xref: /openbmc/linux/drivers/firmware/efi/efi.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/io.h>
25 #include <linux/kexec.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/reboot.h>
29 #include <linux/slab.h>
30 #include <linux/acpi.h>
31 #include <linux/ucs2_string.h>
32 #include <linux/memblock.h>
33 #include <linux/security.h>
34 
35 #include <asm/early_ioremap.h>
36 
37 struct efi __read_mostly efi = {
38 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 	.acpi			= EFI_INVALID_TABLE_ADDR,
40 	.acpi20			= EFI_INVALID_TABLE_ADDR,
41 	.smbios			= EFI_INVALID_TABLE_ADDR,
42 	.smbios3		= EFI_INVALID_TABLE_ADDR,
43 	.esrt			= EFI_INVALID_TABLE_ADDR,
44 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 };
47 EXPORT_SYMBOL(efi);
48 
49 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
50 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
51 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
52 
53 struct mm_struct efi_mm = {
54 	.mm_rb			= RB_ROOT,
55 	.mm_users		= ATOMIC_INIT(2),
56 	.mm_count		= ATOMIC_INIT(1),
57 	MMAP_LOCK_INITIALIZER(efi_mm)
58 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
59 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
60 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
61 };
62 
63 struct workqueue_struct *efi_rts_wq;
64 
65 static bool disable_runtime;
66 static int __init setup_noefi(char *arg)
67 {
68 	disable_runtime = true;
69 	return 0;
70 }
71 early_param("noefi", setup_noefi);
72 
73 bool efi_runtime_disabled(void)
74 {
75 	return disable_runtime;
76 }
77 
78 bool __pure __efi_soft_reserve_enabled(void)
79 {
80 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
81 }
82 
83 static int __init parse_efi_cmdline(char *str)
84 {
85 	if (!str) {
86 		pr_warn("need at least one option\n");
87 		return -EINVAL;
88 	}
89 
90 	if (parse_option_str(str, "debug"))
91 		set_bit(EFI_DBG, &efi.flags);
92 
93 	if (parse_option_str(str, "noruntime"))
94 		disable_runtime = true;
95 
96 	if (parse_option_str(str, "nosoftreserve"))
97 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
98 
99 	return 0;
100 }
101 early_param("efi", parse_efi_cmdline);
102 
103 struct kobject *efi_kobj;
104 
105 /*
106  * Let's not leave out systab information that snuck into
107  * the efivars driver
108  * Note, do not add more fields in systab sysfs file as it breaks sysfs
109  * one value per file rule!
110  */
111 static ssize_t systab_show(struct kobject *kobj,
112 			   struct kobj_attribute *attr, char *buf)
113 {
114 	char *str = buf;
115 
116 	if (!kobj || !buf)
117 		return -EINVAL;
118 
119 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
120 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
121 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
122 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
123 	/*
124 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
125 	 * SMBIOS3 entry point shall be preferred, so we list it first to
126 	 * let applications stop parsing after the first match.
127 	 */
128 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
129 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
131 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
132 
133 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
134 		str = efi_systab_show_arch(str);
135 
136 	return str - buf;
137 }
138 
139 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
140 
141 static ssize_t fw_platform_size_show(struct kobject *kobj,
142 				     struct kobj_attribute *attr, char *buf)
143 {
144 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
145 }
146 
147 extern __weak struct kobj_attribute efi_attr_fw_vendor;
148 extern __weak struct kobj_attribute efi_attr_runtime;
149 extern __weak struct kobj_attribute efi_attr_config_table;
150 static struct kobj_attribute efi_attr_fw_platform_size =
151 	__ATTR_RO(fw_platform_size);
152 
153 static struct attribute *efi_subsys_attrs[] = {
154 	&efi_attr_systab.attr,
155 	&efi_attr_fw_platform_size.attr,
156 	&efi_attr_fw_vendor.attr,
157 	&efi_attr_runtime.attr,
158 	&efi_attr_config_table.attr,
159 	NULL,
160 };
161 
162 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
163 				   int n)
164 {
165 	return attr->mode;
166 }
167 
168 static const struct attribute_group efi_subsys_attr_group = {
169 	.attrs = efi_subsys_attrs,
170 	.is_visible = efi_attr_is_visible,
171 };
172 
173 static struct efivars generic_efivars;
174 static struct efivar_operations generic_ops;
175 
176 static int generic_ops_register(void)
177 {
178 	generic_ops.get_variable = efi.get_variable;
179 	generic_ops.set_variable = efi.set_variable;
180 	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
181 	generic_ops.get_next_variable = efi.get_next_variable;
182 	generic_ops.query_variable_store = efi_query_variable_store;
183 
184 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
185 }
186 
187 static void generic_ops_unregister(void)
188 {
189 	efivars_unregister(&generic_efivars);
190 }
191 
192 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
193 #define EFIVAR_SSDT_NAME_MAX	16
194 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
195 static int __init efivar_ssdt_setup(char *str)
196 {
197 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
198 
199 	if (ret)
200 		return ret;
201 
202 	if (strlen(str) < sizeof(efivar_ssdt))
203 		memcpy(efivar_ssdt, str, strlen(str));
204 	else
205 		pr_warn("efivar_ssdt: name too long: %s\n", str);
206 	return 0;
207 }
208 __setup("efivar_ssdt=", efivar_ssdt_setup);
209 
210 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
211 				   unsigned long name_size, void *data)
212 {
213 	struct efivar_entry *entry;
214 	struct list_head *list = data;
215 	char utf8_name[EFIVAR_SSDT_NAME_MAX];
216 	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
217 
218 	ucs2_as_utf8(utf8_name, name, limit - 1);
219 	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
220 		return 0;
221 
222 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
223 	if (!entry)
224 		return 0;
225 
226 	memcpy(entry->var.VariableName, name, name_size);
227 	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
228 
229 	efivar_entry_add(entry, list);
230 
231 	return 0;
232 }
233 
234 static __init int efivar_ssdt_load(void)
235 {
236 	LIST_HEAD(entries);
237 	struct efivar_entry *entry, *aux;
238 	unsigned long size;
239 	void *data;
240 	int ret;
241 
242 	if (!efivar_ssdt[0])
243 		return 0;
244 
245 	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
246 
247 	list_for_each_entry_safe(entry, aux, &entries, list) {
248 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
249 			&entry->var.VendorGuid);
250 
251 		list_del(&entry->list);
252 
253 		ret = efivar_entry_size(entry, &size);
254 		if (ret) {
255 			pr_err("failed to get var size\n");
256 			goto free_entry;
257 		}
258 
259 		data = kmalloc(size, GFP_KERNEL);
260 		if (!data) {
261 			ret = -ENOMEM;
262 			goto free_entry;
263 		}
264 
265 		ret = efivar_entry_get(entry, NULL, &size, data);
266 		if (ret) {
267 			pr_err("failed to get var data\n");
268 			goto free_data;
269 		}
270 
271 		ret = acpi_load_table(data, NULL);
272 		if (ret) {
273 			pr_err("failed to load table: %d\n", ret);
274 			goto free_data;
275 		}
276 
277 		goto free_entry;
278 
279 free_data:
280 		kfree(data);
281 
282 free_entry:
283 		kfree(entry);
284 	}
285 
286 	return ret;
287 }
288 #else
289 static inline int efivar_ssdt_load(void) { return 0; }
290 #endif
291 
292 #ifdef CONFIG_DEBUG_FS
293 
294 #define EFI_DEBUGFS_MAX_BLOBS 32
295 
296 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
297 
298 static void __init efi_debugfs_init(void)
299 {
300 	struct dentry *efi_debugfs;
301 	efi_memory_desc_t *md;
302 	char name[32];
303 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
304 	int i = 0;
305 
306 	efi_debugfs = debugfs_create_dir("efi", NULL);
307 	if (IS_ERR_OR_NULL(efi_debugfs))
308 		return;
309 
310 	for_each_efi_memory_desc(md) {
311 		switch (md->type) {
312 		case EFI_BOOT_SERVICES_CODE:
313 			snprintf(name, sizeof(name), "boot_services_code%d",
314 				 type_count[md->type]++);
315 			break;
316 		case EFI_BOOT_SERVICES_DATA:
317 			snprintf(name, sizeof(name), "boot_services_data%d",
318 				 type_count[md->type]++);
319 			break;
320 		default:
321 			continue;
322 		}
323 
324 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
325 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
326 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
327 			break;
328 		}
329 
330 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
331 		debugfs_blob[i].data = memremap(md->phys_addr,
332 						debugfs_blob[i].size,
333 						MEMREMAP_WB);
334 		if (!debugfs_blob[i].data)
335 			continue;
336 
337 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
338 		i++;
339 	}
340 }
341 #else
342 static inline void efi_debugfs_init(void) {}
343 #endif
344 
345 /*
346  * We register the efi subsystem with the firmware subsystem and the
347  * efivars subsystem with the efi subsystem, if the system was booted with
348  * EFI.
349  */
350 static int __init efisubsys_init(void)
351 {
352 	int error;
353 
354 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
355 		efi.runtime_supported_mask = 0;
356 
357 	if (!efi_enabled(EFI_BOOT))
358 		return 0;
359 
360 	if (efi.runtime_supported_mask) {
361 		/*
362 		 * Since we process only one efi_runtime_service() at a time, an
363 		 * ordered workqueue (which creates only one execution context)
364 		 * should suffice for all our needs.
365 		 */
366 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
367 		if (!efi_rts_wq) {
368 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
369 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
370 			efi.runtime_supported_mask = 0;
371 			return 0;
372 		}
373 	}
374 
375 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
376 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
377 
378 	/* We register the efi directory at /sys/firmware/efi */
379 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
380 	if (!efi_kobj) {
381 		pr_err("efi: Firmware registration failed.\n");
382 		return -ENOMEM;
383 	}
384 
385 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_VARIABLE_SERVICES)) {
386 		efivar_ssdt_load();
387 		error = generic_ops_register();
388 		if (error)
389 			goto err_put;
390 		platform_device_register_simple("efivars", 0, NULL, 0);
391 	}
392 
393 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
394 	if (error) {
395 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
396 		       error);
397 		goto err_unregister;
398 	}
399 
400 	error = efi_runtime_map_init(efi_kobj);
401 	if (error)
402 		goto err_remove_group;
403 
404 	/* and the standard mountpoint for efivarfs */
405 	error = sysfs_create_mount_point(efi_kobj, "efivars");
406 	if (error) {
407 		pr_err("efivars: Subsystem registration failed.\n");
408 		goto err_remove_group;
409 	}
410 
411 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
412 		efi_debugfs_init();
413 
414 	return 0;
415 
416 err_remove_group:
417 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
418 err_unregister:
419 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_VARIABLE_SERVICES))
420 		generic_ops_unregister();
421 err_put:
422 	kobject_put(efi_kobj);
423 	return error;
424 }
425 
426 subsys_initcall(efisubsys_init);
427 
428 /*
429  * Find the efi memory descriptor for a given physical address.  Given a
430  * physical address, determine if it exists within an EFI Memory Map entry,
431  * and if so, populate the supplied memory descriptor with the appropriate
432  * data.
433  */
434 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
435 {
436 	efi_memory_desc_t *md;
437 
438 	if (!efi_enabled(EFI_MEMMAP)) {
439 		pr_err_once("EFI_MEMMAP is not enabled.\n");
440 		return -EINVAL;
441 	}
442 
443 	if (!out_md) {
444 		pr_err_once("out_md is null.\n");
445 		return -EINVAL;
446         }
447 
448 	for_each_efi_memory_desc(md) {
449 		u64 size;
450 		u64 end;
451 
452 		size = md->num_pages << EFI_PAGE_SHIFT;
453 		end = md->phys_addr + size;
454 		if (phys_addr >= md->phys_addr && phys_addr < end) {
455 			memcpy(out_md, md, sizeof(*out_md));
456 			return 0;
457 		}
458 	}
459 	return -ENOENT;
460 }
461 
462 /*
463  * Calculate the highest address of an efi memory descriptor.
464  */
465 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
466 {
467 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
468 	u64 end = md->phys_addr + size;
469 	return end;
470 }
471 
472 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
473 
474 /**
475  * efi_mem_reserve - Reserve an EFI memory region
476  * @addr: Physical address to reserve
477  * @size: Size of reservation
478  *
479  * Mark a region as reserved from general kernel allocation and
480  * prevent it being released by efi_free_boot_services().
481  *
482  * This function should be called drivers once they've parsed EFI
483  * configuration tables to figure out where their data lives, e.g.
484  * efi_esrt_init().
485  */
486 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
487 {
488 	if (!memblock_is_region_reserved(addr, size))
489 		memblock_reserve(addr, size);
490 
491 	/*
492 	 * Some architectures (x86) reserve all boot services ranges
493 	 * until efi_free_boot_services() because of buggy firmware
494 	 * implementations. This means the above memblock_reserve() is
495 	 * superfluous on x86 and instead what it needs to do is
496 	 * ensure the @start, @size is not freed.
497 	 */
498 	efi_arch_mem_reserve(addr, size);
499 }
500 
501 static const efi_config_table_type_t common_tables[] __initconst = {
502 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
503 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
504 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
505 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
506 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
507 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
508 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
509 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
510 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
511 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
512 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
513 #ifdef CONFIG_EFI_RCI2_TABLE
514 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
515 #endif
516 	{},
517 };
518 
519 static __init int match_config_table(const efi_guid_t *guid,
520 				     unsigned long table,
521 				     const efi_config_table_type_t *table_types)
522 {
523 	int i;
524 
525 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
526 		if (!efi_guidcmp(*guid, table_types[i].guid)) {
527 			*(table_types[i].ptr) = table;
528 			if (table_types[i].name[0])
529 				pr_cont("%s=0x%lx ",
530 					table_types[i].name, table);
531 			return 1;
532 		}
533 	}
534 
535 	return 0;
536 }
537 
538 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
539 				   int count,
540 				   const efi_config_table_type_t *arch_tables)
541 {
542 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
543 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
544 	const efi_guid_t *guid;
545 	unsigned long table;
546 	int i;
547 
548 	pr_info("");
549 	for (i = 0; i < count; i++) {
550 		if (!IS_ENABLED(CONFIG_X86)) {
551 			guid = &config_tables[i].guid;
552 			table = (unsigned long)config_tables[i].table;
553 		} else if (efi_enabled(EFI_64BIT)) {
554 			guid = &tbl64[i].guid;
555 			table = tbl64[i].table;
556 
557 			if (IS_ENABLED(CONFIG_X86_32) &&
558 			    tbl64[i].table > U32_MAX) {
559 				pr_cont("\n");
560 				pr_err("Table located above 4GB, disabling EFI.\n");
561 				return -EINVAL;
562 			}
563 		} else {
564 			guid = &tbl32[i].guid;
565 			table = tbl32[i].table;
566 		}
567 
568 		if (!match_config_table(guid, table, common_tables) && arch_tables)
569 			match_config_table(guid, table, arch_tables);
570 	}
571 	pr_cont("\n");
572 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
573 
574 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
575 		struct linux_efi_random_seed *seed;
576 		u32 size = 0;
577 
578 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
579 		if (seed != NULL) {
580 			size = READ_ONCE(seed->size);
581 			early_memunmap(seed, sizeof(*seed));
582 		} else {
583 			pr_err("Could not map UEFI random seed!\n");
584 		}
585 		if (size > 0) {
586 			seed = early_memremap(efi_rng_seed,
587 					      sizeof(*seed) + size);
588 			if (seed != NULL) {
589 				pr_notice("seeding entropy pool\n");
590 				add_bootloader_randomness(seed->bits, size);
591 				early_memunmap(seed, sizeof(*seed) + size);
592 			} else {
593 				pr_err("Could not map UEFI random seed!\n");
594 			}
595 		}
596 	}
597 
598 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
599 		efi_memattr_init();
600 
601 	efi_tpm_eventlog_init();
602 
603 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
604 		unsigned long prsv = mem_reserve;
605 
606 		while (prsv) {
607 			struct linux_efi_memreserve *rsv;
608 			u8 *p;
609 
610 			/*
611 			 * Just map a full page: that is what we will get
612 			 * anyway, and it permits us to map the entire entry
613 			 * before knowing its size.
614 			 */
615 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
616 					   PAGE_SIZE);
617 			if (p == NULL) {
618 				pr_err("Could not map UEFI memreserve entry!\n");
619 				return -ENOMEM;
620 			}
621 
622 			rsv = (void *)(p + prsv % PAGE_SIZE);
623 
624 			/* reserve the entry itself */
625 			memblock_reserve(prsv,
626 					 struct_size(rsv, entry, rsv->size));
627 
628 			for (i = 0; i < atomic_read(&rsv->count); i++) {
629 				memblock_reserve(rsv->entry[i].base,
630 						 rsv->entry[i].size);
631 			}
632 
633 			prsv = rsv->next;
634 			early_memunmap(p, PAGE_SIZE);
635 		}
636 	}
637 
638 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
639 		efi_rt_properties_table_t *tbl;
640 
641 		tbl = early_memremap(rt_prop, sizeof(*tbl));
642 		if (tbl) {
643 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
644 			early_memunmap(tbl, sizeof(*tbl));
645 		}
646 	}
647 
648 	return 0;
649 }
650 
651 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
652 				   int min_major_version)
653 {
654 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
655 		pr_err("System table signature incorrect!\n");
656 		return -EINVAL;
657 	}
658 
659 	if ((systab_hdr->revision >> 16) < min_major_version)
660 		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
661 		       systab_hdr->revision >> 16,
662 		       systab_hdr->revision & 0xffff,
663 		       min_major_version);
664 
665 	return 0;
666 }
667 
668 #ifndef CONFIG_IA64
669 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
670 						size_t size)
671 {
672 	const efi_char16_t *ret;
673 
674 	ret = early_memremap_ro(fw_vendor, size);
675 	if (!ret)
676 		pr_err("Could not map the firmware vendor!\n");
677 	return ret;
678 }
679 
680 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
681 {
682 	early_memunmap((void *)fw_vendor, size);
683 }
684 #else
685 #define map_fw_vendor(p, s)	__va(p)
686 #define unmap_fw_vendor(v, s)
687 #endif
688 
689 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
690 				     unsigned long fw_vendor)
691 {
692 	char vendor[100] = "unknown";
693 	const efi_char16_t *c16;
694 	size_t i;
695 
696 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
697 	if (c16) {
698 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
699 			vendor[i] = c16[i];
700 		vendor[i] = '\0';
701 
702 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
703 	}
704 
705 	pr_info("EFI v%u.%.02u by %s\n",
706 		systab_hdr->revision >> 16,
707 		systab_hdr->revision & 0xffff,
708 		vendor);
709 }
710 
711 static __initdata char memory_type_name[][20] = {
712 	"Reserved",
713 	"Loader Code",
714 	"Loader Data",
715 	"Boot Code",
716 	"Boot Data",
717 	"Runtime Code",
718 	"Runtime Data",
719 	"Conventional Memory",
720 	"Unusable Memory",
721 	"ACPI Reclaim Memory",
722 	"ACPI Memory NVS",
723 	"Memory Mapped I/O",
724 	"MMIO Port Space",
725 	"PAL Code",
726 	"Persistent Memory",
727 };
728 
729 char * __init efi_md_typeattr_format(char *buf, size_t size,
730 				     const efi_memory_desc_t *md)
731 {
732 	char *pos;
733 	int type_len;
734 	u64 attr;
735 
736 	pos = buf;
737 	if (md->type >= ARRAY_SIZE(memory_type_name))
738 		type_len = snprintf(pos, size, "[type=%u", md->type);
739 	else
740 		type_len = snprintf(pos, size, "[%-*s",
741 				    (int)(sizeof(memory_type_name[0]) - 1),
742 				    memory_type_name[md->type]);
743 	if (type_len >= size)
744 		return buf;
745 
746 	pos += type_len;
747 	size -= type_len;
748 
749 	attr = md->attribute;
750 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
751 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
752 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
753 		     EFI_MEMORY_NV | EFI_MEMORY_SP |
754 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
755 		snprintf(pos, size, "|attr=0x%016llx]",
756 			 (unsigned long long)attr);
757 	else
758 		snprintf(pos, size,
759 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
760 			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
761 			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
762 			 attr & EFI_MEMORY_SP      ? "SP"  : "",
763 			 attr & EFI_MEMORY_NV      ? "NV"  : "",
764 			 attr & EFI_MEMORY_XP      ? "XP"  : "",
765 			 attr & EFI_MEMORY_RP      ? "RP"  : "",
766 			 attr & EFI_MEMORY_WP      ? "WP"  : "",
767 			 attr & EFI_MEMORY_RO      ? "RO"  : "",
768 			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
769 			 attr & EFI_MEMORY_WB      ? "WB"  : "",
770 			 attr & EFI_MEMORY_WT      ? "WT"  : "",
771 			 attr & EFI_MEMORY_WC      ? "WC"  : "",
772 			 attr & EFI_MEMORY_UC      ? "UC"  : "");
773 	return buf;
774 }
775 
776 /*
777  * IA64 has a funky EFI memory map that doesn't work the same way as
778  * other architectures.
779  */
780 #ifndef CONFIG_IA64
781 /*
782  * efi_mem_attributes - lookup memmap attributes for physical address
783  * @phys_addr: the physical address to lookup
784  *
785  * Search in the EFI memory map for the region covering
786  * @phys_addr. Returns the EFI memory attributes if the region
787  * was found in the memory map, 0 otherwise.
788  */
789 u64 efi_mem_attributes(unsigned long phys_addr)
790 {
791 	efi_memory_desc_t *md;
792 
793 	if (!efi_enabled(EFI_MEMMAP))
794 		return 0;
795 
796 	for_each_efi_memory_desc(md) {
797 		if ((md->phys_addr <= phys_addr) &&
798 		    (phys_addr < (md->phys_addr +
799 		    (md->num_pages << EFI_PAGE_SHIFT))))
800 			return md->attribute;
801 	}
802 	return 0;
803 }
804 
805 /*
806  * efi_mem_type - lookup memmap type for physical address
807  * @phys_addr: the physical address to lookup
808  *
809  * Search in the EFI memory map for the region covering @phys_addr.
810  * Returns the EFI memory type if the region was found in the memory
811  * map, -EINVAL otherwise.
812  */
813 int efi_mem_type(unsigned long phys_addr)
814 {
815 	const efi_memory_desc_t *md;
816 
817 	if (!efi_enabled(EFI_MEMMAP))
818 		return -ENOTSUPP;
819 
820 	for_each_efi_memory_desc(md) {
821 		if ((md->phys_addr <= phys_addr) &&
822 		    (phys_addr < (md->phys_addr +
823 				  (md->num_pages << EFI_PAGE_SHIFT))))
824 			return md->type;
825 	}
826 	return -EINVAL;
827 }
828 #endif
829 
830 int efi_status_to_err(efi_status_t status)
831 {
832 	int err;
833 
834 	switch (status) {
835 	case EFI_SUCCESS:
836 		err = 0;
837 		break;
838 	case EFI_INVALID_PARAMETER:
839 		err = -EINVAL;
840 		break;
841 	case EFI_OUT_OF_RESOURCES:
842 		err = -ENOSPC;
843 		break;
844 	case EFI_DEVICE_ERROR:
845 		err = -EIO;
846 		break;
847 	case EFI_WRITE_PROTECTED:
848 		err = -EROFS;
849 		break;
850 	case EFI_SECURITY_VIOLATION:
851 		err = -EACCES;
852 		break;
853 	case EFI_NOT_FOUND:
854 		err = -ENOENT;
855 		break;
856 	case EFI_ABORTED:
857 		err = -EINTR;
858 		break;
859 	default:
860 		err = -EINVAL;
861 	}
862 
863 	return err;
864 }
865 
866 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
867 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
868 
869 static int __init efi_memreserve_map_root(void)
870 {
871 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
872 		return -ENODEV;
873 
874 	efi_memreserve_root = memremap(mem_reserve,
875 				       sizeof(*efi_memreserve_root),
876 				       MEMREMAP_WB);
877 	if (WARN_ON_ONCE(!efi_memreserve_root))
878 		return -ENOMEM;
879 	return 0;
880 }
881 
882 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
883 {
884 	struct resource *res, *parent;
885 
886 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
887 	if (!res)
888 		return -ENOMEM;
889 
890 	res->name	= "reserved";
891 	res->flags	= IORESOURCE_MEM;
892 	res->start	= addr;
893 	res->end	= addr + size - 1;
894 
895 	/* we expect a conflict with a 'System RAM' region */
896 	parent = request_resource_conflict(&iomem_resource, res);
897 	return parent ? request_resource(parent, res) : 0;
898 }
899 
900 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
901 {
902 	struct linux_efi_memreserve *rsv;
903 	unsigned long prsv;
904 	int rc, index;
905 
906 	if (efi_memreserve_root == (void *)ULONG_MAX)
907 		return -ENODEV;
908 
909 	if (!efi_memreserve_root) {
910 		rc = efi_memreserve_map_root();
911 		if (rc)
912 			return rc;
913 	}
914 
915 	/* first try to find a slot in an existing linked list entry */
916 	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
917 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
918 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
919 		if (index < rsv->size) {
920 			rsv->entry[index].base = addr;
921 			rsv->entry[index].size = size;
922 
923 			memunmap(rsv);
924 			return efi_mem_reserve_iomem(addr, size);
925 		}
926 		memunmap(rsv);
927 	}
928 
929 	/* no slot found - allocate a new linked list entry */
930 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
931 	if (!rsv)
932 		return -ENOMEM;
933 
934 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
935 	if (rc) {
936 		free_page((unsigned long)rsv);
937 		return rc;
938 	}
939 
940 	/*
941 	 * The memremap() call above assumes that a linux_efi_memreserve entry
942 	 * never crosses a page boundary, so let's ensure that this remains true
943 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
944 	 * using SZ_4K explicitly in the size calculation below.
945 	 */
946 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
947 	atomic_set(&rsv->count, 1);
948 	rsv->entry[0].base = addr;
949 	rsv->entry[0].size = size;
950 
951 	spin_lock(&efi_mem_reserve_persistent_lock);
952 	rsv->next = efi_memreserve_root->next;
953 	efi_memreserve_root->next = __pa(rsv);
954 	spin_unlock(&efi_mem_reserve_persistent_lock);
955 
956 	return efi_mem_reserve_iomem(addr, size);
957 }
958 
959 static int __init efi_memreserve_root_init(void)
960 {
961 	if (efi_memreserve_root)
962 		return 0;
963 	if (efi_memreserve_map_root())
964 		efi_memreserve_root = (void *)ULONG_MAX;
965 	return 0;
966 }
967 early_initcall(efi_memreserve_root_init);
968 
969 #ifdef CONFIG_KEXEC
970 static int update_efi_random_seed(struct notifier_block *nb,
971 				  unsigned long code, void *unused)
972 {
973 	struct linux_efi_random_seed *seed;
974 	u32 size = 0;
975 
976 	if (!kexec_in_progress)
977 		return NOTIFY_DONE;
978 
979 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
980 	if (seed != NULL) {
981 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
982 		memunmap(seed);
983 	} else {
984 		pr_err("Could not map UEFI random seed!\n");
985 	}
986 	if (size > 0) {
987 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
988 				MEMREMAP_WB);
989 		if (seed != NULL) {
990 			seed->size = size;
991 			get_random_bytes(seed->bits, seed->size);
992 			memunmap(seed);
993 		} else {
994 			pr_err("Could not map UEFI random seed!\n");
995 		}
996 	}
997 	return NOTIFY_DONE;
998 }
999 
1000 static struct notifier_block efi_random_seed_nb = {
1001 	.notifier_call = update_efi_random_seed,
1002 };
1003 
1004 static int __init register_update_efi_random_seed(void)
1005 {
1006 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1007 		return 0;
1008 	return register_reboot_notifier(&efi_random_seed_nb);
1009 }
1010 late_initcall(register_update_efi_random_seed);
1011 #endif
1012