1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 struct kobject *dmi_kobj; 15 EXPORT_SYMBOL_GPL(dmi_kobj); 16 17 /* 18 * DMI stands for "Desktop Management Interface". It is part 19 * of and an antecedent to, SMBIOS, which stands for System 20 * Management BIOS. See further: http://www.dmtf.org/standards 21 */ 22 static const char dmi_empty_string[] = ""; 23 24 static u32 dmi_ver __initdata; 25 static u32 dmi_len; 26 static u16 dmi_num; 27 static u8 smbios_entry_point[32]; 28 static int smbios_entry_point_size; 29 30 /* DMI system identification string used during boot */ 31 static char dmi_ids_string[128] __initdata; 32 33 static struct dmi_memdev_info { 34 const char *device; 35 const char *bank; 36 u64 size; /* bytes */ 37 u16 handle; 38 } *dmi_memdev; 39 static int dmi_memdev_nr; 40 41 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 42 { 43 const u8 *bp = ((u8 *) dm) + dm->length; 44 const u8 *nsp; 45 46 if (s) { 47 while (--s > 0 && *bp) 48 bp += strlen(bp) + 1; 49 50 /* Strings containing only spaces are considered empty */ 51 nsp = bp; 52 while (*nsp == ' ') 53 nsp++; 54 if (*nsp != '\0') 55 return bp; 56 } 57 58 return dmi_empty_string; 59 } 60 61 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 62 { 63 const char *bp = dmi_string_nosave(dm, s); 64 char *str; 65 size_t len; 66 67 if (bp == dmi_empty_string) 68 return dmi_empty_string; 69 70 len = strlen(bp) + 1; 71 str = dmi_alloc(len); 72 if (str != NULL) 73 strcpy(str, bp); 74 75 return str; 76 } 77 78 /* 79 * We have to be cautious here. We have seen BIOSes with DMI pointers 80 * pointing to completely the wrong place for example 81 */ 82 static void dmi_decode_table(u8 *buf, 83 void (*decode)(const struct dmi_header *, void *), 84 void *private_data) 85 { 86 u8 *data = buf; 87 int i = 0; 88 89 /* 90 * Stop when we have seen all the items the table claimed to have 91 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 92 * >= 3.0 only) OR we run off the end of the table (should never 93 * happen but sometimes does on bogus implementations.) 94 */ 95 while ((!dmi_num || i < dmi_num) && 96 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 97 const struct dmi_header *dm = (const struct dmi_header *)data; 98 99 /* 100 * We want to know the total length (formatted area and 101 * strings) before decoding to make sure we won't run off the 102 * table in dmi_decode or dmi_string 103 */ 104 data += dm->length; 105 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 106 data++; 107 if (data - buf < dmi_len - 1) 108 decode(dm, private_data); 109 110 data += 2; 111 i++; 112 113 /* 114 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 115 * For tables behind a 64-bit entry point, we have no item 116 * count and no exact table length, so stop on end-of-table 117 * marker. For tables behind a 32-bit entry point, we have 118 * seen OEM structures behind the end-of-table marker on 119 * some systems, so don't trust it. 120 */ 121 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 122 break; 123 } 124 125 /* Trim DMI table length if needed */ 126 if (dmi_len > data - buf) 127 dmi_len = data - buf; 128 } 129 130 static phys_addr_t dmi_base; 131 132 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 133 void *)) 134 { 135 u8 *buf; 136 u32 orig_dmi_len = dmi_len; 137 138 buf = dmi_early_remap(dmi_base, orig_dmi_len); 139 if (buf == NULL) 140 return -ENOMEM; 141 142 dmi_decode_table(buf, decode, NULL); 143 144 add_device_randomness(buf, dmi_len); 145 146 dmi_early_unmap(buf, orig_dmi_len); 147 return 0; 148 } 149 150 static int __init dmi_checksum(const u8 *buf, u8 len) 151 { 152 u8 sum = 0; 153 int a; 154 155 for (a = 0; a < len; a++) 156 sum += buf[a]; 157 158 return sum == 0; 159 } 160 161 static const char *dmi_ident[DMI_STRING_MAX]; 162 static LIST_HEAD(dmi_devices); 163 int dmi_available; 164 165 /* 166 * Save a DMI string 167 */ 168 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 169 int string) 170 { 171 const char *d = (const char *) dm; 172 const char *p; 173 174 if (dmi_ident[slot] || dm->length <= string) 175 return; 176 177 p = dmi_string(dm, d[string]); 178 if (p == NULL) 179 return; 180 181 dmi_ident[slot] = p; 182 } 183 184 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 185 int index) 186 { 187 const u8 *d; 188 char *s; 189 int is_ff = 1, is_00 = 1, i; 190 191 if (dmi_ident[slot] || dm->length < index + 16) 192 return; 193 194 d = (u8 *) dm + index; 195 for (i = 0; i < 16 && (is_ff || is_00); i++) { 196 if (d[i] != 0x00) 197 is_00 = 0; 198 if (d[i] != 0xFF) 199 is_ff = 0; 200 } 201 202 if (is_ff || is_00) 203 return; 204 205 s = dmi_alloc(16*2+4+1); 206 if (!s) 207 return; 208 209 /* 210 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 211 * the UUID are supposed to be little-endian encoded. The specification 212 * says that this is the defacto standard. 213 */ 214 if (dmi_ver >= 0x020600) 215 sprintf(s, "%pUl", d); 216 else 217 sprintf(s, "%pUb", d); 218 219 dmi_ident[slot] = s; 220 } 221 222 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 223 int index) 224 { 225 const u8 *d; 226 char *s; 227 228 if (dmi_ident[slot] || dm->length <= index) 229 return; 230 231 s = dmi_alloc(4); 232 if (!s) 233 return; 234 235 d = (u8 *) dm + index; 236 sprintf(s, "%u", *d & 0x7F); 237 dmi_ident[slot] = s; 238 } 239 240 static void __init dmi_save_one_device(int type, const char *name) 241 { 242 struct dmi_device *dev; 243 244 /* No duplicate device */ 245 if (dmi_find_device(type, name, NULL)) 246 return; 247 248 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 249 if (!dev) 250 return; 251 252 dev->type = type; 253 strcpy((char *)(dev + 1), name); 254 dev->name = (char *)(dev + 1); 255 dev->device_data = NULL; 256 list_add(&dev->list, &dmi_devices); 257 } 258 259 static void __init dmi_save_devices(const struct dmi_header *dm) 260 { 261 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 262 263 for (i = 0; i < count; i++) { 264 const char *d = (char *)(dm + 1) + (i * 2); 265 266 /* Skip disabled device */ 267 if ((*d & 0x80) == 0) 268 continue; 269 270 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 271 } 272 } 273 274 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 275 { 276 int i, count; 277 struct dmi_device *dev; 278 279 if (dm->length < 0x05) 280 return; 281 282 count = *(u8 *)(dm + 1); 283 for (i = 1; i <= count; i++) { 284 const char *devname = dmi_string(dm, i); 285 286 if (devname == dmi_empty_string) 287 continue; 288 289 dev = dmi_alloc(sizeof(*dev)); 290 if (!dev) 291 break; 292 293 dev->type = DMI_DEV_TYPE_OEM_STRING; 294 dev->name = devname; 295 dev->device_data = NULL; 296 297 list_add(&dev->list, &dmi_devices); 298 } 299 } 300 301 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 302 { 303 struct dmi_device *dev; 304 void *data; 305 306 data = dmi_alloc(dm->length); 307 if (data == NULL) 308 return; 309 310 memcpy(data, dm, dm->length); 311 312 dev = dmi_alloc(sizeof(*dev)); 313 if (!dev) 314 return; 315 316 dev->type = DMI_DEV_TYPE_IPMI; 317 dev->name = "IPMI controller"; 318 dev->device_data = data; 319 320 list_add_tail(&dev->list, &dmi_devices); 321 } 322 323 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 324 int devfn, const char *name, int type) 325 { 326 struct dmi_dev_onboard *dev; 327 328 /* Ignore invalid values */ 329 if (type == DMI_DEV_TYPE_DEV_SLOT && 330 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 331 return; 332 333 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 334 if (!dev) 335 return; 336 337 dev->instance = instance; 338 dev->segment = segment; 339 dev->bus = bus; 340 dev->devfn = devfn; 341 342 strcpy((char *)&dev[1], name); 343 dev->dev.type = type; 344 dev->dev.name = (char *)&dev[1]; 345 dev->dev.device_data = dev; 346 347 list_add(&dev->dev.list, &dmi_devices); 348 } 349 350 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 351 { 352 const char *name; 353 const u8 *d = (u8 *)dm; 354 355 if (dm->length < 0x0B) 356 return; 357 358 /* Skip disabled device */ 359 if ((d[0x5] & 0x80) == 0) 360 return; 361 362 name = dmi_string_nosave(dm, d[0x4]); 363 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 364 DMI_DEV_TYPE_DEV_ONBOARD); 365 dmi_save_one_device(d[0x5] & 0x7f, name); 366 } 367 368 static void __init dmi_save_system_slot(const struct dmi_header *dm) 369 { 370 const u8 *d = (u8 *)dm; 371 372 /* Need SMBIOS 2.6+ structure */ 373 if (dm->length < 0x11) 374 return; 375 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 376 d[0x10], dmi_string_nosave(dm, d[0x4]), 377 DMI_DEV_TYPE_DEV_SLOT); 378 } 379 380 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 381 { 382 if (dm->type != DMI_ENTRY_MEM_DEVICE) 383 return; 384 dmi_memdev_nr++; 385 } 386 387 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 388 { 389 const char *d = (const char *)dm; 390 static int nr; 391 u64 bytes; 392 u16 size; 393 394 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 395 return; 396 if (nr >= dmi_memdev_nr) { 397 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 398 return; 399 } 400 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 401 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 402 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 403 404 size = get_unaligned((u16 *)&d[0xC]); 405 if (size == 0) 406 bytes = 0; 407 else if (size == 0xffff) 408 bytes = ~0ull; 409 else if (size & 0x8000) 410 bytes = (u64)(size & 0x7fff) << 10; 411 else if (size != 0x7fff) 412 bytes = (u64)size << 20; 413 else 414 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 415 416 dmi_memdev[nr].size = bytes; 417 nr++; 418 } 419 420 static void __init dmi_memdev_walk(void) 421 { 422 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 423 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 424 if (dmi_memdev) 425 dmi_walk_early(save_mem_devices); 426 } 427 } 428 429 /* 430 * Process a DMI table entry. Right now all we care about are the BIOS 431 * and machine entries. For 2.5 we should pull the smbus controller info 432 * out of here. 433 */ 434 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 435 { 436 switch (dm->type) { 437 case 0: /* BIOS Information */ 438 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 439 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 440 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 441 break; 442 case 1: /* System Information */ 443 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 444 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 445 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 446 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 447 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 448 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 449 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 450 break; 451 case 2: /* Base Board Information */ 452 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 453 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 454 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 455 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 456 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 457 break; 458 case 3: /* Chassis Information */ 459 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 460 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 461 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 462 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 463 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 464 break; 465 case 9: /* System Slots */ 466 dmi_save_system_slot(dm); 467 break; 468 case 10: /* Onboard Devices Information */ 469 dmi_save_devices(dm); 470 break; 471 case 11: /* OEM Strings */ 472 dmi_save_oem_strings_devices(dm); 473 break; 474 case 38: /* IPMI Device Information */ 475 dmi_save_ipmi_device(dm); 476 break; 477 case 41: /* Onboard Devices Extended Information */ 478 dmi_save_extended_devices(dm); 479 } 480 } 481 482 static int __init print_filtered(char *buf, size_t len, const char *info) 483 { 484 int c = 0; 485 const char *p; 486 487 if (!info) 488 return c; 489 490 for (p = info; *p; p++) 491 if (isprint(*p)) 492 c += scnprintf(buf + c, len - c, "%c", *p); 493 else 494 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 495 return c; 496 } 497 498 static void __init dmi_format_ids(char *buf, size_t len) 499 { 500 int c = 0; 501 const char *board; /* Board Name is optional */ 502 503 c += print_filtered(buf + c, len - c, 504 dmi_get_system_info(DMI_SYS_VENDOR)); 505 c += scnprintf(buf + c, len - c, " "); 506 c += print_filtered(buf + c, len - c, 507 dmi_get_system_info(DMI_PRODUCT_NAME)); 508 509 board = dmi_get_system_info(DMI_BOARD_NAME); 510 if (board) { 511 c += scnprintf(buf + c, len - c, "/"); 512 c += print_filtered(buf + c, len - c, board); 513 } 514 c += scnprintf(buf + c, len - c, ", BIOS "); 515 c += print_filtered(buf + c, len - c, 516 dmi_get_system_info(DMI_BIOS_VERSION)); 517 c += scnprintf(buf + c, len - c, " "); 518 c += print_filtered(buf + c, len - c, 519 dmi_get_system_info(DMI_BIOS_DATE)); 520 } 521 522 /* 523 * Check for DMI/SMBIOS headers in the system firmware image. Any 524 * SMBIOS header must start 16 bytes before the DMI header, so take a 525 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 526 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 527 * takes precedence) and return 0. Otherwise return 1. 528 */ 529 static int __init dmi_present(const u8 *buf) 530 { 531 u32 smbios_ver; 532 533 if (memcmp(buf, "_SM_", 4) == 0 && 534 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 535 smbios_ver = get_unaligned_be16(buf + 6); 536 smbios_entry_point_size = buf[5]; 537 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 538 539 /* Some BIOS report weird SMBIOS version, fix that up */ 540 switch (smbios_ver) { 541 case 0x021F: 542 case 0x0221: 543 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 544 smbios_ver & 0xFF, 3); 545 smbios_ver = 0x0203; 546 break; 547 case 0x0233: 548 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 549 smbios_ver = 0x0206; 550 break; 551 } 552 } else { 553 smbios_ver = 0; 554 } 555 556 buf += 16; 557 558 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 559 if (smbios_ver) 560 dmi_ver = smbios_ver; 561 else 562 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 563 dmi_ver <<= 8; 564 dmi_num = get_unaligned_le16(buf + 12); 565 dmi_len = get_unaligned_le16(buf + 6); 566 dmi_base = get_unaligned_le32(buf + 8); 567 568 if (dmi_walk_early(dmi_decode) == 0) { 569 if (smbios_ver) { 570 pr_info("SMBIOS %d.%d present.\n", 571 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 572 } else { 573 smbios_entry_point_size = 15; 574 memcpy(smbios_entry_point, buf, 575 smbios_entry_point_size); 576 pr_info("Legacy DMI %d.%d present.\n", 577 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 578 } 579 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 580 pr_info("DMI: %s\n", dmi_ids_string); 581 return 0; 582 } 583 } 584 585 return 1; 586 } 587 588 /* 589 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 590 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 591 */ 592 static int __init dmi_smbios3_present(const u8 *buf) 593 { 594 if (memcmp(buf, "_SM3_", 5) == 0 && 595 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 596 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 597 dmi_num = 0; /* No longer specified */ 598 dmi_len = get_unaligned_le32(buf + 12); 599 dmi_base = get_unaligned_le64(buf + 16); 600 smbios_entry_point_size = buf[6]; 601 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 602 603 if (dmi_walk_early(dmi_decode) == 0) { 604 pr_info("SMBIOS %d.%d.%d present.\n", 605 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 606 dmi_ver & 0xFF); 607 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 608 pr_info("DMI: %s\n", dmi_ids_string); 609 return 0; 610 } 611 } 612 return 1; 613 } 614 615 static void __init dmi_scan_machine(void) 616 { 617 char __iomem *p, *q; 618 char buf[32]; 619 620 if (efi_enabled(EFI_CONFIG_TABLES)) { 621 /* 622 * According to the DMTF SMBIOS reference spec v3.0.0, it is 623 * allowed to define both the 64-bit entry point (smbios3) and 624 * the 32-bit entry point (smbios), in which case they should 625 * either both point to the same SMBIOS structure table, or the 626 * table pointed to by the 64-bit entry point should contain a 627 * superset of the table contents pointed to by the 32-bit entry 628 * point (section 5.2) 629 * This implies that the 64-bit entry point should have 630 * precedence if it is defined and supported by the OS. If we 631 * have the 64-bit entry point, but fail to decode it, fall 632 * back to the legacy one (if available) 633 */ 634 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 635 p = dmi_early_remap(efi.smbios3, 32); 636 if (p == NULL) 637 goto error; 638 memcpy_fromio(buf, p, 32); 639 dmi_early_unmap(p, 32); 640 641 if (!dmi_smbios3_present(buf)) { 642 dmi_available = 1; 643 return; 644 } 645 } 646 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 647 goto error; 648 649 /* This is called as a core_initcall() because it isn't 650 * needed during early boot. This also means we can 651 * iounmap the space when we're done with it. 652 */ 653 p = dmi_early_remap(efi.smbios, 32); 654 if (p == NULL) 655 goto error; 656 memcpy_fromio(buf, p, 32); 657 dmi_early_unmap(p, 32); 658 659 if (!dmi_present(buf)) { 660 dmi_available = 1; 661 return; 662 } 663 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 664 p = dmi_early_remap(0xF0000, 0x10000); 665 if (p == NULL) 666 goto error; 667 668 /* 669 * Same logic as above, look for a 64-bit entry point 670 * first, and if not found, fall back to 32-bit entry point. 671 */ 672 memcpy_fromio(buf, p, 16); 673 for (q = p + 16; q < p + 0x10000; q += 16) { 674 memcpy_fromio(buf + 16, q, 16); 675 if (!dmi_smbios3_present(buf)) { 676 dmi_available = 1; 677 dmi_early_unmap(p, 0x10000); 678 return; 679 } 680 memcpy(buf, buf + 16, 16); 681 } 682 683 /* 684 * Iterate over all possible DMI header addresses q. 685 * Maintain the 32 bytes around q in buf. On the 686 * first iteration, substitute zero for the 687 * out-of-range bytes so there is no chance of falsely 688 * detecting an SMBIOS header. 689 */ 690 memset(buf, 0, 16); 691 for (q = p; q < p + 0x10000; q += 16) { 692 memcpy_fromio(buf + 16, q, 16); 693 if (!dmi_present(buf)) { 694 dmi_available = 1; 695 dmi_early_unmap(p, 0x10000); 696 return; 697 } 698 memcpy(buf, buf + 16, 16); 699 } 700 dmi_early_unmap(p, 0x10000); 701 } 702 error: 703 pr_info("DMI not present or invalid.\n"); 704 } 705 706 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 707 struct bin_attribute *attr, char *buf, 708 loff_t pos, size_t count) 709 { 710 memcpy(buf, attr->private + pos, count); 711 return count; 712 } 713 714 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 715 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 716 717 static int __init dmi_init(void) 718 { 719 struct kobject *tables_kobj; 720 u8 *dmi_table; 721 int ret = -ENOMEM; 722 723 if (!dmi_available) 724 return 0; 725 726 /* 727 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 728 * even after farther error, as it can be used by other modules like 729 * dmi-sysfs. 730 */ 731 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 732 if (!dmi_kobj) 733 goto err; 734 735 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 736 if (!tables_kobj) 737 goto err; 738 739 dmi_table = dmi_remap(dmi_base, dmi_len); 740 if (!dmi_table) 741 goto err_tables; 742 743 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 744 bin_attr_smbios_entry_point.private = smbios_entry_point; 745 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 746 if (ret) 747 goto err_unmap; 748 749 bin_attr_DMI.size = dmi_len; 750 bin_attr_DMI.private = dmi_table; 751 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 752 if (!ret) 753 return 0; 754 755 sysfs_remove_bin_file(tables_kobj, 756 &bin_attr_smbios_entry_point); 757 err_unmap: 758 dmi_unmap(dmi_table); 759 err_tables: 760 kobject_del(tables_kobj); 761 kobject_put(tables_kobj); 762 err: 763 pr_err("dmi: Firmware registration failed.\n"); 764 765 return ret; 766 } 767 subsys_initcall(dmi_init); 768 769 /** 770 * dmi_setup - scan and setup DMI system information 771 * 772 * Scan the DMI system information. This setups DMI identifiers 773 * (dmi_system_id) for printing it out on task dumps and prepares 774 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 775 * for using this when reporting memory errors. 776 */ 777 void __init dmi_setup(void) 778 { 779 dmi_scan_machine(); 780 if (!dmi_available) 781 return; 782 783 dmi_memdev_walk(); 784 dump_stack_set_arch_desc("%s", dmi_ids_string); 785 } 786 787 /** 788 * dmi_matches - check if dmi_system_id structure matches system DMI data 789 * @dmi: pointer to the dmi_system_id structure to check 790 */ 791 static bool dmi_matches(const struct dmi_system_id *dmi) 792 { 793 int i; 794 795 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 796 int s = dmi->matches[i].slot; 797 if (s == DMI_NONE) 798 break; 799 if (s == DMI_OEM_STRING) { 800 /* DMI_OEM_STRING must be exact match */ 801 const struct dmi_device *valid; 802 803 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 804 dmi->matches[i].substr, NULL); 805 if (valid) 806 continue; 807 } else if (dmi_ident[s]) { 808 if (dmi->matches[i].exact_match) { 809 if (!strcmp(dmi_ident[s], 810 dmi->matches[i].substr)) 811 continue; 812 } else { 813 if (strstr(dmi_ident[s], 814 dmi->matches[i].substr)) 815 continue; 816 } 817 } 818 819 /* No match */ 820 return false; 821 } 822 return true; 823 } 824 825 /** 826 * dmi_is_end_of_table - check for end-of-table marker 827 * @dmi: pointer to the dmi_system_id structure to check 828 */ 829 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 830 { 831 return dmi->matches[0].slot == DMI_NONE; 832 } 833 834 /** 835 * dmi_check_system - check system DMI data 836 * @list: array of dmi_system_id structures to match against 837 * All non-null elements of the list must match 838 * their slot's (field index's) data (i.e., each 839 * list string must be a substring of the specified 840 * DMI slot's string data) to be considered a 841 * successful match. 842 * 843 * Walk the blacklist table running matching functions until someone 844 * returns non zero or we hit the end. Callback function is called for 845 * each successful match. Returns the number of matches. 846 * 847 * dmi_setup must be called before this function is called. 848 */ 849 int dmi_check_system(const struct dmi_system_id *list) 850 { 851 int count = 0; 852 const struct dmi_system_id *d; 853 854 for (d = list; !dmi_is_end_of_table(d); d++) 855 if (dmi_matches(d)) { 856 count++; 857 if (d->callback && d->callback(d)) 858 break; 859 } 860 861 return count; 862 } 863 EXPORT_SYMBOL(dmi_check_system); 864 865 /** 866 * dmi_first_match - find dmi_system_id structure matching system DMI data 867 * @list: array of dmi_system_id structures to match against 868 * All non-null elements of the list must match 869 * their slot's (field index's) data (i.e., each 870 * list string must be a substring of the specified 871 * DMI slot's string data) to be considered a 872 * successful match. 873 * 874 * Walk the blacklist table until the first match is found. Return the 875 * pointer to the matching entry or NULL if there's no match. 876 * 877 * dmi_setup must be called before this function is called. 878 */ 879 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 880 { 881 const struct dmi_system_id *d; 882 883 for (d = list; !dmi_is_end_of_table(d); d++) 884 if (dmi_matches(d)) 885 return d; 886 887 return NULL; 888 } 889 EXPORT_SYMBOL(dmi_first_match); 890 891 /** 892 * dmi_get_system_info - return DMI data value 893 * @field: data index (see enum dmi_field) 894 * 895 * Returns one DMI data value, can be used to perform 896 * complex DMI data checks. 897 */ 898 const char *dmi_get_system_info(int field) 899 { 900 return dmi_ident[field]; 901 } 902 EXPORT_SYMBOL(dmi_get_system_info); 903 904 /** 905 * dmi_name_in_serial - Check if string is in the DMI product serial information 906 * @str: string to check for 907 */ 908 int dmi_name_in_serial(const char *str) 909 { 910 int f = DMI_PRODUCT_SERIAL; 911 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 912 return 1; 913 return 0; 914 } 915 916 /** 917 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 918 * @str: Case sensitive Name 919 */ 920 int dmi_name_in_vendors(const char *str) 921 { 922 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 923 int i; 924 for (i = 0; fields[i] != DMI_NONE; i++) { 925 int f = fields[i]; 926 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 927 return 1; 928 } 929 return 0; 930 } 931 EXPORT_SYMBOL(dmi_name_in_vendors); 932 933 /** 934 * dmi_find_device - find onboard device by type/name 935 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 936 * @name: device name string or %NULL to match all 937 * @from: previous device found in search, or %NULL for new search. 938 * 939 * Iterates through the list of known onboard devices. If a device is 940 * found with a matching @type and @name, a pointer to its device 941 * structure is returned. Otherwise, %NULL is returned. 942 * A new search is initiated by passing %NULL as the @from argument. 943 * If @from is not %NULL, searches continue from next device. 944 */ 945 const struct dmi_device *dmi_find_device(int type, const char *name, 946 const struct dmi_device *from) 947 { 948 const struct list_head *head = from ? &from->list : &dmi_devices; 949 struct list_head *d; 950 951 for (d = head->next; d != &dmi_devices; d = d->next) { 952 const struct dmi_device *dev = 953 list_entry(d, struct dmi_device, list); 954 955 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 956 ((name == NULL) || (strcmp(dev->name, name) == 0))) 957 return dev; 958 } 959 960 return NULL; 961 } 962 EXPORT_SYMBOL(dmi_find_device); 963 964 /** 965 * dmi_get_date - parse a DMI date 966 * @field: data index (see enum dmi_field) 967 * @yearp: optional out parameter for the year 968 * @monthp: optional out parameter for the month 969 * @dayp: optional out parameter for the day 970 * 971 * The date field is assumed to be in the form resembling 972 * [mm[/dd]]/yy[yy] and the result is stored in the out 973 * parameters any or all of which can be omitted. 974 * 975 * If the field doesn't exist, all out parameters are set to zero 976 * and false is returned. Otherwise, true is returned with any 977 * invalid part of date set to zero. 978 * 979 * On return, year, month and day are guaranteed to be in the 980 * range of [0,9999], [0,12] and [0,31] respectively. 981 */ 982 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 983 { 984 int year = 0, month = 0, day = 0; 985 bool exists; 986 const char *s, *y; 987 char *e; 988 989 s = dmi_get_system_info(field); 990 exists = s; 991 if (!exists) 992 goto out; 993 994 /* 995 * Determine year first. We assume the date string resembles 996 * mm/dd/yy[yy] but the original code extracted only the year 997 * from the end. Keep the behavior in the spirit of no 998 * surprises. 999 */ 1000 y = strrchr(s, '/'); 1001 if (!y) 1002 goto out; 1003 1004 y++; 1005 year = simple_strtoul(y, &e, 10); 1006 if (y != e && year < 100) { /* 2-digit year */ 1007 year += 1900; 1008 if (year < 1996) /* no dates < spec 1.0 */ 1009 year += 100; 1010 } 1011 if (year > 9999) /* year should fit in %04d */ 1012 year = 0; 1013 1014 /* parse the mm and dd */ 1015 month = simple_strtoul(s, &e, 10); 1016 if (s == e || *e != '/' || !month || month > 12) { 1017 month = 0; 1018 goto out; 1019 } 1020 1021 s = e + 1; 1022 day = simple_strtoul(s, &e, 10); 1023 if (s == y || s == e || *e != '/' || day > 31) 1024 day = 0; 1025 out: 1026 if (yearp) 1027 *yearp = year; 1028 if (monthp) 1029 *monthp = month; 1030 if (dayp) 1031 *dayp = day; 1032 return exists; 1033 } 1034 EXPORT_SYMBOL(dmi_get_date); 1035 1036 /** 1037 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1038 * 1039 * Returns year on success, -ENXIO if DMI is not selected, 1040 * or a different negative error code if DMI field is not present 1041 * or not parseable. 1042 */ 1043 int dmi_get_bios_year(void) 1044 { 1045 bool exists; 1046 int year; 1047 1048 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1049 if (!exists) 1050 return -ENODATA; 1051 1052 return year ? year : -ERANGE; 1053 } 1054 EXPORT_SYMBOL(dmi_get_bios_year); 1055 1056 /** 1057 * dmi_walk - Walk the DMI table and get called back for every record 1058 * @decode: Callback function 1059 * @private_data: Private data to be passed to the callback function 1060 * 1061 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1062 * or a different negative error code if DMI walking fails. 1063 */ 1064 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1065 void *private_data) 1066 { 1067 u8 *buf; 1068 1069 if (!dmi_available) 1070 return -ENXIO; 1071 1072 buf = dmi_remap(dmi_base, dmi_len); 1073 if (buf == NULL) 1074 return -ENOMEM; 1075 1076 dmi_decode_table(buf, decode, private_data); 1077 1078 dmi_unmap(buf); 1079 return 0; 1080 } 1081 EXPORT_SYMBOL_GPL(dmi_walk); 1082 1083 /** 1084 * dmi_match - compare a string to the dmi field (if exists) 1085 * @f: DMI field identifier 1086 * @str: string to compare the DMI field to 1087 * 1088 * Returns true if the requested field equals to the str (including NULL). 1089 */ 1090 bool dmi_match(enum dmi_field f, const char *str) 1091 { 1092 const char *info = dmi_get_system_info(f); 1093 1094 if (info == NULL || str == NULL) 1095 return info == str; 1096 1097 return !strcmp(info, str); 1098 } 1099 EXPORT_SYMBOL_GPL(dmi_match); 1100 1101 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1102 { 1103 int n; 1104 1105 if (dmi_memdev == NULL) 1106 return; 1107 1108 for (n = 0; n < dmi_memdev_nr; n++) { 1109 if (handle == dmi_memdev[n].handle) { 1110 *bank = dmi_memdev[n].bank; 1111 *device = dmi_memdev[n].device; 1112 break; 1113 } 1114 } 1115 } 1116 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1117 1118 u64 dmi_memdev_size(u16 handle) 1119 { 1120 int n; 1121 1122 if (dmi_memdev) { 1123 for (n = 0; n < dmi_memdev_nr; n++) { 1124 if (handle == dmi_memdev[n].handle) 1125 return dmi_memdev[n].size; 1126 } 1127 } 1128 return ~0ull; 1129 } 1130 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1131