	return register_reboot_notifier(&efi_random_seed_nb);
1097 }
1098 late_initcall(register_update_efi_random_seed);
1099 #endif
1100