1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 12 /* 13 * DMI stands for "Desktop Management Interface". It is part 14 * of and an antecedent to, SMBIOS, which stands for System 15 * Management BIOS. See further: http://www.dmtf.org/standards 16 */ 17 static const char dmi_empty_string[] = " "; 18 19 static u16 __initdata dmi_ver; 20 /* 21 * Catch too early calls to dmi_check_system(): 22 */ 23 static int dmi_initialized; 24 25 /* DMI system identification string used during boot */ 26 static char dmi_ids_string[128] __initdata; 27 28 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 29 { 30 const u8 *bp = ((u8 *) dm) + dm->length; 31 32 if (s) { 33 s--; 34 while (s > 0 && *bp) { 35 bp += strlen(bp) + 1; 36 s--; 37 } 38 39 if (*bp != 0) { 40 size_t len = strlen(bp)+1; 41 size_t cmp_len = len > 8 ? 8 : len; 42 43 if (!memcmp(bp, dmi_empty_string, cmp_len)) 44 return dmi_empty_string; 45 return bp; 46 } 47 } 48 49 return ""; 50 } 51 52 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 53 { 54 const char *bp = dmi_string_nosave(dm, s); 55 char *str; 56 size_t len; 57 58 if (bp == dmi_empty_string) 59 return dmi_empty_string; 60 61 len = strlen(bp) + 1; 62 str = dmi_alloc(len); 63 if (str != NULL) 64 strcpy(str, bp); 65 66 return str; 67 } 68 69 /* 70 * We have to be cautious here. We have seen BIOSes with DMI pointers 71 * pointing to completely the wrong place for example 72 */ 73 static void dmi_table(u8 *buf, int len, int num, 74 void (*decode)(const struct dmi_header *, void *), 75 void *private_data) 76 { 77 u8 *data = buf; 78 int i = 0; 79 80 /* 81 * Stop when we see all the items the table claimed to have 82 * OR we run off the end of the table (also happens) 83 */ 84 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 85 const struct dmi_header *dm = (const struct dmi_header *)data; 86 87 /* 88 * We want to know the total length (formatted area and 89 * strings) before decoding to make sure we won't run off the 90 * table in dmi_decode or dmi_string 91 */ 92 data += dm->length; 93 while ((data - buf < len - 1) && (data[0] || data[1])) 94 data++; 95 if (data - buf < len - 1) 96 decode(dm, private_data); 97 data += 2; 98 i++; 99 } 100 } 101 102 static u32 dmi_base; 103 static u16 dmi_len; 104 static u16 dmi_num; 105 106 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 107 void *)) 108 { 109 u8 *buf; 110 111 buf = dmi_ioremap(dmi_base, dmi_len); 112 if (buf == NULL) 113 return -1; 114 115 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 116 117 add_device_randomness(buf, dmi_len); 118 119 dmi_iounmap(buf, dmi_len); 120 return 0; 121 } 122 123 static int __init dmi_checksum(const u8 *buf, u8 len) 124 { 125 u8 sum = 0; 126 int a; 127 128 for (a = 0; a < len; a++) 129 sum += buf[a]; 130 131 return sum == 0; 132 } 133 134 static const char *dmi_ident[DMI_STRING_MAX]; 135 static LIST_HEAD(dmi_devices); 136 int dmi_available; 137 138 /* 139 * Save a DMI string 140 */ 141 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 142 int string) 143 { 144 const char *d = (const char *) dm; 145 const char *p; 146 147 if (dmi_ident[slot]) 148 return; 149 150 p = dmi_string(dm, d[string]); 151 if (p == NULL) 152 return; 153 154 dmi_ident[slot] = p; 155 } 156 157 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 158 int index) 159 { 160 const u8 *d = (u8 *) dm + index; 161 char *s; 162 int is_ff = 1, is_00 = 1, i; 163 164 if (dmi_ident[slot]) 165 return; 166 167 for (i = 0; i < 16 && (is_ff || is_00); i++) { 168 if (d[i] != 0x00) 169 is_00 = 0; 170 if (d[i] != 0xFF) 171 is_ff = 0; 172 } 173 174 if (is_ff || is_00) 175 return; 176 177 s = dmi_alloc(16*2+4+1); 178 if (!s) 179 return; 180 181 /* 182 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 183 * the UUID are supposed to be little-endian encoded. The specification 184 * says that this is the defacto standard. 185 */ 186 if (dmi_ver >= 0x0206) 187 sprintf(s, "%pUL", d); 188 else 189 sprintf(s, "%pUB", d); 190 191 dmi_ident[slot] = s; 192 } 193 194 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 195 int index) 196 { 197 const u8 *d = (u8 *) dm + index; 198 char *s; 199 200 if (dmi_ident[slot]) 201 return; 202 203 s = dmi_alloc(4); 204 if (!s) 205 return; 206 207 sprintf(s, "%u", *d & 0x7F); 208 dmi_ident[slot] = s; 209 } 210 211 static void __init dmi_save_one_device(int type, const char *name) 212 { 213 struct dmi_device *dev; 214 215 /* No duplicate device */ 216 if (dmi_find_device(type, name, NULL)) 217 return; 218 219 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 220 if (!dev) 221 return; 222 223 dev->type = type; 224 strcpy((char *)(dev + 1), name); 225 dev->name = (char *)(dev + 1); 226 dev->device_data = NULL; 227 list_add(&dev->list, &dmi_devices); 228 } 229 230 static void __init dmi_save_devices(const struct dmi_header *dm) 231 { 232 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 233 234 for (i = 0; i < count; i++) { 235 const char *d = (char *)(dm + 1) + (i * 2); 236 237 /* Skip disabled device */ 238 if ((*d & 0x80) == 0) 239 continue; 240 241 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 242 } 243 } 244 245 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 246 { 247 int i, count = *(u8 *)(dm + 1); 248 struct dmi_device *dev; 249 250 for (i = 1; i <= count; i++) { 251 const char *devname = dmi_string(dm, i); 252 253 if (devname == dmi_empty_string) 254 continue; 255 256 dev = dmi_alloc(sizeof(*dev)); 257 if (!dev) 258 break; 259 260 dev->type = DMI_DEV_TYPE_OEM_STRING; 261 dev->name = devname; 262 dev->device_data = NULL; 263 264 list_add(&dev->list, &dmi_devices); 265 } 266 } 267 268 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 269 { 270 struct dmi_device *dev; 271 void *data; 272 273 data = dmi_alloc(dm->length); 274 if (data == NULL) 275 return; 276 277 memcpy(data, dm, dm->length); 278 279 dev = dmi_alloc(sizeof(*dev)); 280 if (!dev) 281 return; 282 283 dev->type = DMI_DEV_TYPE_IPMI; 284 dev->name = "IPMI controller"; 285 dev->device_data = data; 286 287 list_add_tail(&dev->list, &dmi_devices); 288 } 289 290 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 291 int devfn, const char *name) 292 { 293 struct dmi_dev_onboard *onboard_dev; 294 295 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 296 if (!onboard_dev) 297 return; 298 299 onboard_dev->instance = instance; 300 onboard_dev->segment = segment; 301 onboard_dev->bus = bus; 302 onboard_dev->devfn = devfn; 303 304 strcpy((char *)&onboard_dev[1], name); 305 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 306 onboard_dev->dev.name = (char *)&onboard_dev[1]; 307 onboard_dev->dev.device_data = onboard_dev; 308 309 list_add(&onboard_dev->dev.list, &dmi_devices); 310 } 311 312 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 313 { 314 const u8 *d = (u8 *) dm + 5; 315 316 /* Skip disabled device */ 317 if ((*d & 0x80) == 0) 318 return; 319 320 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 321 dmi_string_nosave(dm, *(d-1))); 322 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 323 } 324 325 /* 326 * Process a DMI table entry. Right now all we care about are the BIOS 327 * and machine entries. For 2.5 we should pull the smbus controller info 328 * out of here. 329 */ 330 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 331 { 332 switch (dm->type) { 333 case 0: /* BIOS Information */ 334 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 335 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 336 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 337 break; 338 case 1: /* System Information */ 339 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 340 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 341 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 342 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 343 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 344 break; 345 case 2: /* Base Board Information */ 346 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 347 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 348 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 349 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 350 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 351 break; 352 case 3: /* Chassis Information */ 353 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 354 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 355 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 356 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 357 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 358 break; 359 case 10: /* Onboard Devices Information */ 360 dmi_save_devices(dm); 361 break; 362 case 11: /* OEM Strings */ 363 dmi_save_oem_strings_devices(dm); 364 break; 365 case 38: /* IPMI Device Information */ 366 dmi_save_ipmi_device(dm); 367 break; 368 case 41: /* Onboard Devices Extended Information */ 369 dmi_save_extended_devices(dm); 370 } 371 } 372 373 static int __init print_filtered(char *buf, size_t len, const char *info) 374 { 375 int c = 0; 376 const char *p; 377 378 if (!info) 379 return c; 380 381 for (p = info; *p; p++) 382 if (isprint(*p)) 383 c += scnprintf(buf + c, len - c, "%c", *p); 384 else 385 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 386 return c; 387 } 388 389 static void __init dmi_format_ids(char *buf, size_t len) 390 { 391 int c = 0; 392 const char *board; /* Board Name is optional */ 393 394 c += print_filtered(buf + c, len - c, 395 dmi_get_system_info(DMI_SYS_VENDOR)); 396 c += scnprintf(buf + c, len - c, " "); 397 c += print_filtered(buf + c, len - c, 398 dmi_get_system_info(DMI_PRODUCT_NAME)); 399 400 board = dmi_get_system_info(DMI_BOARD_NAME); 401 if (board) { 402 c += scnprintf(buf + c, len - c, "/"); 403 c += print_filtered(buf + c, len - c, board); 404 } 405 c += scnprintf(buf + c, len - c, ", BIOS "); 406 c += print_filtered(buf + c, len - c, 407 dmi_get_system_info(DMI_BIOS_VERSION)); 408 c += scnprintf(buf + c, len - c, " "); 409 c += print_filtered(buf + c, len - c, 410 dmi_get_system_info(DMI_BIOS_DATE)); 411 } 412 413 /* 414 * Check for DMI/SMBIOS headers in the system firmware image. Any 415 * SMBIOS header must start 16 bytes before the DMI header, so take a 416 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 417 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 418 * takes precedence) and return 0. Otherwise return 1. 419 */ 420 static int __init dmi_present(const u8 *buf) 421 { 422 int smbios_ver; 423 424 if (memcmp(buf, "_SM_", 4) == 0 && 425 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 426 smbios_ver = (buf[6] << 8) + buf[7]; 427 428 /* Some BIOS report weird SMBIOS version, fix that up */ 429 switch (smbios_ver) { 430 case 0x021F: 431 case 0x0221: 432 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 433 smbios_ver & 0xFF, 3); 434 smbios_ver = 0x0203; 435 break; 436 case 0x0233: 437 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); 438 smbios_ver = 0x0206; 439 break; 440 } 441 } else { 442 smbios_ver = 0; 443 } 444 445 buf += 16; 446 447 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 448 dmi_num = (buf[13] << 8) | buf[12]; 449 dmi_len = (buf[7] << 8) | buf[6]; 450 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 451 (buf[9] << 8) | buf[8]; 452 453 if (dmi_walk_early(dmi_decode) == 0) { 454 if (smbios_ver) { 455 dmi_ver = smbios_ver; 456 pr_info("SMBIOS %d.%d present.\n", 457 dmi_ver >> 8, dmi_ver & 0xFF); 458 } else { 459 dmi_ver = (buf[14] & 0xF0) << 4 | 460 (buf[14] & 0x0F); 461 pr_info("Legacy DMI %d.%d present.\n", 462 dmi_ver >> 8, dmi_ver & 0xFF); 463 } 464 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 465 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 466 return 0; 467 } 468 } 469 470 return 1; 471 } 472 473 void __init dmi_scan_machine(void) 474 { 475 char __iomem *p, *q; 476 char buf[32]; 477 478 if (efi_enabled(EFI_CONFIG_TABLES)) { 479 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 480 goto error; 481 482 /* This is called as a core_initcall() because it isn't 483 * needed during early boot. This also means we can 484 * iounmap the space when we're done with it. 485 */ 486 p = dmi_ioremap(efi.smbios, 32); 487 if (p == NULL) 488 goto error; 489 memcpy_fromio(buf, p, 32); 490 dmi_iounmap(p, 32); 491 492 if (!dmi_present(buf)) { 493 dmi_available = 1; 494 goto out; 495 } 496 } else { 497 p = dmi_ioremap(0xF0000, 0x10000); 498 if (p == NULL) 499 goto error; 500 501 /* 502 * Iterate over all possible DMI header addresses q. 503 * Maintain the 32 bytes around q in buf. On the 504 * first iteration, substitute zero for the 505 * out-of-range bytes so there is no chance of falsely 506 * detecting an SMBIOS header. 507 */ 508 memset(buf, 0, 16); 509 for (q = p; q < p + 0x10000; q += 16) { 510 memcpy_fromio(buf + 16, q, 16); 511 if (!dmi_present(buf)) { 512 dmi_available = 1; 513 dmi_iounmap(p, 0x10000); 514 goto out; 515 } 516 memcpy(buf, buf + 16, 16); 517 } 518 dmi_iounmap(p, 0x10000); 519 } 520 error: 521 pr_info("DMI not present or invalid.\n"); 522 out: 523 dmi_initialized = 1; 524 } 525 526 /** 527 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 528 * 529 * Invoke dump_stack_set_arch_desc() with DMI system information so that 530 * DMI identifiers are printed out on task dumps. Arch boot code should 531 * call this function after dmi_scan_machine() if it wants to print out DMI 532 * identifiers on task dumps. 533 */ 534 void __init dmi_set_dump_stack_arch_desc(void) 535 { 536 dump_stack_set_arch_desc("%s", dmi_ids_string); 537 } 538 539 /** 540 * dmi_matches - check if dmi_system_id structure matches system DMI data 541 * @dmi: pointer to the dmi_system_id structure to check 542 */ 543 static bool dmi_matches(const struct dmi_system_id *dmi) 544 { 545 int i; 546 547 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 548 549 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 550 int s = dmi->matches[i].slot; 551 if (s == DMI_NONE) 552 break; 553 if (dmi_ident[s]) { 554 if (!dmi->matches[i].exact_match && 555 strstr(dmi_ident[s], dmi->matches[i].substr)) 556 continue; 557 else if (dmi->matches[i].exact_match && 558 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 559 continue; 560 } 561 562 /* No match */ 563 return false; 564 } 565 return true; 566 } 567 568 /** 569 * dmi_is_end_of_table - check for end-of-table marker 570 * @dmi: pointer to the dmi_system_id structure to check 571 */ 572 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 573 { 574 return dmi->matches[0].slot == DMI_NONE; 575 } 576 577 /** 578 * dmi_check_system - check system DMI data 579 * @list: array of dmi_system_id structures to match against 580 * All non-null elements of the list must match 581 * their slot's (field index's) data (i.e., each 582 * list string must be a substring of the specified 583 * DMI slot's string data) to be considered a 584 * successful match. 585 * 586 * Walk the blacklist table running matching functions until someone 587 * returns non zero or we hit the end. Callback function is called for 588 * each successful match. Returns the number of matches. 589 */ 590 int dmi_check_system(const struct dmi_system_id *list) 591 { 592 int count = 0; 593 const struct dmi_system_id *d; 594 595 for (d = list; !dmi_is_end_of_table(d); d++) 596 if (dmi_matches(d)) { 597 count++; 598 if (d->callback && d->callback(d)) 599 break; 600 } 601 602 return count; 603 } 604 EXPORT_SYMBOL(dmi_check_system); 605 606 /** 607 * dmi_first_match - find dmi_system_id structure matching system DMI data 608 * @list: array of dmi_system_id structures to match against 609 * All non-null elements of the list must match 610 * their slot's (field index's) data (i.e., each 611 * list string must be a substring of the specified 612 * DMI slot's string data) to be considered a 613 * successful match. 614 * 615 * Walk the blacklist table until the first match is found. Return the 616 * pointer to the matching entry or NULL if there's no match. 617 */ 618 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 619 { 620 const struct dmi_system_id *d; 621 622 for (d = list; !dmi_is_end_of_table(d); d++) 623 if (dmi_matches(d)) 624 return d; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(dmi_first_match); 629 630 /** 631 * dmi_get_system_info - return DMI data value 632 * @field: data index (see enum dmi_field) 633 * 634 * Returns one DMI data value, can be used to perform 635 * complex DMI data checks. 636 */ 637 const char *dmi_get_system_info(int field) 638 { 639 return dmi_ident[field]; 640 } 641 EXPORT_SYMBOL(dmi_get_system_info); 642 643 /** 644 * dmi_name_in_serial - Check if string is in the DMI product serial information 645 * @str: string to check for 646 */ 647 int dmi_name_in_serial(const char *str) 648 { 649 int f = DMI_PRODUCT_SERIAL; 650 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 651 return 1; 652 return 0; 653 } 654 655 /** 656 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 657 * @str: Case sensitive Name 658 */ 659 int dmi_name_in_vendors(const char *str) 660 { 661 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 662 int i; 663 for (i = 0; fields[i] != DMI_NONE; i++) { 664 int f = fields[i]; 665 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 666 return 1; 667 } 668 return 0; 669 } 670 EXPORT_SYMBOL(dmi_name_in_vendors); 671 672 /** 673 * dmi_find_device - find onboard device by type/name 674 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 675 * @name: device name string or %NULL to match all 676 * @from: previous device found in search, or %NULL for new search. 677 * 678 * Iterates through the list of known onboard devices. If a device is 679 * found with a matching @vendor and @device, a pointer to its device 680 * structure is returned. Otherwise, %NULL is returned. 681 * A new search is initiated by passing %NULL as the @from argument. 682 * If @from is not %NULL, searches continue from next device. 683 */ 684 const struct dmi_device *dmi_find_device(int type, const char *name, 685 const struct dmi_device *from) 686 { 687 const struct list_head *head = from ? &from->list : &dmi_devices; 688 struct list_head *d; 689 690 for (d = head->next; d != &dmi_devices; d = d->next) { 691 const struct dmi_device *dev = 692 list_entry(d, struct dmi_device, list); 693 694 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 695 ((name == NULL) || (strcmp(dev->name, name) == 0))) 696 return dev; 697 } 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dmi_find_device); 702 703 /** 704 * dmi_get_date - parse a DMI date 705 * @field: data index (see enum dmi_field) 706 * @yearp: optional out parameter for the year 707 * @monthp: optional out parameter for the month 708 * @dayp: optional out parameter for the day 709 * 710 * The date field is assumed to be in the form resembling 711 * [mm[/dd]]/yy[yy] and the result is stored in the out 712 * parameters any or all of which can be omitted. 713 * 714 * If the field doesn't exist, all out parameters are set to zero 715 * and false is returned. Otherwise, true is returned with any 716 * invalid part of date set to zero. 717 * 718 * On return, year, month and day are guaranteed to be in the 719 * range of [0,9999], [0,12] and [0,31] respectively. 720 */ 721 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 722 { 723 int year = 0, month = 0, day = 0; 724 bool exists; 725 const char *s, *y; 726 char *e; 727 728 s = dmi_get_system_info(field); 729 exists = s; 730 if (!exists) 731 goto out; 732 733 /* 734 * Determine year first. We assume the date string resembles 735 * mm/dd/yy[yy] but the original code extracted only the year 736 * from the end. Keep the behavior in the spirit of no 737 * surprises. 738 */ 739 y = strrchr(s, '/'); 740 if (!y) 741 goto out; 742 743 y++; 744 year = simple_strtoul(y, &e, 10); 745 if (y != e && year < 100) { /* 2-digit year */ 746 year += 1900; 747 if (year < 1996) /* no dates < spec 1.0 */ 748 year += 100; 749 } 750 if (year > 9999) /* year should fit in %04d */ 751 year = 0; 752 753 /* parse the mm and dd */ 754 month = simple_strtoul(s, &e, 10); 755 if (s == e || *e != '/' || !month || month > 12) { 756 month = 0; 757 goto out; 758 } 759 760 s = e + 1; 761 day = simple_strtoul(s, &e, 10); 762 if (s == y || s == e || *e != '/' || day > 31) 763 day = 0; 764 out: 765 if (yearp) 766 *yearp = year; 767 if (monthp) 768 *monthp = month; 769 if (dayp) 770 *dayp = day; 771 return exists; 772 } 773 EXPORT_SYMBOL(dmi_get_date); 774 775 /** 776 * dmi_walk - Walk the DMI table and get called back for every record 777 * @decode: Callback function 778 * @private_data: Private data to be passed to the callback function 779 * 780 * Returns -1 when the DMI table can't be reached, 0 on success. 781 */ 782 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 783 void *private_data) 784 { 785 u8 *buf; 786 787 if (!dmi_available) 788 return -1; 789 790 buf = ioremap(dmi_base, dmi_len); 791 if (buf == NULL) 792 return -1; 793 794 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 795 796 iounmap(buf); 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(dmi_walk); 800 801 /** 802 * dmi_match - compare a string to the dmi field (if exists) 803 * @f: DMI field identifier 804 * @str: string to compare the DMI field to 805 * 806 * Returns true if the requested field equals to the str (including NULL). 807 */ 808 bool dmi_match(enum dmi_field f, const char *str) 809 { 810 const char *info = dmi_get_system_info(f); 811 812 if (info == NULL || str == NULL) 813 return info == str; 814 815 return !strcmp(info, str); 816 } 817 EXPORT_SYMBOL_GPL(dmi_match); 818