xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision efe4a1ac)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "        ";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /*
30  * Catch too early calls to dmi_check_system():
31  */
32 static int dmi_initialized;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
43 
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45 {
46 	const u8 *bp = ((u8 *) dm) + dm->length;
47 
48 	if (s) {
49 		s--;
50 		while (s > 0 && *bp) {
51 			bp += strlen(bp) + 1;
52 			s--;
53 		}
54 
55 		if (*bp != 0) {
56 			size_t len = strlen(bp)+1;
57 			size_t cmp_len = len > 8 ? 8 : len;
58 
59 			if (!memcmp(bp, dmi_empty_string, cmp_len))
60 				return dmi_empty_string;
61 			return bp;
62 		}
63 	}
64 
65 	return "";
66 }
67 
68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69 {
70 	const char *bp = dmi_string_nosave(dm, s);
71 	char *str;
72 	size_t len;
73 
74 	if (bp == dmi_empty_string)
75 		return dmi_empty_string;
76 
77 	len = strlen(bp) + 1;
78 	str = dmi_alloc(len);
79 	if (str != NULL)
80 		strcpy(str, bp);
81 
82 	return str;
83 }
84 
85 /*
86  *	We have to be cautious here. We have seen BIOSes with DMI pointers
87  *	pointing to completely the wrong place for example
88  */
89 static void dmi_decode_table(u8 *buf,
90 			     void (*decode)(const struct dmi_header *, void *),
91 			     void *private_data)
92 {
93 	u8 *data = buf;
94 	int i = 0;
95 
96 	/*
97 	 * Stop when we have seen all the items the table claimed to have
98 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 	 * >= 3.0 only) OR we run off the end of the table (should never
100 	 * happen but sometimes does on bogus implementations.)
101 	 */
102 	while ((!dmi_num || i < dmi_num) &&
103 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 		const struct dmi_header *dm = (const struct dmi_header *)data;
105 
106 		/*
107 		 *  We want to know the total length (formatted area and
108 		 *  strings) before decoding to make sure we won't run off the
109 		 *  table in dmi_decode or dmi_string
110 		 */
111 		data += dm->length;
112 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 			data++;
114 		if (data - buf < dmi_len - 1)
115 			decode(dm, private_data);
116 
117 		data += 2;
118 		i++;
119 
120 		/*
121 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 		 * For tables behind a 64-bit entry point, we have no item
123 		 * count and no exact table length, so stop on end-of-table
124 		 * marker. For tables behind a 32-bit entry point, we have
125 		 * seen OEM structures behind the end-of-table marker on
126 		 * some systems, so don't trust it.
127 		 */
128 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 			break;
130 	}
131 
132 	/* Trim DMI table length if needed */
133 	if (dmi_len > data - buf)
134 		dmi_len = data - buf;
135 }
136 
137 static phys_addr_t dmi_base;
138 
139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 		void *))
141 {
142 	u8 *buf;
143 	u32 orig_dmi_len = dmi_len;
144 
145 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 	if (buf == NULL)
147 		return -ENOMEM;
148 
149 	dmi_decode_table(buf, decode, NULL);
150 
151 	add_device_randomness(buf, dmi_len);
152 
153 	dmi_early_unmap(buf, orig_dmi_len);
154 	return 0;
155 }
156 
157 static int __init dmi_checksum(const u8 *buf, u8 len)
158 {
159 	u8 sum = 0;
160 	int a;
161 
162 	for (a = 0; a < len; a++)
163 		sum += buf[a];
164 
165 	return sum == 0;
166 }
167 
168 static const char *dmi_ident[DMI_STRING_MAX];
169 static LIST_HEAD(dmi_devices);
170 int dmi_available;
171 
172 /*
173  *	Save a DMI string
174  */
175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 		int string)
177 {
178 	const char *d = (const char *) dm;
179 	const char *p;
180 
181 	if (dmi_ident[slot] || dm->length <= string)
182 		return;
183 
184 	p = dmi_string(dm, d[string]);
185 	if (p == NULL)
186 		return;
187 
188 	dmi_ident[slot] = p;
189 }
190 
191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 		int index)
193 {
194 	const u8 *d;
195 	char *s;
196 	int is_ff = 1, is_00 = 1, i;
197 
198 	if (dmi_ident[slot] || dm->length <= index + 16)
199 		return;
200 
201 	d = (u8 *) dm + index;
202 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
203 		if (d[i] != 0x00)
204 			is_00 = 0;
205 		if (d[i] != 0xFF)
206 			is_ff = 0;
207 	}
208 
209 	if (is_ff || is_00)
210 		return;
211 
212 	s = dmi_alloc(16*2+4+1);
213 	if (!s)
214 		return;
215 
216 	/*
217 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
218 	 * the UUID are supposed to be little-endian encoded.  The specification
219 	 * says that this is the defacto standard.
220 	 */
221 	if (dmi_ver >= 0x020600)
222 		sprintf(s, "%pUL", d);
223 	else
224 		sprintf(s, "%pUB", d);
225 
226 	dmi_ident[slot] = s;
227 }
228 
229 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
230 		int index)
231 {
232 	const u8 *d;
233 	char *s;
234 
235 	if (dmi_ident[slot] || dm->length <= index)
236 		return;
237 
238 	s = dmi_alloc(4);
239 	if (!s)
240 		return;
241 
242 	d = (u8 *) dm + index;
243 	sprintf(s, "%u", *d & 0x7F);
244 	dmi_ident[slot] = s;
245 }
246 
247 static void __init dmi_save_one_device(int type, const char *name)
248 {
249 	struct dmi_device *dev;
250 
251 	/* No duplicate device */
252 	if (dmi_find_device(type, name, NULL))
253 		return;
254 
255 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
256 	if (!dev)
257 		return;
258 
259 	dev->type = type;
260 	strcpy((char *)(dev + 1), name);
261 	dev->name = (char *)(dev + 1);
262 	dev->device_data = NULL;
263 	list_add(&dev->list, &dmi_devices);
264 }
265 
266 static void __init dmi_save_devices(const struct dmi_header *dm)
267 {
268 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
269 
270 	for (i = 0; i < count; i++) {
271 		const char *d = (char *)(dm + 1) + (i * 2);
272 
273 		/* Skip disabled device */
274 		if ((*d & 0x80) == 0)
275 			continue;
276 
277 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
278 	}
279 }
280 
281 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
282 {
283 	int i, count;
284 	struct dmi_device *dev;
285 
286 	if (dm->length < 0x05)
287 		return;
288 
289 	count = *(u8 *)(dm + 1);
290 	for (i = 1; i <= count; i++) {
291 		const char *devname = dmi_string(dm, i);
292 
293 		if (devname == dmi_empty_string)
294 			continue;
295 
296 		dev = dmi_alloc(sizeof(*dev));
297 		if (!dev)
298 			break;
299 
300 		dev->type = DMI_DEV_TYPE_OEM_STRING;
301 		dev->name = devname;
302 		dev->device_data = NULL;
303 
304 		list_add(&dev->list, &dmi_devices);
305 	}
306 }
307 
308 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
309 {
310 	struct dmi_device *dev;
311 	void *data;
312 
313 	data = dmi_alloc(dm->length);
314 	if (data == NULL)
315 		return;
316 
317 	memcpy(data, dm, dm->length);
318 
319 	dev = dmi_alloc(sizeof(*dev));
320 	if (!dev)
321 		return;
322 
323 	dev->type = DMI_DEV_TYPE_IPMI;
324 	dev->name = "IPMI controller";
325 	dev->device_data = data;
326 
327 	list_add_tail(&dev->list, &dmi_devices);
328 }
329 
330 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
331 					int devfn, const char *name, int type)
332 {
333 	struct dmi_dev_onboard *dev;
334 
335 	/* Ignore invalid values */
336 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
337 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
338 		return;
339 
340 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
341 	if (!dev)
342 		return;
343 
344 	dev->instance = instance;
345 	dev->segment = segment;
346 	dev->bus = bus;
347 	dev->devfn = devfn;
348 
349 	strcpy((char *)&dev[1], name);
350 	dev->dev.type = type;
351 	dev->dev.name = (char *)&dev[1];
352 	dev->dev.device_data = dev;
353 
354 	list_add(&dev->dev.list, &dmi_devices);
355 }
356 
357 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
358 {
359 	const char *name;
360 	const u8 *d = (u8 *)dm;
361 
362 	if (dm->length < 0x0B)
363 		return;
364 
365 	/* Skip disabled device */
366 	if ((d[0x5] & 0x80) == 0)
367 		return;
368 
369 	name = dmi_string_nosave(dm, d[0x4]);
370 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
371 			     DMI_DEV_TYPE_DEV_ONBOARD);
372 	dmi_save_one_device(d[0x5] & 0x7f, name);
373 }
374 
375 static void __init dmi_save_system_slot(const struct dmi_header *dm)
376 {
377 	const u8 *d = (u8 *)dm;
378 
379 	/* Need SMBIOS 2.6+ structure */
380 	if (dm->length < 0x11)
381 		return;
382 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
383 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
384 			     DMI_DEV_TYPE_DEV_SLOT);
385 }
386 
387 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
388 {
389 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
390 		return;
391 	dmi_memdev_nr++;
392 }
393 
394 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
395 {
396 	const char *d = (const char *)dm;
397 	static int nr;
398 
399 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
400 		return;
401 	if (nr >= dmi_memdev_nr) {
402 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
403 		return;
404 	}
405 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
406 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
407 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
408 	nr++;
409 }
410 
411 void __init dmi_memdev_walk(void)
412 {
413 	if (!dmi_available)
414 		return;
415 
416 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
417 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
418 		if (dmi_memdev)
419 			dmi_walk_early(save_mem_devices);
420 	}
421 }
422 
423 /*
424  *	Process a DMI table entry. Right now all we care about are the BIOS
425  *	and machine entries. For 2.5 we should pull the smbus controller info
426  *	out of here.
427  */
428 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
429 {
430 	switch (dm->type) {
431 	case 0:		/* BIOS Information */
432 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
433 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
434 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
435 		break;
436 	case 1:		/* System Information */
437 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
438 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
439 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
440 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
441 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
442 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
443 		break;
444 	case 2:		/* Base Board Information */
445 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
446 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
447 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
448 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
449 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
450 		break;
451 	case 3:		/* Chassis Information */
452 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
453 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
454 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
455 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
456 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
457 		break;
458 	case 9:		/* System Slots */
459 		dmi_save_system_slot(dm);
460 		break;
461 	case 10:	/* Onboard Devices Information */
462 		dmi_save_devices(dm);
463 		break;
464 	case 11:	/* OEM Strings */
465 		dmi_save_oem_strings_devices(dm);
466 		break;
467 	case 38:	/* IPMI Device Information */
468 		dmi_save_ipmi_device(dm);
469 		break;
470 	case 41:	/* Onboard Devices Extended Information */
471 		dmi_save_extended_devices(dm);
472 	}
473 }
474 
475 static int __init print_filtered(char *buf, size_t len, const char *info)
476 {
477 	int c = 0;
478 	const char *p;
479 
480 	if (!info)
481 		return c;
482 
483 	for (p = info; *p; p++)
484 		if (isprint(*p))
485 			c += scnprintf(buf + c, len - c, "%c", *p);
486 		else
487 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
488 	return c;
489 }
490 
491 static void __init dmi_format_ids(char *buf, size_t len)
492 {
493 	int c = 0;
494 	const char *board;	/* Board Name is optional */
495 
496 	c += print_filtered(buf + c, len - c,
497 			    dmi_get_system_info(DMI_SYS_VENDOR));
498 	c += scnprintf(buf + c, len - c, " ");
499 	c += print_filtered(buf + c, len - c,
500 			    dmi_get_system_info(DMI_PRODUCT_NAME));
501 
502 	board = dmi_get_system_info(DMI_BOARD_NAME);
503 	if (board) {
504 		c += scnprintf(buf + c, len - c, "/");
505 		c += print_filtered(buf + c, len - c, board);
506 	}
507 	c += scnprintf(buf + c, len - c, ", BIOS ");
508 	c += print_filtered(buf + c, len - c,
509 			    dmi_get_system_info(DMI_BIOS_VERSION));
510 	c += scnprintf(buf + c, len - c, " ");
511 	c += print_filtered(buf + c, len - c,
512 			    dmi_get_system_info(DMI_BIOS_DATE));
513 }
514 
515 /*
516  * Check for DMI/SMBIOS headers in the system firmware image.  Any
517  * SMBIOS header must start 16 bytes before the DMI header, so take a
518  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
519  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
520  * takes precedence) and return 0.  Otherwise return 1.
521  */
522 static int __init dmi_present(const u8 *buf)
523 {
524 	u32 smbios_ver;
525 
526 	if (memcmp(buf, "_SM_", 4) == 0 &&
527 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
528 		smbios_ver = get_unaligned_be16(buf + 6);
529 		smbios_entry_point_size = buf[5];
530 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
531 
532 		/* Some BIOS report weird SMBIOS version, fix that up */
533 		switch (smbios_ver) {
534 		case 0x021F:
535 		case 0x0221:
536 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
537 				 smbios_ver & 0xFF, 3);
538 			smbios_ver = 0x0203;
539 			break;
540 		case 0x0233:
541 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
542 			smbios_ver = 0x0206;
543 			break;
544 		}
545 	} else {
546 		smbios_ver = 0;
547 	}
548 
549 	buf += 16;
550 
551 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
552 		if (smbios_ver)
553 			dmi_ver = smbios_ver;
554 		else
555 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
556 		dmi_ver <<= 8;
557 		dmi_num = get_unaligned_le16(buf + 12);
558 		dmi_len = get_unaligned_le16(buf + 6);
559 		dmi_base = get_unaligned_le32(buf + 8);
560 
561 		if (dmi_walk_early(dmi_decode) == 0) {
562 			if (smbios_ver) {
563 				pr_info("SMBIOS %d.%d present.\n",
564 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
565 			} else {
566 				smbios_entry_point_size = 15;
567 				memcpy(smbios_entry_point, buf,
568 				       smbios_entry_point_size);
569 				pr_info("Legacy DMI %d.%d present.\n",
570 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
571 			}
572 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
573 			pr_info("DMI: %s\n", dmi_ids_string);
574 			return 0;
575 		}
576 	}
577 
578 	return 1;
579 }
580 
581 /*
582  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
583  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
584  */
585 static int __init dmi_smbios3_present(const u8 *buf)
586 {
587 	if (memcmp(buf, "_SM3_", 5) == 0 &&
588 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
589 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
590 		dmi_num = 0;			/* No longer specified */
591 		dmi_len = get_unaligned_le32(buf + 12);
592 		dmi_base = get_unaligned_le64(buf + 16);
593 		smbios_entry_point_size = buf[6];
594 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
595 
596 		if (dmi_walk_early(dmi_decode) == 0) {
597 			pr_info("SMBIOS %d.%d.%d present.\n",
598 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
599 				dmi_ver & 0xFF);
600 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
601 			pr_info("DMI: %s\n", dmi_ids_string);
602 			return 0;
603 		}
604 	}
605 	return 1;
606 }
607 
608 void __init dmi_scan_machine(void)
609 {
610 	char __iomem *p, *q;
611 	char buf[32];
612 
613 	if (efi_enabled(EFI_CONFIG_TABLES)) {
614 		/*
615 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
616 		 * allowed to define both the 64-bit entry point (smbios3) and
617 		 * the 32-bit entry point (smbios), in which case they should
618 		 * either both point to the same SMBIOS structure table, or the
619 		 * table pointed to by the 64-bit entry point should contain a
620 		 * superset of the table contents pointed to by the 32-bit entry
621 		 * point (section 5.2)
622 		 * This implies that the 64-bit entry point should have
623 		 * precedence if it is defined and supported by the OS. If we
624 		 * have the 64-bit entry point, but fail to decode it, fall
625 		 * back to the legacy one (if available)
626 		 */
627 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
628 			p = dmi_early_remap(efi.smbios3, 32);
629 			if (p == NULL)
630 				goto error;
631 			memcpy_fromio(buf, p, 32);
632 			dmi_early_unmap(p, 32);
633 
634 			if (!dmi_smbios3_present(buf)) {
635 				dmi_available = 1;
636 				goto out;
637 			}
638 		}
639 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
640 			goto error;
641 
642 		/* This is called as a core_initcall() because it isn't
643 		 * needed during early boot.  This also means we can
644 		 * iounmap the space when we're done with it.
645 		 */
646 		p = dmi_early_remap(efi.smbios, 32);
647 		if (p == NULL)
648 			goto error;
649 		memcpy_fromio(buf, p, 32);
650 		dmi_early_unmap(p, 32);
651 
652 		if (!dmi_present(buf)) {
653 			dmi_available = 1;
654 			goto out;
655 		}
656 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
657 		p = dmi_early_remap(0xF0000, 0x10000);
658 		if (p == NULL)
659 			goto error;
660 
661 		/*
662 		 * Same logic as above, look for a 64-bit entry point
663 		 * first, and if not found, fall back to 32-bit entry point.
664 		 */
665 		memcpy_fromio(buf, p, 16);
666 		for (q = p + 16; q < p + 0x10000; q += 16) {
667 			memcpy_fromio(buf + 16, q, 16);
668 			if (!dmi_smbios3_present(buf)) {
669 				dmi_available = 1;
670 				dmi_early_unmap(p, 0x10000);
671 				goto out;
672 			}
673 			memcpy(buf, buf + 16, 16);
674 		}
675 
676 		/*
677 		 * Iterate over all possible DMI header addresses q.
678 		 * Maintain the 32 bytes around q in buf.  On the
679 		 * first iteration, substitute zero for the
680 		 * out-of-range bytes so there is no chance of falsely
681 		 * detecting an SMBIOS header.
682 		 */
683 		memset(buf, 0, 16);
684 		for (q = p; q < p + 0x10000; q += 16) {
685 			memcpy_fromio(buf + 16, q, 16);
686 			if (!dmi_present(buf)) {
687 				dmi_available = 1;
688 				dmi_early_unmap(p, 0x10000);
689 				goto out;
690 			}
691 			memcpy(buf, buf + 16, 16);
692 		}
693 		dmi_early_unmap(p, 0x10000);
694 	}
695  error:
696 	pr_info("DMI not present or invalid.\n");
697  out:
698 	dmi_initialized = 1;
699 }
700 
701 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
702 			      struct bin_attribute *attr, char *buf,
703 			      loff_t pos, size_t count)
704 {
705 	memcpy(buf, attr->private + pos, count);
706 	return count;
707 }
708 
709 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
710 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
711 
712 static int __init dmi_init(void)
713 {
714 	struct kobject *tables_kobj;
715 	u8 *dmi_table;
716 	int ret = -ENOMEM;
717 
718 	if (!dmi_available) {
719 		ret = -ENODATA;
720 		goto err;
721 	}
722 
723 	/*
724 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
725 	 * even after farther error, as it can be used by other modules like
726 	 * dmi-sysfs.
727 	 */
728 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
729 	if (!dmi_kobj)
730 		goto err;
731 
732 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
733 	if (!tables_kobj)
734 		goto err;
735 
736 	dmi_table = dmi_remap(dmi_base, dmi_len);
737 	if (!dmi_table)
738 		goto err_tables;
739 
740 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
741 	bin_attr_smbios_entry_point.private = smbios_entry_point;
742 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
743 	if (ret)
744 		goto err_unmap;
745 
746 	bin_attr_DMI.size = dmi_len;
747 	bin_attr_DMI.private = dmi_table;
748 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
749 	if (!ret)
750 		return 0;
751 
752 	sysfs_remove_bin_file(tables_kobj,
753 			      &bin_attr_smbios_entry_point);
754  err_unmap:
755 	dmi_unmap(dmi_table);
756  err_tables:
757 	kobject_del(tables_kobj);
758 	kobject_put(tables_kobj);
759  err:
760 	pr_err("dmi: Firmware registration failed.\n");
761 
762 	return ret;
763 }
764 subsys_initcall(dmi_init);
765 
766 /**
767  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
768  *
769  * Invoke dump_stack_set_arch_desc() with DMI system information so that
770  * DMI identifiers are printed out on task dumps.  Arch boot code should
771  * call this function after dmi_scan_machine() if it wants to print out DMI
772  * identifiers on task dumps.
773  */
774 void __init dmi_set_dump_stack_arch_desc(void)
775 {
776 	dump_stack_set_arch_desc("%s", dmi_ids_string);
777 }
778 
779 /**
780  *	dmi_matches - check if dmi_system_id structure matches system DMI data
781  *	@dmi: pointer to the dmi_system_id structure to check
782  */
783 static bool dmi_matches(const struct dmi_system_id *dmi)
784 {
785 	int i;
786 
787 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
788 
789 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
790 		int s = dmi->matches[i].slot;
791 		if (s == DMI_NONE)
792 			break;
793 		if (dmi_ident[s]) {
794 			if (!dmi->matches[i].exact_match &&
795 			    strstr(dmi_ident[s], dmi->matches[i].substr))
796 				continue;
797 			else if (dmi->matches[i].exact_match &&
798 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
799 				continue;
800 		}
801 
802 		/* No match */
803 		return false;
804 	}
805 	return true;
806 }
807 
808 /**
809  *	dmi_is_end_of_table - check for end-of-table marker
810  *	@dmi: pointer to the dmi_system_id structure to check
811  */
812 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
813 {
814 	return dmi->matches[0].slot == DMI_NONE;
815 }
816 
817 /**
818  *	dmi_check_system - check system DMI data
819  *	@list: array of dmi_system_id structures to match against
820  *		All non-null elements of the list must match
821  *		their slot's (field index's) data (i.e., each
822  *		list string must be a substring of the specified
823  *		DMI slot's string data) to be considered a
824  *		successful match.
825  *
826  *	Walk the blacklist table running matching functions until someone
827  *	returns non zero or we hit the end. Callback function is called for
828  *	each successful match. Returns the number of matches.
829  */
830 int dmi_check_system(const struct dmi_system_id *list)
831 {
832 	int count = 0;
833 	const struct dmi_system_id *d;
834 
835 	for (d = list; !dmi_is_end_of_table(d); d++)
836 		if (dmi_matches(d)) {
837 			count++;
838 			if (d->callback && d->callback(d))
839 				break;
840 		}
841 
842 	return count;
843 }
844 EXPORT_SYMBOL(dmi_check_system);
845 
846 /**
847  *	dmi_first_match - find dmi_system_id structure matching system DMI data
848  *	@list: array of dmi_system_id structures to match against
849  *		All non-null elements of the list must match
850  *		their slot's (field index's) data (i.e., each
851  *		list string must be a substring of the specified
852  *		DMI slot's string data) to be considered a
853  *		successful match.
854  *
855  *	Walk the blacklist table until the first match is found.  Return the
856  *	pointer to the matching entry or NULL if there's no match.
857  */
858 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
859 {
860 	const struct dmi_system_id *d;
861 
862 	for (d = list; !dmi_is_end_of_table(d); d++)
863 		if (dmi_matches(d))
864 			return d;
865 
866 	return NULL;
867 }
868 EXPORT_SYMBOL(dmi_first_match);
869 
870 /**
871  *	dmi_get_system_info - return DMI data value
872  *	@field: data index (see enum dmi_field)
873  *
874  *	Returns one DMI data value, can be used to perform
875  *	complex DMI data checks.
876  */
877 const char *dmi_get_system_info(int field)
878 {
879 	return dmi_ident[field];
880 }
881 EXPORT_SYMBOL(dmi_get_system_info);
882 
883 /**
884  * dmi_name_in_serial - Check if string is in the DMI product serial information
885  * @str: string to check for
886  */
887 int dmi_name_in_serial(const char *str)
888 {
889 	int f = DMI_PRODUCT_SERIAL;
890 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
891 		return 1;
892 	return 0;
893 }
894 
895 /**
896  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
897  *	@str: Case sensitive Name
898  */
899 int dmi_name_in_vendors(const char *str)
900 {
901 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
902 	int i;
903 	for (i = 0; fields[i] != DMI_NONE; i++) {
904 		int f = fields[i];
905 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
906 			return 1;
907 	}
908 	return 0;
909 }
910 EXPORT_SYMBOL(dmi_name_in_vendors);
911 
912 /**
913  *	dmi_find_device - find onboard device by type/name
914  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
915  *	@name: device name string or %NULL to match all
916  *	@from: previous device found in search, or %NULL for new search.
917  *
918  *	Iterates through the list of known onboard devices. If a device is
919  *	found with a matching @type and @name, a pointer to its device
920  *	structure is returned.  Otherwise, %NULL is returned.
921  *	A new search is initiated by passing %NULL as the @from argument.
922  *	If @from is not %NULL, searches continue from next device.
923  */
924 const struct dmi_device *dmi_find_device(int type, const char *name,
925 				    const struct dmi_device *from)
926 {
927 	const struct list_head *head = from ? &from->list : &dmi_devices;
928 	struct list_head *d;
929 
930 	for (d = head->next; d != &dmi_devices; d = d->next) {
931 		const struct dmi_device *dev =
932 			list_entry(d, struct dmi_device, list);
933 
934 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
935 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
936 			return dev;
937 	}
938 
939 	return NULL;
940 }
941 EXPORT_SYMBOL(dmi_find_device);
942 
943 /**
944  *	dmi_get_date - parse a DMI date
945  *	@field:	data index (see enum dmi_field)
946  *	@yearp: optional out parameter for the year
947  *	@monthp: optional out parameter for the month
948  *	@dayp: optional out parameter for the day
949  *
950  *	The date field is assumed to be in the form resembling
951  *	[mm[/dd]]/yy[yy] and the result is stored in the out
952  *	parameters any or all of which can be omitted.
953  *
954  *	If the field doesn't exist, all out parameters are set to zero
955  *	and false is returned.  Otherwise, true is returned with any
956  *	invalid part of date set to zero.
957  *
958  *	On return, year, month and day are guaranteed to be in the
959  *	range of [0,9999], [0,12] and [0,31] respectively.
960  */
961 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
962 {
963 	int year = 0, month = 0, day = 0;
964 	bool exists;
965 	const char *s, *y;
966 	char *e;
967 
968 	s = dmi_get_system_info(field);
969 	exists = s;
970 	if (!exists)
971 		goto out;
972 
973 	/*
974 	 * Determine year first.  We assume the date string resembles
975 	 * mm/dd/yy[yy] but the original code extracted only the year
976 	 * from the end.  Keep the behavior in the spirit of no
977 	 * surprises.
978 	 */
979 	y = strrchr(s, '/');
980 	if (!y)
981 		goto out;
982 
983 	y++;
984 	year = simple_strtoul(y, &e, 10);
985 	if (y != e && year < 100) {	/* 2-digit year */
986 		year += 1900;
987 		if (year < 1996)	/* no dates < spec 1.0 */
988 			year += 100;
989 	}
990 	if (year > 9999)		/* year should fit in %04d */
991 		year = 0;
992 
993 	/* parse the mm and dd */
994 	month = simple_strtoul(s, &e, 10);
995 	if (s == e || *e != '/' || !month || month > 12) {
996 		month = 0;
997 		goto out;
998 	}
999 
1000 	s = e + 1;
1001 	day = simple_strtoul(s, &e, 10);
1002 	if (s == y || s == e || *e != '/' || day > 31)
1003 		day = 0;
1004 out:
1005 	if (yearp)
1006 		*yearp = year;
1007 	if (monthp)
1008 		*monthp = month;
1009 	if (dayp)
1010 		*dayp = day;
1011 	return exists;
1012 }
1013 EXPORT_SYMBOL(dmi_get_date);
1014 
1015 /**
1016  *	dmi_walk - Walk the DMI table and get called back for every record
1017  *	@decode: Callback function
1018  *	@private_data: Private data to be passed to the callback function
1019  *
1020  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1021  *	or a different negative error code if DMI walking fails.
1022  */
1023 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1024 	     void *private_data)
1025 {
1026 	u8 *buf;
1027 
1028 	if (!dmi_available)
1029 		return -ENXIO;
1030 
1031 	buf = dmi_remap(dmi_base, dmi_len);
1032 	if (buf == NULL)
1033 		return -ENOMEM;
1034 
1035 	dmi_decode_table(buf, decode, private_data);
1036 
1037 	dmi_unmap(buf);
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(dmi_walk);
1041 
1042 /**
1043  * dmi_match - compare a string to the dmi field (if exists)
1044  * @f: DMI field identifier
1045  * @str: string to compare the DMI field to
1046  *
1047  * Returns true if the requested field equals to the str (including NULL).
1048  */
1049 bool dmi_match(enum dmi_field f, const char *str)
1050 {
1051 	const char *info = dmi_get_system_info(f);
1052 
1053 	if (info == NULL || str == NULL)
1054 		return info == str;
1055 
1056 	return !strcmp(info, str);
1057 }
1058 EXPORT_SYMBOL_GPL(dmi_match);
1059 
1060 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1061 {
1062 	int n;
1063 
1064 	if (dmi_memdev == NULL)
1065 		return;
1066 
1067 	for (n = 0; n < dmi_memdev_nr; n++) {
1068 		if (handle == dmi_memdev[n].handle) {
1069 			*bank = dmi_memdev[n].bank;
1070 			*device = dmi_memdev[n].device;
1071 			break;
1072 		}
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1076